当前位置:文档之家› 实验22 按年龄分组的种群增长模型

实验22 按年龄分组的种群增长模型

实验22 按年龄分组的种群增长模型
实验22 按年龄分组的种群增长模型

实验22 按年龄分组的种群增长模型

实验目的

1、利用常差分方程建立实际问题的数学;

2、学会用MATLAB 软件计算出模型的相关问题。

实验内容

1、用常差分方程建立按年龄分组的种群增长模型;

2、用MATLAB 软件求按年龄分组的种群模型的一些问题。

实验步骤

问题 野生或饲养的动物因繁殖而增加,因自然死亡和人为屠杀而减少,不同年龄动物的繁殖率、死亡率有较大差别,因此在研究某一种群数量的变化时,需要考虑按年龄分组的种群增长。

将种群按年龄等间隔地分成若干个年龄组,时间也离散化为时段,给定各年龄组种群的繁殖率和死亡率(在稳定环境下不妨假定它们与时段无关),建立按年龄分组的种群增长模型,预测未来各年龄组的种群数量,并讨论时间充分长以后的变化趋势。

模型及其求解 设种群按年龄等间隔地分成n 个年龄组,记0,1,2,...,i n =,时段记作0,1,2,...k =,且年龄组区间与时段长度相等(若5岁为一个年龄组,则5年为一个时段)。以雌性个体为研究对象比较方便,以下种群数量均指其中的雌性。

记第i 年龄组在时段k 的数量为()x k i ;第i 年龄组的繁殖率为i b ,表示每个(雌性)个体在一个时段内繁殖的数量;第i 年龄组的死亡率为i d ,表示一个时段内死亡数与总数的比。

1i i s d =-是存活率。

为建立()i x k 的变化规律,我们注意到:第1年龄组在时候1k +的数量为各年龄组在第k 时段繁殖的数量之和,即

11(1)()

0,1,n

i i i x k b x k k =+==∑

(22.1)

而第1i +年龄组在时段1k +的数量是第i 年龄组在时段k 存活的数量,即 1(1)()

1,2,,1,0,1,i i i x k s x k i n k ++==-=

(22.2) 记在时段k 种群各年龄组的数量为

12()((),(),,())T n x k x k x k x k = 。

(22.3)

这样,有

1(1)(),0,1,k x k Lx k k ++== (22.4)

将()x k 归一化后的向量记做()x

k ,称种群按年龄的分布向量。给定在0时段,各年龄组的初始数量(0)x ,就可以预测任意时段k 各年龄组的数量。

设一种群分成5个年龄组, 已知繁殖率123450,0.2, 1.8,0.8,0.2,b b b b b =====存活率10.5,s =20.8,s =30.8,s = 40.1s =。各年龄组现有数量都是100只,下面我们用MATLAB 计算()x k 。

% 按年龄分组的种群增长 clear all

b=[0,0.2,1.8,0.8,0.2];

s=diag([0.5,0.8,0.8,0.1]); % 对角阵,对角元素为0.5,0.8,0.8,0.1

L=[b;s,zeros(4,1)]; % 构造矩阵L x(:,1)=100*ones(5,1); % 赋初值 K=45; for k=1:K

x(:,k+1)=L*x(:,k); %迭代计算 end round (x),

y=diag([1./sum(x)]); % 为向量x 归一化做的计算 z=x*y, % z 是向量x 的归一化 k=0:K;

subplot(1,2,1), plot(k,x),grid % 在一个图形窗内画两张图 subplot(1,2,2), plot(k,z),grid

将()x k 归一化后的向量记做()x

k ,称为种群按年龄分组的分布向量,即各年龄组在k 时段在数量上占总数的百分比。

y=diag(1./sum(x));

%sum(x) 对列求和

Z=x*y

subplot(1,2,2),plot(k,z),grid subplot(1,2,2),plot(k,z),grid

得到的结果见表22-1、表22-2和图22.1、图22.2。

结果分析 从上述图表可以看出,时间充分长以后种群按年龄分组的分布向量()x

k 趋于稳定,这种状况与Leslie 矩阵的如下性质有关(设矩阵L 第一行有两个顺序的i b 大于零):

矩阵L 有单特征根1λ,对应特征向量为

1

2

1111211211(1,,,...)n n x s s s s s s λλλ*

---T

-= (22.5)

对于L 的其他特征根i λ有1(2,3,...,)i i n λλ<=,且由(22.4)式确定的()x k 满足

()

lim 1

x k cx k λ*=→∞,

(22.6)

其中c 是与i b ,i s ,(0)x 有关的常数(请读者在矩阵L 可对角化的条件下证明(22.6)式)。

0100

200

300

400500600

7000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

图22.1 ()x k 的图形

图22.2从上到下依次为1()x

k 到5()x k 的图形

由上述性质可以对时间充分长以后的()x k ,()x k 做出如下分析(以下i λ记作λ);

(1) 记归一化的特征向量x *

为x

,则

()x

k x ≈ (22.7)

与(0)x 无关,即按年龄组的分布向量()x

k 趋向稳定分布x 。 (2) 因为()k

x k c x λ*

≈,所以

(1)()x k x k λ+≈

(22.8)

即各年龄组的数量按照同一比例λ增减,λ称固有增长率。

(3)由L 的特征方程

12112121(......)0n n n n n b s b s s s b λλλ----+++=

(22.9) 可知,当

112122121......1n n b s b s s b s s s b -++++=

(22.10) 时固有增长率1λ=,各年龄组的数量不变,且由(22.5)式知特征向量

[]1121211,,,...,...n x s s s s s s T

*-=,

(22.11) 再注意到()k x k c x λ*

≈,(22.11)式给出

1()()i i i x k s x k +≈

(22.12)

即存活率i s 等于同一时段相邻年龄组的数量之比。

(4)用本例的数据对上面的稳态分析作验证。

1)用MATLAB 可得矩阵L 的全部特征根,其中最大的为1 1.0254λ=,由(22.5)式

容易计算特征向量x *,归一化得 []0.4559,0.2223,0.1734,0.1353,0.0132x T =,与表

2.6()x

k 的计算结果相近,即(22.7)式。 2)在()x k 的计算结果中(表22.1),对于大的k 和1,2,...,5,(1)/()i i i x k x k =+的值在

1 1.0254λ=附近(5()x k 的值较小,取整后计算误差较大),即(22.8)式。

3)因1 1.0254λ=比1略大可以由表22-1或表22-2对于大的k 近似验证(22.12)式。 问题与思考

练习1 Leslie 种群年龄结构的差分方程模型

已知一种昆虫每两周产卵一次,六周以后死亡(给出了变化过程的基本规律)。孵化后的幼虫2周后成熟,平均产卵100个,四周龄的成虫平均产卵150个。假设每个卵发育成2周龄成虫的概率为0.09(称为成活率),2周龄成虫发育成4周龄成虫的概率为0.2。

1)假设开始时,0~2,2~4,4~6周龄的昆虫数目相同,计算2周、4周、6周后各种周龄的昆虫数目;

2)讨论这种昆虫各种周龄的昆虫数目的演变趋势:各周龄的昆虫比例是否有一个稳定值?昆虫是无限地增长还是趋于灭亡?

3)假设使用了除虫剂,已知使用了除虫剂后各周龄的成活率减半,问这种除虫剂是否有效?

练习2 按年龄分组的种群增长一般模型及灵敏性分析

对于某种群建立数学模型分析其数量变化规律。这里分析的对象是特定的种群,变化过程可以按相等间隔的时段末来记录。为了精确表现种群的变化,自然需要将种群进行分类,不妨按与时间段长度相同的年龄进行分组。为了简化模型,对每一时段的种群取相同的最大年龄,这里相当于认为很大年龄的那部分视作为相同年龄,在下一个时段全部消失。考虑每一时段中不同年龄组种群数量构成的向量、不同年龄组的繁殖率i b 和存活率i s 。

1)建立差分方程分析种群的变化规律;

2)进行种群数量的稳定性分析,即时间充分长以后种群年龄结构及数量变化; 3)对i b 和i s 关于种群的增减进行灵敏性分析(提示:考虑由i b 和i s 所构作的新参数

12111......n n R b b s b s s -=+++,解释这个参数的实际意义,并利用它进行灵敏性分析 )。

补充知识

如下矩阵L 称为Leslie 矩阵

121

01

100000

0000000n n n F F F F F P L P P --??

?

? ?= ?

? ??

?

,0,0;0,101j i F j n P n ≥≤≤>≤≤- 基本概念:设矩阵的特征值为01,,...,n λλλ,将它们的模按从大到小的顺序排列(不妨设为):01...n λλλ≥≥≥,则称0λ为矩阵的主特征值,如果01λλ>,则称0λ为严格主

特征值。

Leslie 矩阵L 的几个基本性质:

(1) Leslie 矩阵L 有唯一的正单特征值0λ(重数为1),且0λ为主特征值;若L 矩阵第一行有两个相邻元素非零,则它的唯一正特征根0λ为严格主特征值。

(2)如果λ为L 矩阵的一个非零特征值,则()

120010111,,,...,...T

n

n P P P P P P λαλλλ

----=为与λ对应的一个特征向量。

(3)若12,,...,m k k k 是L 矩阵中第一列中非零元素所处的列数,且12,,...,m k k k 互素,则0λ为严格主特征值。

进一步阅读和学习材料

1.姜启源等编著. 大学数学实验[M],北京:清华大学出版社,2005年。

二十种常见实验动物模型

二十种常见实验动物模型 一、缺铁性贫血动物模型 缺铁性贫血(iron deficiency anemia,IDA)是体内用来合成血红蛋白(HGB)的贮存铁缺乏,HGB合成减少而导致的小细胞低色素性贫血,主要发生于以下情况:(1)铁需求增加而摄入不足,见于饮食中缺铁的婴幼儿、青少年、孕妇和哺乳期妇女。(2)铁吸收不良,见于胃酸缺乏、小肠粘膜病变、肠道功能紊乱、胃空肠吻合术后以及服用抗酸和H2受体及抗剂等药物等情况。(3)铁丢失过多,见于反复多次小量失血,如钩虫病、月经量过多等。 IDA是一种多发性疾病,据报道,在多数发展中国家,约2/3的儿童和育龄妇女缺铁,其中1/3患IDA,因此,研究IDA的预防和治疗具有重要的意义。在这些研究中,缺铁性贫血的动物模型(Animal model of IDA),又是实施研究的基础工具。常见的IDA动物模型的构建技术如下: 实验动物:一般选用SD大鼠,4周龄,雌雄不拘,体重65g左右,HGB≥130g/L。 建模方法:低铁饲料加多次少量放血法。低铁饲料一般参照AOAC 配方配制,采用EDTA浸泡处理以去除饲料中的铁,饲料中的含铁量是诱导SD大鼠形成缺铁性贫血模型的关键,现有研究表明,饲喂含铁量<15.63mg/Kg的饲料35天,SD大鼠出现典型IDA表现,而饲喂

含铁40.30mg/Kg的饲料SD大鼠出现缺铁,但并不表现贫血症状。建模时一般采用去离子水作为动物饮水,以排除饮水中铁离子的影响。少量多次放血主要用于模拟反复多次小量失血导致的铁丢失,还可以加速贫血的形成。放血一般在低铁饲料饲喂2周后进行,常用尾静脉放血法,1~1.5ml/次,2次/周。 模型指标:(1)HGB≤100g/L;(2)血象:红细胞体积较正常红细胞偏小,大小不一,中心淡染区扩大,MCV减小、MCHC降低;(3)血清铁(SI)降低,常小于10μmol/L,血清总铁结合力(TIBC)增高,常大于60μmol/L。 需要指出的是,以上模型不能用于铁吸收不良相关IDA的防治研究。根据具体的研究需要,也可以适当调整建模方法。 二、白血病动物模型 用免疫耐受性强的人类胎儿骨片植入重症联合免疫缺陷病(SCID)小鼠皮下,出于人类造血细胞与造血微环境均植入小鼠,建立具有人类造血功能的SCID小鼠模型称为SCID-hu小鼠。再将髓系白血病患者的骨髓细胞植入SCID-hu小鼠皮下的人类胎儿骨片内,植入的髓系白血病细胞选择性生长在SCID-hu小鼠体内的人类造血微环境中,即为人类髓系白血病的小鼠模型。SCID小鼠是由于其scid所致。T、B淋巴细胞功能联合缺陷,这种小鼠能接受人类器官移植物。 造模方法:

动物实验方法总结:组织研磨管的使用方法 临床样本或动物取材注意事项 动物模型

组织研磨管的使用方法 1.作用:只适用于蛋白提取、RNA提取、基因组DNA提取时的组 织裂解,不做他用; 2.组织研磨管:容量为1.5ml, 里面已经提前放置了研磨珠(有时也 不放置),研磨液(Trizol或RIPA裂解液,有时也不放置)一般在取回后才加入,如果已经加入了研磨液,请离心后才拧开管盖,以免研磨液溢出,对皮肤造成伤害,所以操作时,要小心注意! 3.组织:把收取的组织分切,用生理盐水或PBS缓冲液把分切的组 织上的血液漂洗干净,然后用医用纱布或滤纸把组织表面的水分吸干,然后放入研磨管(组织体积大小为1颗绿豆至2颗黄豆,根据实际情况决定)中,然后把放入的组织尽量剪碎; 4.存放:上述过程应尽量在最短的时间内操作完毕,立即用液氮冻 结,然后置于液氮或-80℃保存; 5.操作事项:操作时间尽可能短,做好一个,立马放置一个;

实验方法总结(3):动物模型部分 1、研究肿瘤细胞增殖 (2) 2、研究肿瘤细胞转移 (3) 2.1. 体外(浸润模型) (3) 2.2. 体内(转移模型) (3) 3、研究肿瘤细胞耐药 (5) 3.1. 耐药细胞株的建立 (5) 3.2. 裸鼠移植瘤耐药模型的建立 (6) 从肿瘤起源分,肿瘤动物模型的分类如下: 从研究目的来分,可以从增殖、转移、耐药三个角度来分析: 1、研究肿瘤细胞增殖 细胞准备:GeneA敲减慢病毒感染细胞扩增至需要的细胞量。分为:空白对照组、阴性对照组、实验组。 取Balb/c裸鼠,雄性,6周龄,每组10只,适应一周后进行肿瘤细胞注射。

XXX细胞消化离心后制成单细胞悬液,计数后取适量的细胞用PBS悬浮,在Balb/c裸鼠侧腹部皮下接种。每只接种2×106个细胞,注射体积为100 μL。此后,每隔5天测量注射部位肿瘤的体积。30天后裸鼠小鼠腹腔注射80 mg/kg 戊巴比妥钠,小鼠麻醉后置蓝色背景布上拍照(侧卧位,接种部位朝上),小鼠颈椎脱臼处死,取出肿瘤称重,将肿瘤置蓝色背景布上拍照,肿瘤一分为二,一份4%多聚甲醛固定,待后续病理分析,一份-80℃冻存。 2、研究肿瘤细胞转移 肿瘤转移的模型包括两大类:体外(浸润模型)和体内(转移模型)。体外(浸润模型):了解肿瘤细胞对周围相连组织的侵润性。体内模型主要研究肿瘤细胞的转移性即肿瘤细胞在远端组织形成病灶的能力。 2.1. 体外(浸润模型) 例:浸润型脑胶质瘤动物模型的建立 方法:取若干只Balb/c免疫缺陷裸鼠,将分离和鉴定并转染携带绿色荧光蛋白的脑胶质瘤干细胞立体定向法行小鼠颅内接种,每组10只。小鼠麻醉后头部正中切口,剥离骨膜后钻孔(坐标是冠状缝后0.5 cm,矢状缝右侧2.5 cm) 。取2 μL胶质瘤干细胞以1×104 cells /只小鼠的剂量,经微量注射器缓慢注射入鼠脑纹状体内(深度是2.5 ~3 mm) 。在确定的时间点处死一部分动物进行荧光( 立体荧光显微镜下) 病理证实和比较,同时检查脑胶质瘤干细胞的体内生长特征以及干细胞标志物等。 2.2. 体内(转移模型)

实验方法总结:动物模型部分

实验方法总结:动物模型部分 1、研究肿瘤细胞增殖 (1) 2、研究肿瘤细胞转移 (2) 2.1. 体外(浸润模型) (2) 2.2. 体内(转移模型) (2) 3、研究肿瘤细胞耐药 (4) 3.1. 耐药细胞株的建立 (4) 3.2. 裸鼠移植瘤耐药模型的建立 (5) 从肿瘤起源分,肿瘤动物模型的分类如下: 从研究目的来分,可以从增殖、转移、耐药三个角度来分析: 1、研究肿瘤细胞增殖 细胞准备:GeneA敲减慢病毒感染细胞扩增至需要的细胞量。分为:空白对照组、阴性对照组、实验组。 取Balb/c裸鼠,雄性,6周龄,每组10只,适应一周后进行肿瘤细胞注射。

XXX细胞消化离心后制成单细胞悬液,计数后取适量的细胞用PBS悬浮,在Balb/c裸鼠侧腹部皮下接种。每只接种2×106个细胞,注射体积为100 μL。此后,每隔5天测量注射部位肿瘤的体积。30天后裸鼠小鼠腹腔注射80 mg/kg 戊巴比妥钠,小鼠麻醉后置蓝色背景布上拍照(侧卧位,接种部位朝上),小鼠颈椎脱臼处死,取出肿瘤称重,将肿瘤置蓝色背景布上拍照,肿瘤一分为二,一份4%多聚甲醛固定,待后续病理分析,一份-80℃冻存。 2、研究肿瘤细胞转移 肿瘤转移的模型包括两大类:体外(浸润模型)和体内(转移模型)。体外(浸润模型):了解肿瘤细胞对周围相连组织的侵润性。体内模型主要研究肿瘤细胞的转移性即肿瘤细胞在远端组织形成病灶的能力。 2.1. 体外(浸润模型) 例:浸润型脑胶质瘤动物模型的建立 方法:取若干只Balb/c免疫缺陷裸鼠,将分离和鉴定并转染携带绿色荧光蛋白的脑胶质瘤干细胞立体定向法行小鼠颅内接种,每组10只。小鼠麻醉后头部正中切口,剥离骨膜后钻孔(坐标是冠状缝后0.5 cm,矢状缝右侧2.5 cm) 。取2 μL胶质瘤干细胞以1×104 cells /只小鼠的剂量,经微量注射器缓慢注射入鼠脑纹状体内(深度是2.5 ~3 mm) 。在确定的时间点处死一部分动物进行荧光( 立体荧光显微镜下) 病理证实和比较,同时检查脑胶质瘤干细胞的体内生长特征以及干细胞标志物等。 2.2. 体内(转移模型)

人口指数模型(完整资料).doc

指数函数的数据拟合 世界人口预测问题 下表给出了本世纪六十年代世界人口的统计数据(单位:亿) 有人根据表中数据,预测公元2000年世界人口会超过60亿。这一结论在六十年代末令人难以置信,但现在已成为事实。试建立数学模型并根据表中数据推算出2000年世界人口的数量。 根据马尔萨斯人口理论,人口数量按指数递增的规律发展 人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据。早在1798年,英国经济学家马尔萨(T.R.Malthus,1766-1834)就提出了自然状态下的人口增长模型: 精品文档,下载后可编辑

精品文档,下载后可编辑 rt e y y 0= 其中t 表示经过的时间, 0y 表示t =0时的人口数,r 表示人口的年平均增长率。 表3是1950~1959年我国的人口数据资料: (1)如果以各年人口增长平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期具体人口增长模型,并检验所得模型与实际人口数据是否相符; 解:设1951~1959年的人口增长率分别为 于是, 1951~1959年期间,我国人口的年均增长率为 129r ,r ,......,r .155196(1)56300,1951, r +=≈≈≈≈≈≈≈≈≈1 2 34 5 678 9 可得年的人口增长率r 0.0200.同理可得r 0.0210,r 0.0229,r 0.0250,r 0.0197,r 0.0223,r 0.0276,r 0.0222,r 0.0184. 55196,1950~1959y =令则我国在年期间的人口增长模型为

有关多种群的数学模型

自然界的多种群模型分析 摘要:在我们生活的大自然中,有着太多太多的秩序和规则。种群之间的你争我斗,弱肉强食也是非常激烈。种群,顾名思义就是指同一种生物的一个集合。不同种群之间的关系大致分为四种:捕食与被捕食关系,互利共生关系,相互竞争关系和寄生与寄主关系。我们这次的建模就是围绕着种群之间的关系来展开的,下面我将从这几个方面来进行分类讨论,由于寄生与寄主的关系不是很常见,关系也比较简单,在此便不再赘述。 捕食与被捕食关系:这种关系很简单,大家也能很容易地理解,通俗地解释,就是指一种生物以另一种生物为食,举个例子大家也许会更容易地理解。比如说狼和羊的关系,狼是捕食者,羊是被捕食者,狼以羊为食,是羊的天敌。 互利共生关系:指两种生物共同生活在一个区域有助于提高另一种生物的种群密度,假如其中一种生物的数量减少,也会影响另一种生物的数量,使其数量减少。比如草地和森林优势植物的根多与真菌共生形成菌根,多数有花植物依赖昆虫传粉,大部分动物的消化道也包含着微生物群落,最典型的就是大豆与根瘤菌。大豆给根瘤菌提供养分,根瘤菌给大豆提供氮元素。 相互竞争关系:有种内和种间两种竞争方式。这里是指两种共居一起,为争夺有限的营养、空间和其他共同需要而发生斗争的种间关系。竞争的结果,或对竞争双方都有抑制作用,大多数的情况是对一方有利,另一方被淘汰,一方替代另一方。举个例子,牛和羊生活在共同的一片草地上,因为这两种生物都以草为食,它们之间不存在其他关系,所以它们之间是竞争关系。 以上就是三种种群之间的关系,下面我们就从这三个方面对物种种群密度的变化进行分析。在以下的讨论中我们将建立微分方程的数学模型,对生物多种群之间各种关系进行 关键词:生物种群,数量,关系,互相作用,竞争 问题重述: 生物学的研究对维持地球生态平衡有着不可替代的作用,是可持续发展的重要组成部分!地球上的物种一直只在减少,现在也有很多物种濒临灭绝,因此对

年龄分组的种群增长模型

讨论问题:在按年龄分组的种群增长模型中,设一群动物的最高年龄为15岁,每5岁一组,分成3个年龄组,各组的繁殖率为b1=0,b2=4,b3=3,存活率为s1=1/2,s2=1/4,开始时3组各有1000只。求15年后各组分别有多少只,以及时间充分长以后种群的增长率(即固有增长率)和按年龄的分布。 成员: 按年龄分组的种群增长 不同年龄组的繁殖率和死亡率不同 以雌性个体数量为对象 建立差分方程模型,讨论稳定状况下种群的增长规律 模型建立 种群按年龄大小等分为n 个年龄组,记i=1,2,… , n 时间离散为时段,长度与年龄组区间相等,k=1,2,… 第i 年龄组1雌性个体在1 时段内的繁殖率为bi 第i 年龄组在1时段内的死亡率为di, 存活率为si=1- di xi(k)~时段k 第i 年龄组的种群数量 ) ( ) 1 ( 11 k x b k x i n i i ( 设至少 1 个 b i >0)

T n k x k x k x k x )] (),(),([)(21 ~按年龄组的分布向量 X(k+1)=LX(k),k=0,1,2,… 当矩阵L 和按年龄组的初始分布向量x (0)已知时,可以预测任意时段k 种群按年龄组的分布为: 稳定状态分析的数学知识 1 , , 2 , 1 ), ( ) 1 ( 1 n i k x s k x i i i 0 0 0 12 1 12 1 n n n s s s b b b b L ) ( ) ( x L k x k

矩阵存在正单特征根1, >0, 则1 ( lim cx k x k k T n n s s s s s 11 1 2 2 1 2 1 1 1 ,, ,, 1 1 ( lim cx k x k k 0, )( lim 1 1 x Pdiag k x k k

常用疾病动物模型

常用疾病动物模型 上海丰核可以为广大客户提供各种疾病动物模型定制服务,同时提供相关疾病模型的药物敏感性实验分析服务。 客户只需要提供疾病模型的用途及建模方法的选择,我们会根据客户的具体要求量身定做各种动物模型服务。

小鼠或裸 鼠 加贴近实际(八)心血管疾病模型 1. 动脉粥样硬化(高脂高胆固醇+维生素D喂养)兔高脂、高胆固醇饲喂兔造模,成 膜后血脂变化显著,为伴高血脂 症的动脉粥样硬化 4月血管组织病 理切片染色 2. 主动脉粥样硬化(高脂高胆固醇+主动脉球囊损伤)兔此模型用大球囊损伤加高脂饲 养方法成功建立兔主动脉粥样 硬化狭窄的动物模型,为相关基 础研究提供可靠模型。 2月动物实验模型病理切片展示 一、CCl4诱导的肝脏纤维化 简介:肝纤维化是肝细胞坏死或损伤后常见的反应,是诸多慢性肝脏疾病发展至肝硬化过程中的一个中间环节。肝纤维化的形成与坏死或炎症细胞释放的多种细胞因子或脂质过氧化产物密切相关。CCl4为一种选择性肝毒性药物,其进入机体后在肝内活化成自由基,如三氯甲基自由基,后者可直接损伤质膜,启动脂质过氧化作用,破坏肝细胞的模型结构等,造成肝细胞变性坏死和肝纤维化的形成。通过CCl4复制肝纤维化动物模型通常以小鼠或大鼠为对象,染毒途径主要为灌胃、腹腔注射或皮下注射。 动物模型图. 经过3个月的CCl4注射造模,小鼠的肝脏在中央静脉区形成了比较明显的肝纤维化,中央静脉之间形成了纤维桥接。(Masson染色) 二、CXCL14诱导的急性肝损伤动物模型

简述:CCl4是最经典的药物性肝损伤造模毒素之一,其在肝内主要被微粒体细胞色素P450氧化酶代谢,产生三氯甲烷自由基和三氯甲基过氧自由基,从而破坏细胞膜结构和功能的完整性,引起肝细胞膜的通透性增加,可溶性酶的大量渗出,最终导致肝细胞死亡,并引发肝脏衰竭。根据CCl4代谢和肝毒性机制可复制不同的肝损伤模型,其中给药剂量和给药方法是其技术关键。对于复制急性肝衰竭动物模型,往往采用大剂量一次性灌胃或腹腔注射给药。 图. (A) CCl4注射后0.5 d的HE染色表明CXCL14过表达增加了肝脏组织的嗜酸性变性面积(在照片中用虚线标记)(p < 0.05)。 (B) 1.5天组织样本的HE染色表明CXCL14过表达造成了比对照组更大面积的细胞坏死(p < 0.05)。 (C)同时还造成了中央静脉周围肝细胞中明显的脂肪滴积累。图中P和C分别表示动物模型的门静脉和中央静脉。KU指凯氏活性单位。 细胞凋亡检测结果 TUNEL标记没有显示CXCL14免疫中和小鼠和对照小鼠在凋亡细胞数量上的差异。C0, C1和C2分别是对照组0 d,1 d,和2 d样本,T1

几类不同增长的函数模型

几类不同增长的函数模型 学校:___________姓名:___________班级:___________考号:___________ 1.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( ) A .一次函数 B .二次函数 C .指数型函数 D .对数型函数 2.若()0,1x ∈,则下列结论正确的是( ) A .122lg x x x >> B .122lg x x x >> C .122lg x x x >> D .12lg 2x x x >> 3.四人赛跑,假设他们跑过的路程(){}() 1,2,3,4i f x i ∈和时间()1x x >的函数关系分别是()12f x x =,()22f x x =,()32log f x x =,()42x f x =,如果他们一直跑下去, 最终跑在最前面的人具有的函数关系是( ) A .()12f x x = B .()22f x x = C .()32log f x x = D .()42x f x = 4.西部某地区实施退耕还林,森林面积在20年内增加了5%,若按此规律,设2016 年的森林面积为m ,从2016年起,经过x 年后森林面积y 与x 的函数关系式为( ) A . 1.0520mx y = B .0.05120x y m ??=- ??? C .()2015%x y m =+ D .()15%x y m ??=+?? 5.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过x 年后的剩留量为y ,则x ,y 之间的函数关系为( ) A .1000.9576x y = B.1000.9576 x y = C .0.9576100x y ??= ??? D .10010.042x y =- 6.下列函数中在某个区间()0,x +∞内随x 增大而增大速度最快的是( ) A.100ln y x = B.100y x = C.1e 100 x y = D.1002x y =? 7.以下四种说法中,正确的是( ) A .幂函数增长的速度比一次函数增长的速度快

人口指数增长模型

《数学模型》实验报告 实验名称:如何预报人口的增长成绩:___________ 实验日期: 2009 年 4 月 22 日 实验报告日期: 2009 年 4 月 26 日 一、实验目的 预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。 二、实验内容 根据统计资料得出的人口增长率不变的假设,建立人口指数增长模型。利用微积分数学工具视x(t)为连续可微函数,记t=0时人口为x0,人口增长率为常数r, 变有dx/dt=rx,x(0)=x0,解出x(t)=x0*exp(rt)。 三、实验环境 MATLAB6.5 四、实验步骤 为了用数据进行线形最小二乘法的计算,故将x(t)=x0*exp(rt)两边取对数可得lnx(t)=lnx0*exp(rt), lnx(t)=lnx0+rt,另y=lnx(t),a= lnx0,所以可得y= rt+a。 根据所提供的数据用MATLAB函数p=polyfit(t,x,1)拟合一次多项式,然后用画图函数plot(t,x,’+’,t,x0*exp(rt),’-’),画出实际数据与计算结果 之间的图形,看结果如何。 利用1790-1900年的数据进行试验,程序如下: t=linspace(0,11,12); x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0]; p=polyfit(t,log(x),1); r=p(1) x0=exp(p(2))

plot(t,x,'+',t,x0*exp(r*t),'-') 利用1790-2000年的数据进行试验,程序如下: t=linspace(0,21,22); x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,106 .5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4]; p=polyfit(t,log(x),1); r=p(1) x0=exp(p(2)) plot(t,x,'+',t,x0*exp(r*t),'-') 五、实验结果 以1790年至1900年的数据拟合y= rt+a,用软件计算可得r=0.2743/10年,x0=4.1884,下图为拟合的图象: 以1790年至2000年的数据拟合y= rt+a,用软件计算可得r=0.2022/10年,x0=6.0450,下图为拟合的图象:

动物试验模版

一. 背景: 本次动物实验相关疾病介绍、国内外相关治疗及研究的现状及结果(含临床、基础)、相关引文摘要等。 二、实验所用器械简介: 三、实验目的 1、使用猪或其他适宜动物为实验模型, 按照临床要求对产品进行模拟 使用,对* *器械的* *性能、* *效应进行测试。 2、通过动物实验取得数据和经验, 以便为产品的临床使用撰写详尽的使 用指南。 3、确定* * 器械置入猪后的最长可回收天数, 以便为临床使用的最长 可回收时间提供参考。 4、研究* *器械置入* *天后的可回收性, 以回答以往实验中未能解决 的* * 器械在置入* * 天后是否可取出的问题。 四、实验模型和材料 1、实验模型 (1).动物模型:猪,体重:25?35KG (2).体外模型:拟采用透明塑料软管作成的20mm 25mm两 种直径的下腔静脉模型。 2、材料: (1)* *器械采用XX公司研发生产的器械。 (2)其他手术配套器械采用临床通用器械。 3.过程要求:

本实验开始前必须取得动物道德委员会的许可(注:国外 有此要求,国内仅少数几家大医院有动物伦理委员会) 五.实验设计 动物数量及分组方法:实验动物共22头,在置入器械后分为A和B两组.A组动物采用介入方法取出滤器,B组动物采用外科方法经腹切开方法取出滤器.下腔静 脉滤器置入后饲养观察时间为7、10、12、14、16、20、30、60和90天,具体分组方法见下表。 分组(头) 时间(天)- A B 7 1 1 10 1 1 12 3 1 14 3 1 16 1 1 20 3 1 30 0 2 60 0 1 90 0 1 六、实验方法: 1、随机选取实验动物以1:1的比例进行* *实验,并记录* * 总结出的操作要求。7?20天实验用以观察器械置入后的可回收期,30、60、90天实验用以观察器械置入后的长期通畅情况。 2、所有动物器械取出前应造影复查,并与器械置入时的资料进行对比,判断器

Logistic人口阻滞增长模型

Logistic 人口阻滞增长模型 一、模型的准备 阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有: 0)0(,)(x x x x r dt dx == (1) 对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 ) 0,0()(>>-=s r sx r x r (2) 设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增长,即 增长率0)(=m x r ,代入(2)式得m x r s =,于是(2)式为 )1()(m x x r x r -=???????????? ?(3) 将(3)代入方程(1)得: ?????=-=0 )0() 1(x x x x rx dt dx m ???? ??? ???(4) 解方程(4)可得: rt m m e x x x t x --+= )1(1)(0 (5) 二、模型的建立 我国从1954年到2005年全国总人口的数据如表1

1、将1954年看成初始时刻即0=t ,则1955为1=t ,以次类推,以2005年为51=t 作为终时刻。用函数(5)对表1中的数据进行非线性拟合,运用Matlab 编程得到相关的参数-0.0336,180.9871 ==r x m ,可以算出可决系数(可决系数是判别曲线拟合效果的一个指标): 由可决系数来看拟合的效果比较理想。所以得到中国各年份人口变化趋势的拟合曲线: t e t x 0336.0.0)12 .609871.180(19871 .180)(--+= (6) 根据曲线(6)我们可以对2010年(56=t )、2020年(66=t )、及2033年(79=t ) 进行预测得(单位:千万): 结果分析:从所给信息可知从1951年至1958年为我国第一次出生人口高峰,形成了中国人口规模“由缓到快”的增长基础;因此这段时期人口波动较大,可能影响模型结果的准确性。1959、1960、1961年为三年自然灾害时期,这段时期人口的增长受到很大影响,1962年处于这种影响的滞后期,人口的增长也受到很大影响。总的来说1951-1962年的人口增长的随机误差不是服从正态分布, 程序: 结果: 2、 将1963年看成初始时刻即0=t ,以2005年为32=t 作为终时刻。运用Matlab 编程得到相关的参数0.0484 ,151.4513 ==r x m ,可以算出可决系数9994.02=R 得到中国各年份人口变化趋势的另一拟合曲线: t e t x 0484.0)11 .694513.151(14513 .151)(--+= (7) 根据曲线(7)我们可以对2010年(47=t )、2020年(57=t )、及2033年(70=t ) 进行预测得(单位:千万): 结果分析:1963年-1979年其间,人口的增长基本上是按照自然的规律增长,特别是在农村是这样,城市受到收入的影响,生育率较低,但都有规律可寻。总的来说,人口增长的外界大的干扰因素基本上没有,可以认为这一阶段随机误差服从正态分布;1980-2005年这一时间段,虽然人口的增长受到国家计划生育政策的控制,但计划生育的政策是基本稳定的,这一阶段随机误差也应服从正态分布,因此用最小二乘法拟合所得到的结果应有较大的可信度。 程序: 结果: 3、从1980-2005年,国家计划生育政策逐渐得到完善及贯彻落实,这个时期的人口增长受到国家计划生育政策的控制,人口的增长方式与上述的两个阶段都不同。因此我们进一步选择1980年作为初始年份2005年作为终时刻进行拟合。运用Matlab 编程得到相关的参数0.0477 ,153.5351 ==r x m ,可以算出可决系数9987.02=R 得到中国各年份人 口变化趋势的第三条拟合曲线:

种群增长的Gompertz模型

种群增长的Gompertz 模型 摘要 本文根据题目要求,在渔场鱼量的自然生长服从种族增长规律Gompertz 模型的情况下,建立捕捞情况下渔场产量模型。根据模型,对渔场鱼量的平衡点及其稳定性进行讨论,并且在稳定的前提下,使用图解法讨论如何控制捕捞使持续产量达到最大。最后,对模型的优缺点进行了讨论。 关键词:Gompertz 模型 稳定性模型 图解法 正文 1 问题复述 已知某渔场鱼量的自然生长服从种族增长规律Gompertz 模型:().ln N x t rx x =,其中r 是固有增长率,N 是环境容许的最大鱼量。并且单位时间捕捞量为h Ex =,其中比例常数E 表示单位时间捕捞率,又称捕捞强度。现要求: (1)建立在捕捞情况下渔场鱼量的数学模型,讨论渔场鱼量的平衡点及其稳定性; (2)在鱼量稳定的前提下,求最大持续产量m h 及获得最大产量的捕捞强度m E 和 渔场鱼量水平*0x 。 2 模型假设 (1)捕捞过程视为连续性过程; (2)忽略种群间的相互作用及环境突变对渔场鱼量变造成的影响。 3 符号说明 ()x t 表示时刻t 时渔场中的鱼量; ()0,1i x i =表示渔场鱼量平衡点; *0x 表示获得最大持续产量的渔场鱼量水平; r 表示种群的固有增长率; N 表示环境容许的最大鱼量; ()f x 表示单位时间渔场鱼量的增长量; ()h x 表示单位时间的捕捞量; m h 表示单位时间的最大持续产量; ()F x 表示在捕捞情况下渔场的鱼量; ()'F x 表示()F x 的导数;

E 表示单位时间捕捞率,即捕捞强度; m E 表示获得最大持续产量时的捕捞强度; 4 模型建立 (1)在无捕捞条件下,()x t 的增长服从Gompertz 规律,即 ()().ln N x t f x rx x == ① (2)单位时间的捕捞量(即产量)()h x 与渔场鱼量()x t 成正比,比例系数为E ,于是单位时间的捕捞量为 ()h x Ex = ② (3)由①式与②式可以得到捕捞情况下渔场鱼量满足的方程 ()().ln N x t F x rx Ex x ==- ③ 5 模型求解 渔场鱼量平衡点及其稳定性讨论 根据上面得到的在捕捞情况下渔场的鱼量()F x 所满足的方程③式,令 ()ln 0N F x rx Ex x =-= 得到两个平衡点 01,0E r N x x e == ④ 由于()'ln N F x r r E x =--,因此有()'00F x r =-<,故0x 点稳定(与E ,r 的大小无关);同时,可证1x 点不稳定。 渔场鱼量稳定前提下持续产量最大问题的讨论 根据①,②式作曲线()y f x =和直线()y h x Ex ==,如图1所示。由于稳定点0x 与E ,r 的大小无关,因此应用图解法,由图1可知,当y Ex =与()y f x =在顶点*P 相交时可获得最大持续产量,此时的稳定平衡点为 *01N N x e = ⑤ 且单位时间的最大持续产量为

实验动物心肌肥厚模型

III.实验动物心肌肥厚模型 A、压力超负荷/主动脉缩窄 压力超负荷引起的心脏肥厚常用的手术方法是主动脉缩窄(i.e.缩窄升主动脉)。 小鼠行主动脉缩窄(TAC)可以引起心脏机械性的压力超负荷,最终导致心肌肥厚、心衰(20,84)。TAC通常诱导方法采用在近胸骨端行小切口, 缩窄主动脉的这样的开胸手术。TAC模型虽然不能完全模拟人类的心室重构,但该模型可以用于肥厚发病过程中多种基因学的研究。主动脉缩窄模型能很好的模拟血流动力学超负荷引起左心室肥厚的发生发展。该动物模型在主动脉缩窄造成心肌肥厚几个月后会导致心衰。 B、容量超负荷 在静脉回流适当的情况下,心脏不能排出足够的血液满足全身组织代谢的需要就会引起CHF(充血性心力衰竭)。心内檐沟血或回心血量增加导致瓣膜闭锁不全就会引起心室容量超负荷。在慢性动脉和/或二尖瓣瓣膜回流疾病中的容量超负荷,我们会观察到“舒张期压力-容积曲线”整体右移,说明心脏僵硬度增加,即发生LVH (可见于主动脉瓣狭窄、高血压、肥厚性心肌病)(36)。通常情况下,容量超负荷CHF模型制备方法是腹主动脉-下腔静脉分流术。即于肾动脉上方分离出下腔静脉和腹主动脉,用血管夹在近肾动脉端夹闭主动脉阻断血流;用0.6-mm的针头由主动脉远端刺入,继续进针刺入下腔静脉,使动静脉联合。退针后,缝合血管壁伤口。4-5周后,就能复制出心肌肥厚模型,并具有左心室收缩力增强、舒张末期压力增加的特点(257)。 C、冠状动脉结扎 冠状动脉结扎常用于复制心衰动物模型。冠脉左前降枝(LAD)结扎后会阻断心脏的供养和营养输送,这种情况类似于人类心脏病发作时伴随的症状。血氧和营养供输阻断后,心肌细胞死亡,心脏整体功能受影响,最终导致心功能紊乱。由于这种动物模型非常接近临床心衰疾病的发生发展,研究证明该模型是心衰发病机制研究的重要手段(13)。 D、转基因型心脏肥大模型 几十年以来,一些心脏肥大和心力衰竭的转基因小鼠模型被学者们用于心肌肥厚和心衰这些致命疾病的可能的分子机制研究。受条件限制,在此不能针对于所有模型作一全面的综述,但在此文中,我们介绍一种转基因小鼠模型,该模型能成功模拟心肌肥厚的发生发展以及最终演变为心衰的过程。表1列举的是截止目前,研究学者们发现的较成熟的心肌肥厚/心衰模型。 表1:小鼠心衰模型 转基因小鼠模型代谢转变模型ECM紊乱转基因模型 肌侵蛋白,TNFα,G i,Gαq,PKCβ,PKA,β1AR, 磷酸化蛋白, 肌集钙蛋白, 钙调磷酸酶, L-型Ca2+ 通道 线粒体功能紊乱 氧化应激 脂肪酸氧化(FAO) 通路的受损 基质金属蛋白酶2/MMP2 基质金属蛋白酶9/MMP9 组织金属蛋白酶抑制剂 1/TIMP1

指数模型

8指数模型 8.1单指数模型 在均值-方差模型的讨论中,各证券间的协方差我们可以作任何假定,它们可以是由证券间存在的任意数量和种类的关系产生,而且在计算风险时所用的公式VX X r T X =)(2 σ中,我们必须对所选择的证券间的协方差进行估计。如果证券数目太大,我们就必须进行大量的协方差估计,使得在计算任一给定投资组合的方差时,需要花费大量时间。这是使用上节中的马柯维茨模型所存在的问题。 在∑ == n i i i X r E x r E 1 )()(,∑∑ ∑ =≠==+ = n i n i k k k i ik k i n i i i X x x x 1,11 222σ σρσ σ 公式中,这里的数学公 式告诉我们,如果投资者考虑的是由n 个资产构成的组合,那么在求解有效资产组合时,需要掌握三个方面的基本数据: (1)每一资产的平均收益率)(i r E ,共需n 个; (2)每一资产收益方差i σ,共需n 个; (3)每一对资产之间的相关系数ik ρ,共需n*(n-1)/2个。 总计需要2n+ n*(n-1)/2个基础性数据。对于每天追踪30~50种股票的投资机构来说,每天需要处理495~1325个数据;对于每天追踪150-250种股票的投资机构来说,每天需要处理11475~31625个数据;显然,这对各种投资者来说都是一件非常耗时的事情。那么,如何使投资组合理论和方法有效实用,简便易行,真正为金融财务工作者服务,就成了金融财务经济学家极为关心的问题。单指数模型能帮助我们克服这一困难,使得确定投资组合的方差计算过程变得简单。 在股票市场中,我们发现,当市场投资组合(如股票市场指数)的收益率显著上升或下降时,几乎所有股票的收益率都随之上升或下降,虽然可能有一些股票的收益率比另一些股票的收益率上升或下降得要快,但总的来说都是呈相同趋势变化。这意味着,市场投资组合收益率的变化能充分反映各种证券的共同变化趋势。因此对各个证券收益率之间的协方差的计算,可以用每一证券收益率与市场投资组合收益率之间的协方差代替。单指数模型就是在假定证券的收益率只受市场投资组合即单指数收益率的影响下确定投资组合的权重。 设证券的收益率具有简单线性结构,即其收益率r 和市场投资组合收益率r M 具有关系式 e r r M ++=βα 其中α,β为待估参数,e 为残差。 假定市场中有N 个证券,则按上述结构,第i 个证券的收益率满足

常用实验动物的种类与应用

常用实验动物的种类与应用 了解常用的实验动物的种类与应用范围,对组织实施实验研究有着不可低估的作用。当确立了实验研究题目及目标后,选择合适的实验动物对进行必要的研究是一项重要的工作。现将机能学实验教学中常用的动物用途简介如下: 一、家兔 家兔品种很多,目前我国实验用的家兔主要有以下三种。 1.中国本兔又称白家兔,毛色多为纯白,红眼睛,是我国长育的一种品种,成年兔体重1.5~3.5 kg。 2.青紫兰兔(山羊青兔或金基拉兔)毛色银灰色,成年兔体重2.5~3.5 kg. 3.大耳白兔(日本大耳白兔)毛色纯白,红眼睛,两耳长大,血管清晰,便于静脉注射和采血,成年兔体重4~5 kg. 家兔常用于机能学实验教学的各项实验中,如直接记录呼吸、血压、泌尿调节、减压神经放电、膈神经放电、观察药物对心脏的影响、了解心电图的变化、中枢神经兴奋药实验、药物对肠平滑肌的影响、药物中毒及解毒,复制许多病理过程和疾病,如水肿、炎症、电解质紊乱、酸碱平衡紊乱、失血、出血性休克、DIC、肺癌、动脉粥样硬化、高脂血症、心律失常、慢性肺心病、慢性肺动脉高血压、肺水肿、肝炎、胆管炎、阻塞性黄疸、肾性肾小球肾炎、急性肾功能衰竭。由于家兔体温变化比较敏感,也常用于研究发热、解热药和检查致热源等。 二、小白鼠: 小白鼠能用于药物的筛选,半数致死量的测定,复制许多病理过程和疾病,如水肿、炎症、缺氧、多种癌、肉瘤、白血病、多种传染病、慢性气管炎、心室纤颤等。 小白鼠做实验动物有以下特点: 1.小白鼠是实验室最常用的一种动物,价格低廉,便于大量繁殖,对动物实验同种、纯种、性别和年龄的要求,比较容易满足,生活条件也容易控制。因而只要符合实验要求,应尽量采用。它特别适用于需要大量动物的实验,容易满足统计学的要求。如药物的筛选,半数致死量的测定和安全实验,用于药物的效价比较及抗癌药的研究等。小白鼠也适用于避孕药的实验。 2.小白鼠对许多疾病有易感性,因而适用于研究下列疾病。如血吸虫病、疟疾、流感、脑炎等病。小白鼠的纯种品系很多,每系有其独特性,对某些疾病易感。如C1HA系,对癌瘤敏感,C5a系则抗癌;因此,纯系小白鼠广泛应用于各种肿瘤的研究。 3.当研究指标主要是观察组织学,特别是观察电镜下的结构时,应用小白鼠的器官较小,可节省人力、物力。如用于研究慢性气管炎时肺的变化。 4.小白鼠具有发达的神经系统,能应用于复制神经官能症模型。 5.小白鼠对外界环境适应性较差,不耐冷热,经不起饥饱,比较娇嫩;因此,做实验时要耐心细致,动作要轻,不然会干扰实验结果。 三、大白鼠: 大白鼠常用于复制许多病理过程和疾病,如水肿、炎症、缺氧、休克、DIC、胆固醇、肉芽肿、心肌梗塞、肝炎、肾性高血压、各种肿瘤等。 大白鼠做实验动物有以下特点: 1.大白鼠与小白鼠相似,便于大量繁殖,对动物实验同种、纯种、性别和年龄的要求,比较容易满足,生活条件也容易控制,适合于需要大量动物,而当小白鼠不能满足实验要求时。如:不对称亚硝酸胺口服和胃肠道外给药,能诱发大白鼠食道癌,而在小白鼠则很少引起食道癌;因而,在这种情况下,采用大白鼠较为适合。

几类不同增长的函数模型(1)

几类不同增长的函数模型(1) 一、教学目标 (一)知识目标: 1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异. 2.结合实例体会直线上升、指数爆炸、对数增长等几类不同增长的函数模型的意义. 3.恰当运用函数的三种表示法(解析式、表格、图象)并借助信息技术解决一些实际问题. (二)能力目标:初步培养学生应用数学知识解决实际问题的意识与能力。(三)情感目标:培养学生数学应用意识以及比较分析的数学思想,激发学生的学习热情. 二、教学重难点 (一)重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同类型的函数增长的含义. (二)难点:怎样选择数学模型分析解决实际问题. 三、活动设计 1.自主学习,从实际问题出发能构建出相应的数学模型. 2.探究与活动,在教师的指引下通过列表、描点,画出相应函数模型的图形,并能比较发现它们的增长趋势. 四、教学过程 一、创设情景,引入新课 我们知道,函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述,能否举出一些函数模型的具体例子? 指数函数、对数函数、幂函数等等. 当我们面临一个实际问题时,应如何选择恰当的函数模型来刻画它呢?如果我们能够找出相应的数学模型,又是如何去研究它的性质呢?本节课先通过具体实例来比较几类不同增长的函数模型的增长趋势.(板书几类不同增长的函数模型)二、讲解新课 例题剖析 【例1】假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案?

实验方法总结(3):动物模型部分

实验方法总结(3):动物模型部分 1、研究肿瘤细胞增殖 (1) 2、研究肿瘤细胞转移 (2) 2.1. 体外(浸润模型) (2) 2.2. 体内(转移模型) (2) 3、研究肿瘤细胞耐药 (4) 3.1. 耐药细胞株的建立 (4) 3.2. 裸鼠移植瘤耐药模型的建立 (5) 从肿瘤起源分,肿瘤动物模型的分类如下: 从研究目的来分,可以从增殖、转移、耐药三个角度来分析: 1、研究肿瘤细胞增殖 细胞准备:GeneA敲减慢病毒感染细胞扩增至需要的细胞量。分为:空白对照组、阴性对照组、实验组。 取Balb/c裸鼠,雄性,6周龄,每组10只,适应一周后进行肿瘤细胞注射。

XXX细胞消化离心后制成单细胞悬液,计数后取适量的细胞用PBS悬浮,在Balb/c裸鼠侧腹部皮下接种。每只接种2×106个细胞,注射体积为100 μL。此后,每隔5天测量注射部位肿瘤的体积。30天后裸鼠小鼠腹腔注射80 mg/kg 戊巴比妥钠,小鼠麻醉后置蓝色背景布上拍照(侧卧位,接种部位朝上),小鼠颈椎脱臼处死,取出肿瘤称重,将肿瘤置蓝色背景布上拍照,肿瘤一分为二,一份4%多聚甲醛固定,待后续病理分析,一份-80℃冻存。 2、研究肿瘤细胞转移 肿瘤转移的模型包括两大类:体外(浸润模型)和体内(转移模型)。体外(浸润模型):了解肿瘤细胞对周围相连组织的侵润性。体内模型主要研究肿瘤细胞的转移性即肿瘤细胞在远端组织形成病灶的能力。 2.1. 体外(浸润模型) 例:浸润型脑胶质瘤动物模型的建立 方法:取若干只Balb/c免疫缺陷裸鼠,将分离和鉴定并转染携带绿色荧光蛋白的脑胶质瘤干细胞立体定向法行小鼠颅内接种,每组10只。小鼠麻醉后头部正中切口,剥离骨膜后钻孔(坐标是冠状缝后0.5 cm,矢状缝右侧2.5 cm) 。取2 μL胶质瘤干细胞以1×104 cells /只小鼠的剂量,经微量注射器缓慢注射入鼠脑纹状体内(深度是2.5 ~3 mm) 。在确定的时间点处死一部分动物进行荧光( 立体荧光显微镜下) 病理证实和比较,同时检查脑胶质瘤干细胞的体内生长特征以及干细胞标志物等。 2.2. 体内(转移模型)

人口增长模型的确定

人口增长模型的确定 Prepared on 22 November 2020

题目:人口增长模型的确定 摘要 人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测

一、问题重述 问题背景 1790-1980年间美国每隔10年的人口记录如下表所示。 表1 人口记录表 问题提出 我们需要解决以下问题: 1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。 2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。 3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。 二、问题分析 首先,我们运用Matlab软件绘制出1790到1980年的美国人口数据图,如图1。 图1 1790到1980年的美国人口数据图 从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想

到建立指数模型。因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。 三、问题假设 为简化问题,我们做出如下假设: (1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响; (2)所给出的数据具有代表性,能够反映普遍情况; (3)一段时间内我国人口死亡率不发生大的波动; (4)在查阅的资料与文献中,所得数据可信; (5)假设人口净增长率为常数。 四、变量说明 在此,对本文所使用的符号进行定义。 表2 变量说明 符号符号说明 N(0) 起始年人口容纳量 N(t) t年后人口容纳量 t 年份 r 增长率 五、模型建立 问题一:马尔萨斯(Malthus)人口指数增长模型 设:t表示年份(起始年份t=0),r表示人口增长率,N(t)表示t年后的人口数量。

相关主题
文本预览
相关文档 最新文档