当前位置:文档之家› 分离甲醇-水混合物化工设计

分离甲醇-水混合物化工设计

分离甲醇-水混合物化工设计
分离甲醇-水混合物化工设计

示例1

设计条件如下:

操作压力:105.325 Kpa(绝对压力)

进料热状况:泡点进料

回流比:自定

单板压降:≤0.7 Kpa

塔底加热蒸气压力:0.5M Kpa(表压)

全塔效率:E T=47%

建厂地址:

[设计计算]

(一)设计方案的确定

本设计任务为分离甲醇-水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。

该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。

(二)精馏塔的物料衡算

1、原料液及塔顶、塔底产品的摩尔分率

甲醇的摩尔质量:M A=32 Kg/Kmol 水的摩尔质量:M B=18 Kg/Kmol

x F=32.4%

x D=99.47%

x W=0.28%

2、原料液及塔顶、塔底产品的平均摩尔质量

M F= 32.4%*32+67.6%*18=22.54 Kg/Kmol

M D= 99.47*32+0.53%*18=41.37 Kg/Kmol

M W= 0.28%*32+99.72%*18=26.91 Kg/Kmol

3、物料衡算

原料处理量:F=(3.61*103)/22.54=160.21 Kmol/h

总物料衡算:160.21=D+W

甲醇物料衡算:160.21*32.4%=D*99.47%+W*0.28%

得D=51.88 Kmol/h W=108.33 Kmol/h

(三)塔板数的确定

1、理论板层数M T的求取

甲醇-水属理想物系,可采用图解法求理论板层数

①由手册查得甲醇-水物搦的气液平衡数据,绘出x-y图(附表)

②求最小回流比及操作回流比

采用作图法求最小回流比,在图中对角线上,自点e(0.324,0.324)作垂线ef即为进料线(q线),该线与平衡线的交战坐标为 (x q=0.324,y q=0.675)

故最小回流比为R min= (x D- y q)/( y q - x q)=0.91

取最小回流比为:R=2R min=2*0.91=1.82

③求精馏塔的气、液相负荷

L=RD=1.82*51.88=94.42 Kmol/h

V=(R+1)D=2.82*51.88=146.30 Kmol/h

L ′=L+F=94.42+160.21=254.63 Kmol/h (非泡点进料要注意q 值) V ′=V=146.30 Kmol/h ④精馏段操作线方程为:

y =(L/V)x + (D/V)x D =(99.42/146.30)x+(51.88/146.30)*99.47%=0.6454x+0.3527 提馏段操作线方程为:

y ′=(L ′/V ′)x ′ + (W/V ′)x W =(254.63/146.30) x ′-(108.33/146.30)*0.28% =1.7405 x ′-0.0021 ⑤图解法求理论板层数

采用图解法求理论板层数(附图),求解结果为: 总理论板层数:N T =13(包括再沸器) 进料板位置: N F =10 2、实际板层数的求取

)

1()

1(A A A A --=

y x x y α

α

%

47E 047.1*(345.00= 故= 见后)

μαμ=

精馏段实际板层数:N 精=9/47%=20 N 提=4/47%=9

(四) 精馏塔的工艺条件及有关物性数据的计算

以精馏段为例进行计算

1、 塔顶操作压力:P D =101.3 Kpa

每层塔板压降:△P =0.7 Kpa

进料板压力:P F =105.3+0.7*20=119.3 Kpa 精馏段平均压力:(105.3+119.3)/2=112.3 Kpa 2、 操作温度计算

依据操作压力,由泡点方程通过试差法计算出泡点温度,其中甲醇、水的饱和蒸气压由安托尼方程计算,计算过程略,计算结果如下:

塔顶温度:t D =64.6℃ 进料板温度:t F =76.3℃ 精馏段平均温度:t M =70.45℃ 3、 平均摩尔质量计算

塔顶平均摩尔质量计算:由x D =y 1=0.9947,查y-x 曲线(附表),得

x 1=0.986

M VDm =0.9947*32+(1-0.9947)*18=31.93 M LDm =0.9860*32+(1-0.9860)*18=31.80 进料板平均摩尔质量计算 由图解理论板(附图),得 y f =0.607 x F =0.229

M VFm =0.607*32+(1-0.607)*18=26.50 M LFm =0.229*32+(1-0.229)*18=21.21 所以精馏段平均摩尔质量: M Vm =(31.93+26.50)/2=29.22 M Lm = (31.80+21.21)/2=26.51 4、 平均密度计算 ⑴气相密度计算

由理想气体状态方程计算,即

3/15.1)

45.70273(*314.822

.29*3.112M Kg RT M P m

V m V m m

=+=

=

ρ(这里也可以分别计算进料

板与塔顶第一板的密度再取平均值) ⑵液相平均密度计算

液相平均密度依下式计算,即

=i

i

L

m

ραρ1

塔顶液相平均密度的计算 由t D =64.6℃ 查手册得,

3B 3/K 3.980/K 745m g m g A = ρρ=

3/K 7460053

.09947

.01

m g B

A LD m

=+

=

ρρρ

进料板液相平均密度的计算 由t F =76.3℃ 查手册得,

3B 3/K 978/K 735m g m g A = ρρ=

进料板液相的质量分量

%56.3418

*771.032*229.032

*229.0=+=

A α

3/K 7.8776544

.03456

.01

m g B

A LF m

=+

=

ρρρ

⑶精馏段液相平均密度为:

321/K 8122)(m g m

L =+=ρρρ

5、 液体平均表面张力计算

⑴液相平均表面张力依下式计算,即

∑=i i L x m

σσ(苯、甲苯体系可用此式,醇水体系请用公式

4/14/14/1o so w sw m σ?σ?σ+=来计算)

塔顶液相平均表面张力的计算 由t D =64.6℃,查手册得

m

mN m mN m mN B A A m

/ 05.190053.09947.0/ 2.65/ 8.18LD B =+===σσσσσ

⑵进料板液相平均表面张力的计算 由t F =76.3℃,查手册得

m

mN m mN m mN B A A m

/ 35.52771.0229.0/ 7.62/ 5.17LF B =+===σσσσσ

⑶精馏段液相平均表面张力为:

m mN m m m

LF LD L / 7.352

)

(=+=

σσσ

6、 平均粘度的计算

液相平均粘度依下式计算,即∑=i

i

L x m μ

μlg lg

⑴塔顶液相平均粘度的计算 由t D =64.6℃ 查手册得,

s

mpa s

mpa s mpa m

m

L B A L /34.0lg 0053.0lg 9947.0lg /437.0/34.0D D B A = 解得= =μμμμμμ+=

⑵进料板液相平均粘度的计算 由t F =76.3℃ 查手册得

s

mpa s

mpa s mpa m

m

L B A L /53.0lg 771.0lg 229.0lg /374.0/28.0F F B A = 解得= =μμμμμμ+=

⑶精馏段液相平均表面张力为

s mpa /345.02

21A =)(=μμμ+

(五)精馏塔的塔体工艺尺寸计算

1、 塔径的计算

精馏段的气、液相体积流率为:

021.0)15

.1812(08.110*56.8)(L )(L 20

C C /10*856812

*360051

.26*42.94*3600/033.115.1*360022

.29*30.146*36002

1421212.0L 20max

343===-====

===--V L s s V L h h V V L Lm Lm s Vm Vm s V V C u s

m LM L s

m VM V ρρρρσρρρρρ)

(= 其中由

取板间距H T =0.4m ,板上液层高度h L =0.06m ,则

H T -h L =0.40-0.06=0.34m 查史密斯关联图得,C 20=0.074

s

m u / 204.215

.115

.1812083

.0083.020

7.35074.020

C C max 2

.02

.0L

20=-=== )(

)(

=σ

取安全系数为0.7,则空塔气速为

s

m s

m u u / 948.0543

.1*1.033

*4u 4V D / 543.1204.2*7.0s max ======ππ 按标准塔径圆整后,为D=1.0m 塔截面积为22785.04

m D A T ==

π

实际空塔气速为u=1.033/0.785=1.316s m /

2、 精馏塔有效高度的计算(实际高度要注意人孔处、进料板、再沸器、塔顶空间等)

精馏段有效高度为Z 精=(N 精-1)H T =(20-1)*0.4=7.6m 提馏段有效高度为Z 提=(N 提-1)H T =(9-1)*0.4=3.2m 在进料板上方开2人孔,其高度为0.8m

故精馏塔有效高度为Z =N 精+N 提+0.8*2=12.4m

(六)塔板主要工艺尺寸的计算

1、 溢流装置计算

因塔径D =1.0m ,可选用单溢流弓形降液管,采用凹形受液盘,各项计算如下:

⑴塔长l W =0.66D=0.66m

⑵溢流堰高度h W 由h W =h L -h OW

选用平直堰,堰上液层高度h OW

3

2)(100084.2w

h ow l L E h =

近似取E =1,则

m h ow 93.7)66

.03600*10*56.8(*1*100084.23

24==-

取板上清液层高度h L =60mm

故m h w 333

10*07.5210*93.710

*60---=-=

⑶弓形降液管宽度W d 和截面积A f

由l w /D=0.66,查图得 A f /A T =0.0722 W d /D=0.124

m

D W m A A d T f 124.0124.00567.0*0722.02====

验算液体在降液管中停留时间 s s L H A h

T

f 55.263600

*10*56.840

.0*0567.0*360036004

>==

=

-θ 故降液管设计合理

⑷降液管底隙高度h 0

m

m h s m u u l L h w h

006.0016.008

.0*66.0*36003600

*10*56.8/ 08.0*36004

00

0>==

''=

-则=取

故降液管底隙设计合理

选用凹形受液盘,深度w

h '=50mm 2、 塔板布置

⑴塔板的分块

因D ≥800mm ,故塔板采用分块式,且分为3块

⑵边缘区宽度确定

取m W m W W C S S 035.0065.0=='= ⑶开孔面积A a

2

122

21

2

2

2a 532.0)465

.0311.0sin 180465.0*311.0465.0311.0(2465.0035.05.02

311.0)065.0124.0(5.0)(2

sin 180

(2A m A m

W D

r m W W D

x r

x r x r x a c s d =+-==-=-==+-=+-=

+-=--ππ故 其中,

⑷筛孔计算及其排列

本例所处理的物系无腐蚀性,可选用δ=3mm 碳钢板,取筛孔直径d 0=5mm 筛孔按正三角形排列,取孔中心距t 为 t =3d 0=15 mm

筛孔数目n 为个2731015.0532

.0*155.1155.122===

t A n a 开孔率为%1.10)015

.0005.0*907.0)907.02

20==((=t d ?

气体通过阀孔的气速为 s m A V u s / 23.19532

.0*101.0033.100===

(七)筛板的液体力学验算

1、 塔板压降

⑴干板阻力h c 计算 干板阻力 )()(051.0200L

V

c C u h ρρ= 由

d 0/δ=3/5=1.667, 得C 0=0.772 故液注0448.0)812

15

.1()772.023.19(

051.02==c h ⑵气体通过液层的阻力h l 计算 h l =βh L

2

1

2

1

0 52.115.1418.1/418.10567

.0785.0033

.1m

s Kg

u F s

m A A V u v a

f T s a ====-=-=

ρ

查图得,β=0.59

故液柱m h h h h ow w L l 0354.0)10*93.710*07.52(59.0)(33

=+=+==--ββ

⑶液体表面张力的阻力σh 计算

液体表面张力所产生的阻力σh 由下式计算

液柱m gd h L L 00359.0005

.0*81.9*81210*7.35*443

0===

-ρσσ 气体通过每层塔板的液柱高度h P 可按下式计算,即 h P =h c +h l +h σ

h P =0.0448+0.0354+0.00359=0.084m 液柱 气体通过每层塔板的压降为

设计允许值)(7.045.66781.9*812*084.0h P p KPa g L <===?ρ

2、 液面落差

对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响。 3、 液沫夹带

液沫夹带量

汽液汽液 Kg Kg Kg Kg m

h h h H u e L f f

T a

L

v 1.0041.0)15

.040.0418

.1(*10*7.3510*7.5 15.006.0*5.25.2)(

10*7.52.336

2.36

<=-=

===-=---σ

故在本设计中,液沫夹带量e v 在允许范围内

4、 漏液

对于筛板塔,漏液点气速u 0,min

s

m v

h h C u L

L /94.815

.1812

*)00359.006.0*13.00056.0(772.0*4.4 )

13.00056.0(4.40m in ,0=-+=-+=ρρσ

实际孔速 / 19.23m in ,00u s m u >= 稳定系数为5.115.294

.823

.19K min

,00>==

=

u u 故在本设计中无明显漏液 5、 液泛

为防止塔内发生液泛,降液管内液层高度Hd 应服从以下关系

)(w T d h H H +≤?

甲醇-水物系属不易发泡物质,取?=0.6 则:

泛液现象

故在本设计中不会发生液柱==液柱(=板上不设进口堰,而)

(145.0001.006.0084.0001.008.0*153.0)153.0271.0)10*07.524.0(*6.0)(d d 220d 3w T d d

L p w T h H H H m u h h h h H m

h H +≤++=='++==+=+-??

极限位置需要进行补充校核:液泛校核 醇水体系校核第一块板,苯甲苯体系校核最后一块板;漏液校核 醇水体系校核最后一块板,苯甲苯体系校核第一块板。分精、提段分别校核。都没有问题后,才做下面的负荷性能图。有问题回到前面修正。

(八)塔板负荷性能图

1、 漏液线

15.1812

*00359.032)66.0L 3600*1*100084.2310*07.5213.00056.0(532.0*101.0*772.0*4.4)L 100084

.213.00056.0(4.4)(100084

.2)13.00056.0(4.432h 00min ,3

20

min ,min ,00min ,0??

????????-????????+-+?

?????-??????++=

+==

-+=S L

w w s w

h ow ow w L s L

L v h L E h A C V L L E h h h h A V u v

h h C u (=(= ρρρρσσ整理得

3

2

3232min ,1144.000878.085.4)66.0360000284.005207.013.000201.085.4S S s L L V +=?

?????

++(= 在操作范围内,任取几个S L 值,依上式计算出S V 值,计算结果列于下表

由上表可作出漏液线1 2、 液沫夹带线

以为限,求汽

Kg Kg e v 1

.0=S S L V -关系如下

 2.36

)(

10*7.5f

T a

L

v h H u e -=

-σS S

f T S a V V A A V u 373.10567

.0785.0=-=-=

3

2

32

32

323

23

22.227.0)2.213.0(4.02.213.0)88.005207.0(5.288.0)66

.03600(*1*100084.205207.0)(5.25.2Ls

Ls h H Ls

Ls h Ls Ls h m

h h h h h f T f ow w ow w L f -=+-=-++====+===故

3

22.3323

699.114713.11.0)2.227.0373.1(10*7.3510*7.5s

S s S

v L V L V e -==-=-- 在操作范围内,任取几个S L 值,依上式计算出S V 值,计算结果列于下表

3、 液相负荷下限线

对于平直堰,取堰上液层高度h ow =0.006m 作最小液体负荷标准

s

m L l L E h S w

S ow / 10*6.53600

66.0*)84.2006.0*1000(1E 006.0)3600(100084.23423

3

2-==

==,则=取

据此可作出与气体流量无关的垂直液相负荷下限。

4、 液相负荷上限线

s

m H A L L H A s T f S S

T f / 10*67.54

40

.0*0567.04

4433max ,-==

=

==

=故留时间的下限

作为液体在降液管中停以θθ

5、 液泛线

σ

σββ??β?h h h h h H h h h h h h h h h h h h H h H H d c ow w T ow

w L L l l c d L p w T ++++++==++=++=+=)=()--(联立得, 由令11)

(p d d

理得的关系代入上式,并整与,与,与将忽略S c S d S ow V h V h L h h σ

3

23

22

003

22

2)3600)(

1(10*84.2)

(153

.0)1()()(051.0w

o w w T L

V

S

S S l E d h l c h H b C A a L d L c b V a ββ??ρρ+='='--+='=

''-'-'='- 式中

将有关数据代入得

3

2S

2

S 2

S 3

2S 2

S 2

S L 333.33L 67.32666476.4V L 4.1L 1372188.0V 042.040.11372188.0042.0--=''='='-=-=故 = d c b a

在操作范围内,任取几个S L 值,依上式计算出S V 值,计算结果列于下表

根据以上各线方程,可作出筛板塔的负荷性能图(附图)

在负荷性能图上,作出操作点A ,连接OA ,即作出操作线,由图看出,该筛板的操作上限为液沫夹带线控制,下限为液相负荷下限线控制。

988.1676.0344.1V V 344.1V 676.0V min

S max

S max S min S ===,,,,操作弹性为

所设计筛板的主要结果汇总于下表

提馏段计算方法是一样的。

设备选型设计请参看示例2

附:1)甲醇-水温度组成图

2)甲醇-水y-x及理论塔板图

3)塔板负荷性能图

4)生产工艺流程图

5)筛板精馏塔设计条件图

参考资料

化工原理实验课程设计天津大学出版社余国琮

化工原理化学工业出版社王志魁

化工原理(21世纪) 华南理工周正烈

化工工程制图化学工业出版社魏崇光

化工过程单元设计化学工业出版社匡国柱、史启才

化工过程设计化学工业出版社[英]R.Smith、王保国译化工设计化学工业出版社王静康

化工原理甲醇—水连续填料精馏塔

化工原理课程设计说明书 设计题目:甲醇—水连续填料精馏塔 设计者: 专业: 学号: 指导老师: 2007年7 月13日

目录 一、设计任务书 (1) 二、设计的方案介绍 (1) 三、工艺流程图及其简单说明 (2) 四、操作条件及精熘塔工艺计算 (4) 五、精熘塔工艺条件及有关物性的计算 (14) 六、精馏塔塔体工艺尺寸计算 (19) 七、附属设备及主要附件的选型计算 (23) 八、参考文献 (26) 九、甲醇-水精熘塔设计条件图

一、设计任务书 甲醇散堆填料精馏塔设计: 1、处理量:12000 吨/年(年生产时间以7200小时计算) 2、原料液状态:常温常压 3、进料浓度:41.3%(甲醇的质量分数) 塔顶出料浓度:98.5%(甲醇的质量分数) 塔釜出料浓度:0.05%(甲醇的质量分数) 4、填料类型:DN25金属环矩鞍散堆填料 5、厂址位于沈阳地区 二、设计的方案介绍 1、进料的热状况 精馏操作中的进料方式一般有冷液加料、泡点进料、汽液混合物进料、饱和蒸汽进料和过热蒸汽加料五种。本设计采用的是泡点进料。这样不仅对塔的操作稳定较为方便,不受厦门季节温度影响,而且基于恒摩尔流假设,精馏段与提馏段上升蒸汽的摩尔流量相等,因此塔径基本相等,在制造上比较方便。 2、精熘塔的操作压力 在精馏操作中,当压力增大,混合液的相对挥发度减小,将使汽相和液相的组成越来越接近,分离越来越难;而当压力减小,混合液的相对挥发度增大,α值偏离1的程度越大,分离越容易。但是要保持精馏塔在低压下操作,这对设备的要求相当高,会使总的设备费用大幅度增加。在实际设计中,要充分考虑这两

化工原理水吸收丙酮的课程设计

吉林化工学院 化工原理课程设计题目水吸收丙酮填料吸收塔的设计 教学院化工与生物技术学院 专业班级生工1101 学生姓名 学生学号 指导教师张卫华 2013年12月 19 日

课程设计任务书 1、设计题目:水吸收丙酮过程填料吸收塔的设计; 试设计一座填料吸收塔,用于脱除混于空气中的丙酮气体。混合气体的处理量为1550(m3/h),其中含空气为96%,丙酮气为4%(mol分数),要求丙酮回收率为98%(mol分数),采用清水进行吸收,吸收剂的用量为最小用量的倍。(25C°下该系统的平衡关系为y=) 2、工艺操作条件: (1)操作平均压力常压 (2)操作温度t=25℃ (3)填料类型及规格自选。 3、设计任务: 完成吸收工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,编写设计说明书。

目录 摘要........................................................................ III 第1章绪论 (1) 吸收技术概况 (1) 吸收设备的发展 (1) 吸收在工业生产中的应用..................................... 错误!未定义书签。 吸收的应用......................................................... 错误! 未定义书签。 塔设备在化工生产中的作用和地位..................................... 错误! 未定义书签。 化工生产对塔设备的要求.............................................. 错误! 未定义书签。 第2章设计方案............................................................... 错误!未定义书签。 吸收剂的选择............................................................. 错误! 未定义书签。 2. 2吸收工艺流程的确......................................................... 错误!未定义书签。 吸收工艺流.......................................................... 错误! 未定义书签。 吸收工艺流程图及工艺过程说明........................................ 错误! 未定义书签。 吸收塔设备及填料的选择...................................... 错误!未定义书签。 吸收塔的设备选择.................................................... 错误! 未定义书签。 填料的选择.......................................................... 错误! 未定义书签。 操作参数的选择...........................................................错误! 未定义书签。 操作温度的选择..................................................... 错误! 未定义书签。 操作压力的选择..................................................... 错误! 未定义书签。 第3章吸收塔的工艺计算...................................................错误!未定义书签。 基础物性数据................................................ 错误!未定义书签。 液相物性数据....................................................... 错误! 未定义书签。 气相物性数据....................................................... 错误! 未定义书签。 物料衡算.................................................... 错误!未定义书签。 填料塔的工艺尺寸的计算...................................... 错误!未定义书签。 塔径的计算......................................................... 错误!

甲醇—水分离过程填料精馏塔设计

甲醇—水分离过程填料精馏塔设计 1.设计方案的确定 设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。甲醇常压下的沸点为64.7℃,故可采用常压操作。用30℃的循环水进行冷凝。塔顶上升蒸汽用全冷凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝器冷却后送至储槽。因所分离物系的重组分为水,故选用直接蒸汽加热方式,釜残液直接排放。甲醇-水物系分离难易程度适中,气液负荷适中,设计中选用金属环矩鞍DN50填料。 2.精馏塔的物料衡算 2.1原料液及塔顶、塔底产品的摩尔分率 甲醇的摩尔质量: M 甲 =32.04kg/kmol 水的摩尔质量: M 水 =18.02kg/kmol X F =(0.46/32.04)/[0.46/32.04+0.54/18.02]=0.324 X D =(0.997/32.04)/[0.997/32.04+0.003/18.02]=0.995 X W =(0.005/32.04)/(0.005/32.04+0.995/18.02)=0.0028 2.2 原料液及塔顶、塔底产品的平均摩尔质量 M F =0.324*32.04+(1-0.324)*18.02=22.56kg /kmol M D =0.995*32.04+(1-0.995)*18.02=31.97kg/kmol M W =0.0028*32.04+(1-0.0028)*18.02=18.06kg/kmol 2.3物料衡算 原料处理:q n,F =3000/22.56=132.98 kmol/h 总物料衡算: 30.728=q n,D +q n,W 甲醇物料衡算: 132.98*0.324=0.995 q n,D +0.0028q n,W 解得: q n,D =43.05kmol/h q n,W =89.93kmol/h 3塔板数的确定 3.1甲醇-水属理想物系,故可用图解法求理论板层数. 3.1.1由以知的甲醇-水物系的气液平衡数据,绘出x-y图.

甲醇水分离过程板式精馏塔的设计

化工原理课程设计计算说明书 题目:甲醇—水精馏塔设计 学院名称:化学工程学院 专业:化学工程与工艺 班级: 11-1 姓名:赵讯 学号:11402010116 指导教师:张亚静 2014年1月10日

目录 第一章设计任务书 (1) 第二章设计原则 (2) 第三章设计步骤 (3) 第四章精馏塔的工艺计算 (4) 第五章精馏塔的工艺条件及有关物性数据的计算 (9) 第六章塔板主要工艺尺寸的计算 (11) 第七章筛板的流体力学验算 (15) 第八章塔板负荷性能图 (18) 第九章辅助设备的计算和选型 (21) 设计评述 (27) 参考文献 (27)

第一章设计任务书 1.1 设计题目 设计题目:甲醇—水分离过程板式精馏塔的设计 设计要求:年产纯度为99%(质量分数,下同)的甲醇,塔底馏出液中含甲醇不得高于0.05%,原料液中含甲醇22%。 生产能力11100L/h 1.2操作条件 1) 操作压力常压 2) 进料热状态饱和进料 3) 回流比自选 4) 塔底加热蒸气压力0.3Mpa(表压) 1.3塔板类型 筛孔塔 1.4 工作日 每年工作日为330天,每天24小时连续运行。 1.5 设计说明书的内容 (1) 流程和工艺条件的确定和说明 (2) 操作条件和基础数据 (3) 精馏塔的物料衡算; (4) 塔板数的确定; (5) 精馏塔的工艺条件及有关物性数据的计算; (6) 精馏塔的塔体工艺尺寸计算; (7) 塔板主要工艺尺寸的计算; (8) 塔板的流体力学验算; (9) 塔板负荷性能图; (10)主要工艺接管尺寸的计算和选取 (11) 塔板主要结构参数表 (12) 对设计过程的评述和有关问题的讨论

填料精馏塔设计示例

4.3 填料精馏塔设计示例 4.3.1 化工原理课程设计任务书 1 设计题目 分离甲醇-水混合液的填料精馏塔 2 设计数据及条件 生产能力:年处理甲醇-水混合液0.30万吨(年开工300天) 原料:甲醇含量为70%(质量百分比,下同)的常温液体 分离要求:塔顶甲醇含量不低于98%,塔底甲醇含量不高于2% 建厂地址:沈阳 3 设计要求 (1)编制一份精馏塔设计说明书,主要内容: ①前言; ②流程确定和说明; ③生产条件确定和说明; ④精馏塔的设计计算; ⑤主要附属设备及附件的选型计算; ⑥设计结果列表; ⑦设计结果的自我总结评价与说明; ⑧注明参考和使用的设计资料。 (2)编制一份精馏塔工艺条件单,绘制一份带控制点的工艺流程图。 4.3.2 前言

在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大,应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 塔设备按其结构形式基本上可分为两类:板式塔和填料塔。以前,在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小以性能稳定等特点。因此填料塔已被推广到大型汽液操作中。在某些场合还代替了传统的板式塔。如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。 板式塔为逐级接触式汽液传质设备,它具有结构简单、安装方便、操作弹性大、持液量小等优点。同时也有投资费用较高、填料易堵塞等缺点。 本设计目的是分离甲醇-水混合液,处理量不大,故选用填料塔。 塔型的选择因素很多。主要因素有物料性质、操作条件、塔设备的制造安装和维修等。 1 与物性有关的因素 ①易起泡的物系在板式塔中有较严重的雾沫夹带现象或引起液泛,故选用填料塔为宜。因为填料不易形成泡沫。本设计为分离甲醇和水,故选用填料塔。 ②对于易腐蚀介质,可选用陶瓷或其他耐腐蚀性材料作填料,对于不腐蚀的介质,则可选金属性质或塑料填料,而本设计分离甲醇和水,腐蚀性小可选用金属填料。 2 与操作条件有关的因素 ①传质速率受气膜控制的系统,选用填料塔为宜。因为填料塔层中液相为膜状流、气相湍动,有利于减小气膜阻力。 ②难分离物系与产品纯度要求较高,塔板数很多时,可采用高效填料。 ③若塔的高度有限制,在某些情况下,选用填料塔可降低塔高,为了节约能耗,故本设计选用填料塔。 ④要求塔内持液量、停留时间短、压强小的物系,宜用规整填料。 4.3.3 流程确定和说明 1 加料方式 加料方式有两种:高位槽加料和泵直接加料。采用高位槽加料,通过控制液位高度,可以得到稳定的流量和流速。通过重力加料,可

化工原理课程设计,甲醇和水的分离精馏塔的设计

郑州轻工业学院 ——化工原理课程设计说明书 课题:甲醇和水的分离 学院:材料与化学工程学院 班级: 姓名: 学号: 指导老师: 目录 第一章流程确定和说明 (2) 1.1.加料方式 (2)

1.2.进料状况 (2) 1.3.塔型的选择 (2) 1.4.塔顶的冷凝方式 (2) 1.5.回流方式 (3) 1.6.加热方式 (3) 第二章板式精馏塔的工艺计算 (3) 2.1物料衡算 (3) 2.3 塔板数的确定及实际塔板数的求取 (5) 2.3.1理论板数的计算 (5) 2.3.2求塔的气液相负荷 (5) 2.3.3温度组成图与液体平均粘度的计算 (6) 2.3.4 实际板数 (7) 2.3.5试差法求塔顶、塔底、进料板温度 (7) 第三章精馏塔的工艺条件及物性参数的计算 (9) 3.1 平均分子量的确定 (9) 3.2平均密度的确定 (10) 3.3. 液体平均比表面积张力的计算 (11) 第四章精馏塔的工艺尺寸计算 (12) 4.1气液相体积流率 (12) 4.1.1 精馏段气液相体积流率: (12) 4.1.2提馏段的气液相体积流率: (13) 第五章塔板主要工艺尺寸的计算 (14) 5.1 溢流装置的计算 (14) 5.1.1 堰长 (14) 5.1.2溢流堰高度: (15) 5.1.3弓形降液管宽度 (15) 5.1.4 降液管底隙高度 (16) 5.1.5 塔板位置及浮阀数目与排列 (16) 第六章板式塔得结构与附属设备 (24) 6.1附件的计算 (24) 6.1.1接管 (24) 6.1.2 冷凝器 (27) 6.1.3再沸器 (28) 第七章参考书录 (28) 第八章设计心得体会 (29)

水吸收丙酮填料塔设计(化工课程设计)[1]

兰州交通大学化工原理课程设计 化工原理课程设计 课程名称: ____填料塔设计____ 设计题目: ____水吸收丙酮____ 院系: ___ 化学学院_____ 学生姓名: _____ 荆卓_______ 学号: ____ 200907134____ 专业班级: ____化艺093班____ 指导教师: ______张玉洁______

化工原理课程设计任务书 (一)设计题目:水吸收空气中的丙酮填料塔的工艺设计(二)设计条件 1.生产能力:每小时处理混合气体9000Nm3 /h 2.设备形式:填料塔 3.操作压力:101.3KPa 4.操作温度:298K 5.进塔混合气体中含丙酮4%(体积比) 6.丙酮的回收率为99% 7.每年按330天计,每天按24小时连续生产 8.建厂地址:兰州地区 9.要求每米填料的压降都不大于103Pa。 (三)设计步骤及要求 1.确定设计方案 (1)流程的选择 (2)初选填料的类型 (3)吸收剂的选择 2.查阅物料的物性数据 (1)溶液的密度、粘度、表面张力、氨在水中的扩散系数(2)气相密度、粘度、表面张力、氨在空气中的扩散系数

(3)丙酮在水中溶解的相平衡数据 3.物料衡算 (1)确定塔顶、塔底的气流量和组成 (2)确定泛点气速和塔径 (3)校核D/d>8~10 (4)液体喷淋密度校核:实际的喷淋密度要大于最小的喷淋密度。4.填料层高度计算 5.填料层压降核算 如果不符合上述要求重新进行以上计算 6.填料塔附件的选择 (1)液体分布装置 (2)液体再分布装置 (3)填料支撑装置 (4)气体的入塔分布. (四)参考资料 1、《化工原理课程设计》贾绍义柴诚敬天津科学技术出版 2、《现代填料塔技术》王树盈中国石油出版 3、《化工原理》夏清天津科学技术出版 (五)计算结果列表(见下页)

甲醇-水分离过程板式精馏塔设计

滨州学院 课程设计任务书 一、课题名称 甲醇——水分离过程板式精馏塔设计 二、课题条件(原始数据) 原料:甲醇、水溶液 处理量:3200Kg/h 原料组成:33%(甲醇的质量分率) 料液初温:20℃ 操作压力、回流比、单板压降:自选 进料状态:冷液体进料 塔顶产品浓度:98%(质量分率) 塔底釜液含甲醇含量不高于1%(质量分率) 塔顶:全凝器 塔釜:饱和蒸汽间接加热 塔板形式:筛板 生产时间:300天/年,每天24h运行 冷却水温度:20℃ 设备形式:筛板塔 厂址:滨州市 三、设计内容 1、设计方案的选定 2、精馏塔的物料衡算 3、塔板数的确定 4、精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度、比热、导热系数) 5、精馏塔塔体工艺尺寸的计算 6、塔板主要工艺尺寸的计算 7、塔板的流体力学验算

8、塔板负荷性能图(精馏段) 9、换热器设计 10、馏塔接管尺寸计算 11、制生产工艺流程图(带控制点、机绘,A2图纸) 12、绘制板式精馏塔的总装置图(包括部分构件)(手绘,A1图纸) 13、撰写课程设计说明书一份 设计说明书的基本内容 ⑴课程设计任务书 ⑵课程设计成绩评定表 ⑶中英文摘要 ⑷目录 ⑸设计计算与说明 ⑹设计结果汇总 ⑺小结 ⑻参考文献 14、有关物性数据可查相关手册 15、注意事项 ⑴写出详细计算步骤,并注明选用数据的来源 ⑵每项设计结束后列出计算结果明细表 ⑶设计最终需装订成册上交 四、进度计划(列出完成项目设计内容、绘图等具体起始日期) 1、设计动员,下达设计任务书0.5天 2、收集资料,阅读教材,拟定设计进度1-2天 3、初步确定设计方案及设计计算内容5-6天 4、绘制总装置图2-3天 5、整理设计资料,撰写设计说明书2天 6、设计小结及答辩1天

甲醇-水溶液连续精馏塔课程设计91604

目录 设计任务书 一、概述 1、精馏操作对塔设备的要求和类型 (4) 2、精馏塔的设计步骤 (5) 二、精馏塔工艺设计计算 1、设计方案的确定 (6) 2、精馏塔物料衡算 (6) 3、塔板数的确定 (7) 的求取 (7) 3.1理论板层数N T 3.2实际板层数的求取 (8) 4、精馏塔的工艺条件及有关物性数据的计算 4.1操作温度的计算 (11) 4.2平均摩尔质量的计算 (11) 4.3平均密度的计算 (12) 4.4液相平均表面张力计算 (12) 4.5液体平均粘度计算 (13) 5、精馏塔塔体工艺尺寸计算 5.1塔径的计算 (14) 5.2精馏塔有效高度的计算 (15) 6、塔板主要工艺尺寸计算 6.1溢流装置计算 (16) 6.2塔板的布置 (17) 6.3浮阀计算及排列 (17) 7、浮阀塔流体力学性能验算 (19) 8、塔附件设计 (26) 7、精馏塔结构设计 (30)

7.1设计条件 (30) 7.2壳体厚度计算………………………………………………… 7.3风载荷与风弯矩计算………………………………………… 7.4地震弯矩的计算………………………………………………… 三、总结 (27) 化工原理课程设计任务书 一、设计题目: 甲醇-水溶液连续精馏塔设计 二、设计条件: 年产量: 95%的甲醇17000吨 料液组成(质量分数): (25%甲醇,75%水) 塔顶产品组成(质量分数): (95%甲醇,5%水) 塔底釜残液甲醇含量为6% 每年实际生产时间: 300天/年,每天24小时连续工作 连续操作、中间加料、泡点回流。 操作压力:常压 塔顶压力4kPa(表压) 塔板类型:浮阀塔 进料状况:泡点进料 单板压降:kPa 7.0 厂址:安徽省合肥市 塔釜间接蒸汽加热,加热蒸汽压力为0.5Mpa 三、设计任务 完成精馏塔的工艺设计,有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书. 设计内容包括: 1、 精馏装置流程设计与论证 2、 浮阀塔内精馏过程的工艺计算 3、 浮阀塔主要工艺尺寸的确定 4、 塔盘设计 5、 流体力学条件校核、作负荷性能图 6、 主要辅助设备的选型 四、设计说明书内容 1 目录 2 概述(精馏基本原理) 3 工艺计算 4 结构计算 5 附属装置评价 6 参考文献 7 对设计自我评价 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主

甲醇精馏的方法

1.4.2 甲醇精馏的典型工艺流程甲醇精馏产生工艺有多种,分为单塔精馏,双塔精馏,三塔精馏与四塔精馏(即三塔加回收塔) (1) 单塔流程描述 采用铜系催化剂低压法合成甲醇,由于粗甲醇中不仅还原性杂质的含量大大减少,而且二甲醚的含量几十倍地降低,因此在取消化学净化的同时,可将预精馏及甲醇-水-重组分的分离在一台主精馏塔内同时进行,即单塔流程,就能获得一般工业上所需要的精甲醇。单塔流程更适用于合成甲基燃料的分离,很容易获得燃料级甲醇。 单塔流程(见图1.1)为粗甲醇产品经过一个塔就可以采出产品。粗甲醇塔中部加料口送入,轻组分由塔顶排出,高沸点的重组分在进料板以下若塔板处引出,水从塔底排出,产品甲醇在塔顶以下若干块塔板引出。 (2) 双塔流程描述 双塔工艺是由脱醚塔,甲醇精馏塔或者主塔组成。主塔在工厂中产量在100万吨/年以下,仅仅能提供简单的过程,所以设备和投资较低。 传统的工艺流程,是最早用于30MPa压力下以锌铬催化剂合成粗甲醇的精制。主要步骤有:中和、脱醚、预精馏脱轻组分杂质、氧化净化、主精馏脱水和重组分,最终得到精甲醇产品。在传统工艺流程上,取消脱醚塔和高锰酸钾的化学净化,只剩下双塔精馏(预精馏塔和主精馏塔)。其高压法锌铬催化剂合成甲醇和中、低压法铜系催化剂合成甲醇都可适用。 从合成工序来的粗甲醇入预精馏塔,此塔为常压操作。为了提高预精馏塔后甲醇的稳定性,并尽可能回收甲醇,塔顶采用两级冷凝。塔顶经部分冷凝后的

大部分甲醇、水及少量杂质留在液相作为回流返回塔,二甲醚等轻组分(初馏分)及少量的甲醇、水由塔顶逸出,塔底含水甲醇则由泵送至主精馏塔。主精馏塔操作压力稍高于预精馏塔,但也可以认为是常压操作,塔顶得到精甲醇产品,塔底含微量甲醇及其它重组分的水送往水处理系统(见图1.2)。 (3) 三塔流程描述 三塔工艺是由脱醚塔,加压精馏塔和常压精馏塔组成,形成二效精馏与二甲醇精馏塔甲醇产品的镏出物的混合物。三塔流程(见图1.3)的主要特点是,加压塔塔顶冷凝潜热用作常压塔塔釜再沸器的热源,形成双效精馏二效精馏,因此热量交换在加压塔顶部和常压塔底部之间进行。这种形式节省大约30%~40%的能源,同时降低了循环冷却水的速度。 从合成工序来的粗甲醇入预精馏塔,在塔顶除去轻组分及不凝气,塔底含水甲醇由泵送加压塔。加压塔操作压力为57bar(G),塔顶甲醇蒸气全凝后,部分作为回流经回流泵返回塔顶,其余作为精甲醇产品送产品储槽,塔底含水甲醇则进常压塔。同样,常压塔塔顶出的精甲醇一部分作为回流,一部分与加压塔产品混合进入甲醇产品储槽。 (4) 四塔流程描述 四塔流程(见图1.4)包含预精馏塔、加压精馏塔、常压精馏塔和甲醇回收塔。粗甲醇经换热后进入预精馏塔,脱除轻组分后(主要为不凝气、二甲醚等),塔底甲醇及高沸点组分加压后进入加压精馏塔,加压精馏塔顶的气相进入冷凝蒸发器,利用加压精馏塔和常压精馏塔塔顶、塔底的温差,为常压塔塔底提供热源,同时对加压塔塔顶气相冷凝。冷凝后的精甲醇进入回流罐,一部分作为加压塔回流,一部分作为精甲醇产品出装置,加压塔塔底的甲醇、高沸组分、

水吸收丙酮填料吸收塔课程设计

目录 目录 ............................................................................................................................................ I 第1章概述 (1) 1.1吸收塔的概述 (1) 1.2吸收设备的发展 (1) 1.3吸收过程在工业生产上应用 (2) 第2章设计方案 (3) 2.1设计任务 (3) 2.2吸收剂的选择 (3) 2.3吸收流程的确定 (4) 2.4吸收塔设备的选择 (5) 2.5吸收塔填料的选择 (5) 第3章吸收塔的工艺计算 (9) 3.1基础物性数据 (9) 3.1.1液相物性数据 (9) 3.1.2气相物性数据 (9) 3.1.3气液相平衡数据 (9) 3.2物料衡算 (10) 3.3填料塔的工艺尺寸的计算 (11) 3.3.1塔径的计算 (11) 3.3.2填料层高度计算 (12) 3.4填料层压降的计算zz (14) 第4章塔内件及附属设备的计算 (15) I

4.1液体分布器的计算 (15) 4.2选用DN 2.5 Φ32无缝钢管 (15) 4.2.1填料塔附属高度的计算 (16) 4.3填料支撑板 (16) 4.4填料压紧装置 (17) 4.5气进出管的选择 (17) 4.6液体除雾器 (18) 4.7筒体和封头的设计 (19) 4.8手孔的设计 (20) 4.9法兰的设计 (20) 第5章设计总结 (23) 符号说明 (25) 参考文献: (27) 致谢 (28)

甲醇—水分离过程填料精馏塔塔设计

重庆大学课程设计报告 课程设计题目:甲醇—水分离过程填料 精馏塔塔设计 学院:化学化工学院 专业:制药工程01班 年级: 2008级 姓名: XXX 学号: XXXX 完成时间: 2016年7月6日 成绩: 平时成绩(20%): 图纸成绩(40%): 报告成绩(40%): 指导老师:张红晶

1、设计简要 1.1 设计任务及概述 在抗生素类药物生产中,需要甲醇溶液洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇50%、水50%(质量分数),另含有少量的药物固体微粒。为使废甲醇溶液重复利用,拟建一套填料精馏塔,对废甲醇进行精馏,得到含水量≦0.3%(质量分数)的甲醇溶液。设计要求废甲醇溶液处理量为日产3吨,塔底废水中甲醇含量≦0.5%(质量分数)。 操作条件: (1) 常压; (2) 拉西环,填料规格。 1.2 设计方案 填料塔简介 填料塔是提供气-液、液-液系统相接触的设备。填料塔外壳一般是圆筒形,也可采用方形。材质有木材、轻金属或强化塑料等。填料塔的基本组成单元有: ①:壳体(外壳可以是由金属(钢、合金或有色金属)、塑料、木材,或是以橡胶、塑料、砖为内层或衬里的复合材料制成。虽然通入内层的管口、支承和砖的机械安装尺寸并不是决定设备尺寸的主要因素,但仍需要足够重视; ②:填料(一节或多节,分布器和填料是填料塔性能的核心部分。为了正确选择合适的填料,要了解填料的操作性能,同时还要研究各种形式填料的形状差异对操作性能的影响); ③:填料支承(填料支承可以由留有一定空隙的栅条组成,其作用是防止填料坠落;也可以通过专门的改进设计来引导气体和液体的流动。塔的操作性能的好坏无疑会受填料支承的影响); ④:液体分布器(液体分布的好坏是影响填料塔操作效率的重要因素。液体分布不良会降低填料的有效湿润面积,并促使液体形成沟流); ⑤:中间支承和再分布器(液体通过填料或沿塔壁流下一定的高度需要重新进行分布); ⑥:气液进出口。 塔的结构和装配的各种机械形式会影响到它的设计并反映到塔的操作性能上,应该力求在最低压降的条件下,采用各种办法提高流体之间的接触效率,并设法减少雾沫夹带或壁效应带来的效率损失。与此同时,塔的设计必须符合由

甲醇-水精馏塔设计报告

《化工原理课程设计》报告

一、概述...................................................................................................................................... - 4 - 1.1 设计依据....................................................................................................................... - 4 - 1.2 技术来源....................................................................................................................... - 4 - 1.3设计任务及要求........................................................................................................... - 4 - 二、计算过程.............................................................................................................................. - 5 - 2. 1 设计方案.................................................................................................................... - 5 - 2.2 塔型选择....................................................................................................................... - 5 - 2.3工艺流程简介................................................................................................................ - 5 - 2.4 操作条件的确定........................................................................................................... - 6 - 2.41 操作压力............................................................................................................. - 6 - 2.4.2 进料状态............................................................................................................ - 6 - 2.4.3 热能利用............................................................................................................ - 6 - 2.5 有关的工艺计算........................................................................................................... - 6 - 2.5.1精馏塔的物料衡算...................................................................错误!未定义书签。 2.5.2物料衡算............................................................................................................. - 7 - 2.6 塔板数的确定............................................................................................................... - 7 - 2.6.1 理论板层数NT的求取 .................................................................................... - 7 - 2.6.2 实际板层数的求取............................................................................................ - 8 - 2.7精馏塔的工艺条件及有关物性数据的计算............................................................... - 8 - 2.7.1操作压力的计算................................................................................................. - 8 - 2.7.2操作温度的计算(详见附录一(1)) ................................................................ - 9 - 2.7.3 平均摩尔质量的计算........................................................................................ - 9 - 2.7.4 平均密度的计算................................................................................................ - 9 - 2.7.5液相平均表面力的计算................................................................................... - 11 - 2.7.6 液体平均粘度的计算...................................................................................... - 11 - 2.8 精馏塔的塔底工艺尺寸计算..................................................................................... - 12 - 2.8.1塔径的计算....................................................................................................... - 12 - 2.8.2 精馏塔有效高度的计算.................................................................................. - 13 - 2.9 塔板主要工艺尺寸的计算......................................................................................... - 14 - 2.9.1溢流装置的计算............................................................................................... - 14 - 2.9.2 塔板布置.......................................................................................................... - 15 - 2.10 筛板的流体力学验算............................................................................................... - 16 - 2.10.1 塔板压降........................................................................................................ - 16 - 2.10.2 液面落差........................................................................................................ - 18 - 2.10.3 液沫夹带........................................................................................................ - 18 - 2.10.4 漏液................................................................................................................ - 18 - 2.10.5 液泛................................................................................................................ - 18 - 2.11 塔板负荷性能图....................................................................................................... - 19 - 2.11.1液漏线............................................................................................................. - 19 - 2.11.2液沫夹带线..................................................................................................... - 20 - 2.11.3液相负荷下限线............................................................................................. - 20 - 2.11.4液相负荷上限线............................................................................................. - 21 - 2.11.5液泛线............................................................................................................. - 21 -

甲醇-水精馏课程设计—化工原理课程设计

甲醇-水分离过程板式精馏塔的设计 1.设计方案的确定 本设计任务为分离甲醇和水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.8倍。塔釜采用间接蒸汽加热①。 2.精馏塔的物料衡算 2.1.原料液及塔顶、塔顶产品的摩尔分率 甲醇的摩尔质量M A=32.04kg/kmol 水的摩尔质量M B=18.02 kg/kmol x F= 0.46/32.04 0.324 0.46/32.040.54/18.02 = + x D= 0.95/32.04 0.914 0.95/32.040.05/18.02 = + x W= 0.03/32.04 0.0171 0.03/32.040.97/18.02 = + 2.2.原料液及塔顶、塔底产品的平均摩尔质量 M F=0.324*32.04(10.324)*18.0222.56 +-=kg/kmol M D=0.914*32.04(10.914)*18.0230.83 -=kg/kmol M W=0.0171*32.04(10.0171)*18.0218.26 +-=kg/kmol 2.3.物料衡算 原料处理量F= 30000*1000 184.7 24*300*22.56 =kmol/h 总物料衡算184.7=D+W 甲醇物料衡算184.7*0.324=0.914D+0.0171W 联立解得D=63.21 kmol/h W=121.49 kmol/h 3.塔板数的确定 3.1.理论塔板层数N T的求取 3.1.1.由手册查的甲醇-水物系的气液平衡数据

水吸收丙酮吸收塔设计

目录 目录............................................................... I 摘要.............................................................. I II 第1章绪论.. (1) 1.1吸收技术概况 (1) 1.2吸收设备的发展 (1) 1.3吸收在工业生产中的应用 (2) 第2章设计方案 (3) 2.1 吸收剂的选择 (3) 2.2 吸收流程的选择 (3) 2.3吸收塔设备及填料的选择 (4) 2.4 吸收参数的选择 (5) 第3章吸收塔的工艺计算 (6) 3.1 基础物性数据 (6) 3.1.1 液相物性数据 (6) 3.1.2 气相物性数据 (6) 3.1.3 气液相平衡数据 (6) 3.2 物料衡算 (7) 3.3 填料塔的工艺尺寸的计算 (7) 3.3.1 塔径的计算 (7) 3.3.2 填料塔填料层高度的计算 (9) 3.4 塔附属高度的计算 (12) 3.5 液体初始分布器和再分布器的选择与计算 (12) 3.5.1 液体分布器 (12) 3.5.2 液体再分布器 (12) 3.5.3 塔底液体保持管高度 (13) 3.6 其他附属塔内件选择的选择 (13) 3.7 吸收塔的流体力学参数计算 (13) 3.7.1 吸收塔的压力降 (13) 3.7.2 吸收塔的泛点率 (14) 3.7.3 气体动能因子 (14) 3.8 附属设备的计算与选择 (15) 3.8.1 离心泵的选择与计算 (15) 3.8.2 吸收塔的主要接管尺寸的计算 (16) 结论 (18)

相关主题
文本预览
相关文档 最新文档