当前位置:文档之家› 线性代数总结分析

线性代数总结分析

线性代数总结分析
线性代数总结分析

线性代数总结

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确

(),n

T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,

0总有唯一解 是正定矩阵 R 12,s i

A p p p p n

B AB E AB E

??

???

?????

??

??=????==?? 是初等阵

存在阶矩阵使得 或 ○

注:全体n 维实向量构成的集合n

R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的??

??

?????特征向量

注 ()()a b r aE bA n aE bA aE bA x οολ+

+=?+=???

有非零解=-

?

?

?????

→????

具有

向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ???:

①称为

n

的标准基,

n

中的自然基,单位坐标向量87p 教材;

②12,,,n e e e ???线性无关; ③12,,,1n e e e ???=; ④tr =E n ;

⑤任意一个n 维向量都可以用12,,,n e e e ???线性表示.

12

1212

11

12121222()

121

2

()n n n

n n j j j n j j nj j j j n n nn

a a a a a a D a a a a a a τ=

=

-∑

1

√ 行列式的计算:

①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

②若A B 与都是方阵(不必同阶),则

==

()mn A O

A A O A B

O B O B B

O

A

A

A B

B O

B O

*=

=*

*

=-1(拉普拉斯展开式)

③上三角、下三角、主对角行列式等于主对角线上元素的乘积.

④关于副对角线:

(1)2

1121

21

1211

1

()n n n

n

n n n n n n n a O

a a a a a a a O

a O

---*

==-1 (即:所有取自不同行不

同列的n 个元素的乘积的代数和)

⑤范德蒙德行列式:()1

2

2

22

12

111

112n

i

j

n

j i n

n n n n

x x x x x x x x x x x ≤<≤---=-∏111

由m n ?个数排成的m 行n 列的表1112121

2221

2

n n m m mn a a a a a a A a a a ?? ?

?

= ?

???

称为m n ?矩阵.记作:()ij m n A a ?=或m

n A ?

()

1121112222*

12n T

n ij

n

n

nn A A A A A A A A A A A ?? ? ?

== ? ???

,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法:

① 1

A A A *-= ○注: 1

a b d b c d c a ad bc --????= ? ?

--????

1 主换位副变号

②1()()A E E A -????→初等行变换

③1

2

31

1

1

1

2

13a a a a a -????

? ?

=

? ? ? ? ??

??

?

3

2

1

1

1

112

13a a a a a a -????

? ?

=

? ? ? ? ?????

√ 方阵的幂的性质:m

n

m n

A A A

+= ()()m n mn A A =

√ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,

则m s

AB C ?=?()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα??

? ?

???= ?

???

?i i A c β= ,(,

,)i s =1,2?i β为

i Ax c =的解?()()()121212,,,,,,,,

,s s s A A A A c c c ββββββ???=???=?12,,

,s c c c 可由12,,,n ααα???线性表

示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,T

A 为系数矩阵.

即: 111211*********

2

n n n n mn n m a a a c a a a c a a a c βββ?????? ??? ? ??? ?= ??? ? ??? ????????111122*********

22211222n n m m mn m

a a a c a a a c a a a c βββββββββ+++=??+++=????++

+=

?

√ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; 用对角矩阵Λ○

右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○

列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.

√ 分块矩阵的转置矩阵:T

T

T T

T A B A C C D B

D ??

??= ? ?????

分块矩阵的逆矩阵:1

11A A B B ---????

=

? ????

? 1

11A B B

A

---?

?

??= ? ?????

1111A C A A CB O B O

B ----????= ? ????? 1111A O A O

C B B CA B ----????= ? ?

-????

分块对角阵相乘:11

112222,A B A B A B ????==

? ??????1111

2222A B AB A B ??=

???,1122n

n n A A A ??

= ???

分块对角阵的伴随矩阵:*

*

*A BA B AB ????=

? ??

??? *

(1)(1)mn mn A A B B B A

**?

?

-?

?= ? ?

?-????

√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II) A B E X ????→初等行变换

(I)的解法:构造()()

T T T T

A X

B X X

=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得

① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.

③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)

④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关?对应元素成比例;两两正交的非零向量组线性无关114p 教材. ⑥ 向量组12,,,n ααα???中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.

⑦ 向量组12,,,n ααα???线性相关?向量组中至少有一个向量可由其余n -1个向量线性表示. 向量组12,,,n ααα???线性无关?向量组中每一个向量i α都不能由其余n -1个向量线性表示. ⑧ m 维列向量组12,,,n ααα???线性相关()r A n ?<; m 维列向量组12,,,n ααα???线性无关()r A n ?=.

⑨ 若12,,,n ααα???线性无关,而12,,,,n αααβ???线性相关,则β可由12,,,n ααα???线性表示,且表示法唯一. ⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.

可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后

面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0? 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系; 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:

对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; 对A 施行一次初等○

列变换得到的矩阵,等于用相应的初等矩阵○

右乘A .

如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r =

向量组12,,

,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r ααα

A 经过有限次初等变换化为

B . 记作:A B =

12,,,n ααα???和12,,,n βββ???可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ???=???

? 矩阵A 与B 等价?PAQ B =,,P Q 可逆?()(),,,r A r B A B A B =≠>为同型矩阵作为向量组等价,即:秩相

等的向量组不一定等价.

矩阵A 与B 作为向量组等价?1212(,,,)(,,,)n n r r αααβββ???=???=1212(,,,,,,)n n r αααβββ??????? 矩阵A 与B 等价.

? 向量组12,,,s βββ???可由向量组12,,,n ααα???线性表示?AX B =有解

?12(,,,)=n r ααα???1212(,,,,,,)n s r αααβββ???????12(,,,)s r βββ???≤12(,,,)n r ααα???.

? 向量组12,,,s βββ???可由向量组12,,,n ααα???线性表示,且s n >,则12,,,s βββ???线性相关.

向量组12,,,s βββ???线性无关,且可由12,,,n ααα???线性表示,则s ≤n .

? 向量组12,,,s βββ???可由向量组12,,,n ααα???线性表示,且12(,,,)s r βββ???12(,,,)n r ααα=???,则两向量组等价;

p 教材94,例10

? 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ? 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ? 若两个线性无关的向量组等价,则它们包含的向量个数相等. ? 设A 是m n ?矩阵,若()r A m =,A 的行向量线性无关;

若()r A n =,A 的列向量线性无关,即:12,,,n ααα???线性无关. √ 矩阵的秩的性质:

①()A O r A ≠?若≥1 ()0A O r A =?=若 0≤()m n r A ?≤min(,)m n

②()()()T T r A r A r A A == p 教材101,例15

③()()r kA r A k =≠ 若0

④()(),,()0m n n s r A r B n A B r AB B Ax ??+≤?=??=?

若若0的列向量全部是的解

⑤()r AB ≤{}min (),()r A r B

()()()()

A r A

B r B B r AB r A ?=?=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.

⑦若()()()m n Ax r AB r B r A n AB O B O

A A

B A

C B C ο??=??

=??=???=?=??????=?=??

? 只有零解

在矩阵乘法中有左消去律;

若()()()n s r AB r B r B n B ?=?=???

在矩阵乘法中有右消去律.

⑧()r

r

E O E O r A r A A O O O O ????

=?

? ?????

若与唯一的等价,称为矩阵的等价标准型.

⑨()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70 ⑩()()A O O A r r A r B O B B O ????==+

? ????? ()()A C r r A r B O B ??

≠+ ???

13

121212,,

,0,,

,()(),,

,A n n A n Ax A n Ax Ax r A r A Ax A n βαααβαααβββααα?=?????→=

当为方阵时有无穷多解0

表示法不唯一线性相关有非零解

可由线性表示有解有唯一组解0克莱姆法则

表示法唯一 线127()(),,

,()()()1()

n Ax r A r A Ax r A r A r A r A οββαααβββ?????

?

????=??

??≠?

?=?

教材72

讲义8性无关只有零解

不可由线性表示无解 ○

:Ax Ax

ββ?

=<≠?

=<≠

有无穷多解其导出组有非零解

有唯一解

其导出组只有零解

Ax β=1122n n x x x αααβ+++=

111211121

222221

2

,,n n m m mn n m a a a x b a a a x b A x a a a x b β??????

? ? ? ? ? ?=== ? ? ?

? ? ??????? 12,,2,

,j j j mj j n αααα?? ? ?

== ? ? ???

1

1212(,,

,)n n x x

x αααβ?? ? ?= ? ???

14

线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+??=??

=??++?

==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解

211212112212112212),(7),,,,1

00k k k k

k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλλη

ληληλλλ?????

????

???

?=?-=?

=??++=?++=??++=?++=? 是的解则也是它的解是其导出组的解 是的解则

也是的解 是的解

√ 设A 为m n ?矩阵,若()r A m =?()()r A r A

β=?Ax β=一定有解,

当m n <时,一定不是唯一解?

<方程个数未知数的个数

向量维数向量个数

,则该向量组线性相关.

m 是()()r A r A β和的上限.

√ 判断12,,

,s ηηη是Ax ο=的基础解系的条件:

① 12,,,s ηηη线性无关; ② 12,,

,s ηηη都是Ax ο=的解;

③ ()s n r A =-=每个解向量中自由未知量的个数.

√ 一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,

,s ξξξ是Ax ο=的一个解?1,,,,s ξξξη*线性无关

√ Ax ο=与Bx ο=同解(,A B 列向量个数相同),则:

① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.

√ 两个齐次线性线性方程组Ax ο=与Bx ο=同解?()()A r r A r B B ??

==

???

. √ 两个非齐次线性方程组Ax β=与Bx γ=都有解,并且同解?()()A r r A r B B βγ??

== ???

.

√ 矩阵m n A ?与l n B ?的行向量组等价?齐次方程组Ax ο=与Bx ο=同解?PA B =(左乘可逆矩阵P );101p 教材 矩阵m n A ?与l n B ?的列向量组等价?AQ B =(右乘可逆矩阵Q ). √ 关于公共解的三中处理办法:

① 把(I)与(II)联立起来求解;

② 通过(I)与(II)各自的通解,找出公共解;

当(I)与(II)都是齐次线性方程组时,设123,,ηηη是(I)的基础解系, 45,ηη是(II)的基础解系,则 (I)与(II)有公共解?基础解系个数少的通解可由另一个方程组的基础解系线性表示.

即:1231231425(,,)(,,)r r c c ηηηηηηηη=+

当(I)与(II)都是非齐次线性方程组时,设11122c c ξηη++是(I)的通解,233c ξη+是(II)的通解,两方程组有公共解?2331c ξηξ+-可由12,ηη线性表示. 即:1212

2331(,)(,)r r c ηηηηξηξ=+-

③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共

解。

n 个n 维线性无关的向量,两两正交,每个向量长度为1.

1

(,)n

i i i a b αβ===∑

(,)0αβ=. 记为:αβ⊥

21

n

i i a α====∑

(,1ααα==. 即长度为1的向量.

√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=?=且 ② 对称性:(,)(,)αββα=

③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)c c c αβαβαβ==

E A λ-.

()E A λ?λ-=.

√ ()?λ是矩阵A 的特征多项式?()A O ?=

E A λ-=0. Ax x x Ax x λ=→ (为非零列向量) 与线性相关

12

n A λλλ= 1

n

i A λ=∑tr ,A tr 称为矩阵A √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.

√ 若0A =,则λ=0为A 的特征值,且Ax ο=的基础解系即为属于λ=0的线性无关的特征向量.

√ ()1r A =?A 一定可分解为A =()1212,,,n n a a b b b a ?? ? ? ? ???

、21122()n n A a b a b a b A =++

+,从而A 的特征值为:

11122n n A a b a b a b λ==++

+tr , 23n λλλ====0 p 指南358.

○注()12

,,,T

n a a a 为A 各行的公比,()12,,,n b b b 为A 各列的公比.

√ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:

① 若A 满足()f A O =?A 的任何一个特征值必满足()i f λ=0 ②()f A 的全部特征值为12(),(),

,()n f f f λλλ;12()()()()n f A f f f λλλ=.

√ 初等矩阵的性质:

√ 设1110()m m m m f x a x a x a x a --=++++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++

++为A 的

一个多项式.

√ 1231

122,T A m

m k kA

a b aA bE A A A A A A

λ

λλλλλλλλλλ-*

??++???= 是的特征值则:分别有特征值 .???

???

√ 123

1122,A m

m k kA

a b aA bE

A

x A x A A A λλλλ

λλλλλ-*??++????=?????

是关于的特征向量则也是关于的特征向量. √ 2,m

A A 的特征向量不一定是A 的特征向量. √ A 与T

A 有相同的特征值,但特征向量不一定相同.

1P AP B -= (P 为可逆矩阵) 记为:A B

1P AP B -= (P 为正交矩阵)

A 与对角阵Λ相似. 记为:A

Λ (称Λ是A

√ A 可相似对角化?()i i n r E A k λ--= i k 为i λ的重数?A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1

P AP -为对角阵,主对角线上的元素为A 的特征值.设i α为对应于i λ的线性无关的特征向量,则有:

12

1212112212(,,

,)(,,,)(,,,)(,,

,)n n n n n n P

P

A A A A λλααααααλαλαλααααλΛ

??

? ?=== ? ??

?

. ○注:当i λ=0为A 的重的特征值时,A 可相似对角化?i

λ的重数()n r A =-= Ax ο=基础解系的个数. √ 若n 阶矩阵A 有n 个互异的特征值?A 可相似对角化.

√ 若A 可相似对角化,则其非零特征值的个数(重根重复计算)()r A =.

√ 若A

Λ?k A =1k P P -Λ,1211()

()

()()()n g g g A Pg P P P g λλλ--??

?

?=Λ= ? ??

?

√ 相似矩阵的性质:

E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.

○注x 是A 关于0λ的特征向量,1

P x -是B 关于0

λ的特征向量. ②A B =tr tr

③A B = 从而,A B 同时可逆或不可逆 ④()()r A r B = ⑤T

T A

B ;11A B -- (若,A B 均可逆);*

*A B

⑥k

k A

B (k 为整数);()

()f A f B ,()()f A f B =

⑦,A B A B C

D C D ????? ? ??

???

注前四个都是必要条件. √ 数量矩阵只与自己相似. √ 实对称矩阵的性质:

① 特征值全是实数,特征向量是实向量;

② 不同特征值对应的特征向量必定正交;

注:对于普通方阵,不同特征值对应的特征向量线性无关; ③一定有n 个线性无关的特征向量.

若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--;

④必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形; ⑤与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥两个实对称矩阵相似?有相同的特征值.

T

AA E =

√ A 为正交矩阵?A 的n 个行(列)向量构成n

的一组标准正交基.

√ 正交矩阵的性质:① 1

T

A A -=;

② T

T

AA A A E ==;

③ 正交阵的行列式等于1或-1;

④ A 是正交阵,则T

A ,1

A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;

⑥ A 的行(列)向量都是单位正交向量组.

1211

(,,

,)n n

T

n ij i j i j f x x x x Ax a x x ====∑∑ ij ji a a =,即A 为对称矩阵,12(,,

,)T n x x x x =

T C AC B =. 记作:A

B (,,A B

C 为实对称矩阵为可逆矩阵)

二次型的规范形中正项项数p r p -

2p r - (r 为二次型的秩)

√ 两个矩阵合同?它们有相同的正负惯性指数?他们的秩与正惯性指数分别相等. √ 两个矩阵合同的充分条件是:A

B

√ 两个矩阵合同的必要条件是:()()r A r B =

√ 12(,,

,)T

n f x x x x Ax =经过正交变换

合同变换

可逆线性变换

x Cy =化为21

n

i i f d y =∑

√ 二次型的标准形不是唯一的,与所作的正交变换有关,但非零系数的个数是由()

r A +正惯性指数负惯性指数

唯一确定的.

√ 当标准形中的系数i d 为-1或0或1时

,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.

√ 惯性定理:任一实对称矩阵A 与唯一对角阵111

1

0?? ? ? ? ?-

?

? ?

-

? ? ? ? ??

?

合同. √ 用正交变换化二次型为标准形:

① 求出A 的特征值、特征向量; ② 对n 个特征向量正交规范化; ③ 构

C

(正交矩阵

),作变换

x C =,

11122

21()()T

T T T T n n n y d y y

d y Cy A Cy y C ACY y C ACY y d y -??

???? ? ??? ?

???=== ? ??? ? ?????

?

???

新的二次型为21n

i i

f d y =∑,Λ

的主对角上的元素i d 即为A 的特征值.

123,,ααα线性无关,

1121221113132331

21122(,)

(,)(,)(,)(,)(,)βααββαβββαβαββαββββββ=????=-??

?=--??

正交化

单位化:111βηβ=

222β

ηβ= 333

βηβ= 技巧:取正交的基础解系,跳过施密特正交化。让第二个解向量先与第一个解向量正交,再把第二个解向量代入方

程,确定其自由变量. 例如:123x x x +-=0取1β-?? ?= ? ???1 1 0,2β??

?

= ? ???

112.

12,,

,n x x x 不全为零,12(

,,,)n f x x x >0.

正定二次型对应的矩阵.

√ ()T

f x x Ax =为正定二次型?(之一成立):

① x ο?≠ ,T

x Ax >0;

② A 的特征值全大于0; ③ f 的正惯性指数为n ; ④ A 的所有顺序主子式全大于0;

⑤ A 与E 合同,即存在可逆矩阵C 使得T

C AC E =;

⑥ 存在可逆矩阵P ,使得T

A P P =;

⑦ 存在正交矩阵C ,使得12

1

T n C AC C AC λλλ-??

?

?== ? ??

?

(i

λ大于0).

√ 合同变换不改变二次型的正定性. √ A 为正定矩阵?ii a >0 ; 0A >. √ A 为正定矩阵?1

,,T

A A A -*

也是正定矩阵. √ A 与B 合同,若A 为正定矩阵?B 为正定矩阵

√ ,A B 为正定矩阵?A B +为正定矩阵,但,AB BA 不一定为正定矩阵.

线性代数超强的总结(不看你会后悔的)

线性代数超强总结 ()0A r A n A Ax A A οο??

√ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则 (1)mn A A A A B B B B A A B B οο οοο * = = =* *=- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =-K N N √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -????→M M 初等行变换 ③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? O O 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ?????????? N N

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数知识点总结

线性代数知识点总结 第一章 行列式 1. n 阶行列式()() 12 1212 11121212221212 1= = -∑ n n n n t p p p n p p np p p p n n nn a a a a a a D a a a a a a 2.特殊行列式 () () 1112 11222211221122010 n t n n nn nn nn a a a a a D a a a a a a a = =-= 1 2 12 n n λλλλλλ=, () ()1 12 2 121n n n n λλλλλλ-=- 3.行列式的性质 定义 记 11121212221 2 n n n n nn a a a a a a D a a a =,11211 1222212n n T n n nn a a a a a a D a a a = ,行列式T D 称为行列式D 的转置行列式。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行() ?i j r r 或列() ?i j c c ,行列式变号。 推论 如果行列式有两行(列)完全相同(成比例),则此行列式为零。 性质3 行列式某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式; 推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D 。 性质4 若行列式的某一列(行)的元素都是两数之和,则 1112111212222212 () ()()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+11121111121121222221222212 12 i n i n i n i n n n ni nn n n ni nn a a a a a a a a a a a a a a a a a a a a a a a a ''=+ ' 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

线性代数公式总结大全

线性代数公式 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 8. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

线性代数超强总结

√ 关于12,,,n e e e ???: ①称为 n 的标准基, n 中的自然基,单位坐标向量; ②12,,,n e e e ???线性无关; ③12,,,1n e e e ???=; ④tr()=E n ; ⑤任意一个n 维向量都可以用12,,,n e e e ???线性表示. √ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则 (1)mn A A A A B B B B A A B B οο οοο * = = =* *=- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =- √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -???? →初等行变换 ③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ??????????

⑤1 1111 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=???? ???? ?????? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοο ο ?? ?? ? ??? ? ???==???????????? √ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时, √ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系. √ 判断12,, ,s ηηη是0Ax =的基础解系的条件:

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,… ,n 组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123…n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 8.什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。 答:逆序数为奇数的排列叫奇排列;逆序数为偶数的排列叫偶排列。例如:排列45312为偶排列。 10.对换一个排列中的任意两个数,该排列的奇偶性有什么变化?【知识点】:排列的对换对排列的奇偶性的影响。 答:对换一个排列中的任意两个数,奇排列就变成偶排列,偶排列就变成奇排列。例如:偶排列45312对换4与3,则变成排列35412,它的逆序数为7,排列35412是奇排列。 11.任一个n阶排列与标准排列可以互变吗?【知识点】:n阶排列与标准排列的关系。 答:可经过一系列对换互变。且所做对换的次数与排列具有相同的奇偶性。例如:排列32541的逆序数是6,因而是偶排列,它经过2次对换:3与1对换后变为12543,再对换5

线代贴吧-线性代数超强总结

线性代数公式总结

()0A r A n A Ax A A οο??

③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ????????? ? ⑤1 11 11 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=??? ? ???? ????? ? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοοο ?? ?? ? ??? ? ???==???????????? 11112222 kk kk A B A B AB A B ο ο ????? ?=????? ?

线性代数学习心得体会doc

线性代数学习心得体会 篇一:学习线性代数的心得体会 学习线性代数的心得体会 线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。 线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。 线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。那么,就应该在第二天有线代课时晚上睡得早一点。如果你觉得上课跟不上老师的思路那么请预习。这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,

想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。 一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自 己会做也要听一下老师的思路。 上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做题,不会时看书后或做完后看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以 问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。适当多做些题对学习是有帮助的。。 线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只

线性代数总结归纳

线性代数总结归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

行列式 1.为何要学习《线性代数》 学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列【 知识点】:n阶全排列。 答:由n个数1,2,… ,n 组成的一个有序数组。 6.什么是标准排列【 知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123…n。 7.什么是n阶全排列的逆序【 知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 8.什么是n阶排列的逆序数【 知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8。 9.什么是奇排列和偶排列【

线性代数知识点总结

《线性代数》复习提纲第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A、B为同阶方阵,则|AB|=|A|*|B|; ④|kA|=k^n|A| 3.矩阵的秩 (1)定义非零子式的最大阶数称为矩阵的秩; (2)秩的求法一般不用定义求,而用下面结论: 矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。 4.逆矩阵 (1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立); (2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

《线性代数》知识点 归纳整理

《线性代数》知识点归纳整理诚毅 学生编 01、余子式与代数余子式 ............................................................................................................................................. - 2 - 02、主对角线 ................................................................................................................................................................. - 2 - 03、转置行列式 ............................................................................................................................................................. - 2 - 04、行列式的性质 ......................................................................................................................................................... - 3 - 05、计算行列式 ............................................................................................................................................................. - 3 - 06、矩阵中未写出的元素 ............................................................................................................................................. - 4 - 07、几类特殊的方阵 ..................................................................................................................................................... - 4 - 08、矩阵的运算规则 ..................................................................................................................................................... - 4 - 09、矩阵多项式 ............................................................................................................................................................. - 6 - 10、对称矩阵 ................................................................................................................................................................. - 6 - 11、矩阵的分块 ............................................................................................................................................................. - 6 - 12、矩阵的初等变换 ..................................................................................................................................................... - 6 - 13、矩阵等价 ................................................................................................................................................................. - 6 - 14、初等矩阵 ................................................................................................................................................................. - 7 - 15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 7 - 16、逆矩阵 ..................................................................................................................................................................... - 7 - 17、充分性与必要性的证明题 ..................................................................................................................................... - 8 - 18、伴随矩阵 ................................................................................................................................................................. - 8 - 19、矩阵的标准形: ..................................................................................................................................................... - 9 - 20、矩阵的秩: ............................................................................................................................................................. - 9 - 21、矩阵的秩的一些定理、推论 ................................................................................................................................. - 9 - 22、线性方程组概念 ................................................................................................................................................... - 10 - 23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 10 - 24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 11 - 25、线性方程组的向量形式 ....................................................................................................................................... - 11 - 26、线性相关与线性无关的概念 ......................................................................................................................... - 12 - 27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 12 - 28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 12 - 29、线性表示与线性组合的概念 ......................................................................................................................... - 12 - 30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 12 - 31、线性相关(无关)与线性表示的3个定理 ....................................................................................................... - 12 - 32、最大线性无关组与向量组的秩 ........................................................................................................................... - 12 - 33、线性方程组解的结构 ........................................................................................................................................... - 12 -

相关主题
文本预览
相关文档 最新文档