当前位置:文档之家› 循环流化床锅炉回料器旋风分离器故障汇总

循环流化床锅炉回料器旋风分离器故障汇总

循环流化床锅炉回料器旋风分离器故障汇总
循环流化床锅炉回料器旋风分离器故障汇总

J阀(旋风分离器)故障(此故障主要出现在国产化的CFB锅炉)。

J阀(旋风分离器)故障主要现象

J阀入口静压波动大导致J阀回料不连续,床压、床温出现大幅度的波动,严重时破坏外循环,使尾部受热面积灰严重,造成尾部烟道再燃烧,损坏空预器。

J阀(旋风分离器)故障主要原因

1)旋风分离器回料不正常。旋风分离器因灰位较高而影响了分离器的分离效果,从而使一定量未分离灰进入烟道造成空预器积灰严重,引起J阀入口静压波动。

2)过高的循环倍率造成J阀循环灰量过大,超出J阀流通能力。

3)燃烧工况的突然改变破坏了J阀的循环。

4)流化风配比不恰当,J阀回料未完全流化。

J阀(旋风分离器)故障采取措施

1)发现回料不正常时,及时对旋风分离器的风量进行调整,必要时降低锅炉负荷;尾部烟道积灰严重时,加强对其吹灰(注意控制炉膛负压),必要时采用从事故放灰口放灰。

2)适当降低冷渣器用风,适当提高二次风量的比例,降低燃烧风量,保证炉内的燃料和床料在炉内有足够的停留时间,即增加内循环的时间和数量,降低旋风分离器的物料比例。

3)在燃烧工况突然改变导致循环被破坏时,应及时调整锅炉运行参数建立新的平衡。

4)加强对J阀风量配比的经验总结,寻找J阀各部分最优化参数,选择合适流化风量和松动风,建议在风量调定且回料正常时,不宜对该风量做随意变更。

料层差压不能控制的过于低。当料层过于薄时,一次风量也比较大的时候,一次风所形成的向上托力大大的大于了料层的重力(也就是对一次风的阻力),那么炉内物料将被气流带走,形成了气力输送,就象仓泵输灰一样,那么此时锅炉运行是非常危险的,大量的一次风都从炉膛内吹走了(料层对一次风阻力大大的减小了)。返料风所需的一次风大量减少,炉膛上部灰浓度大量增加,分离器收集的返料灰增加,返料器所返的灰增加、返料风却减小,将直接引起返料器堵灰,停止返料并有可能返料器内部结焦。煤粒加入炉膛后,由于一次风气力输送作用被吹到炉膛出口,由旋风分离器收集而进入返料器中,进行燃烧,引起返料器内部高温结焦。在通过冷渣机控制料层时,应尽量保持平稳增减,避免料层的过薄过厚,都将不利于锅炉的经济、安全运行。

旋风分离器不改变结构,提高收集效率,只能依靠入口烟速提高和烟气含灰量提高。旋风分离器提高了收集效率,可以捕捉到更多的细灰进入返料器,由返料器返入炉内平仰床温。

该炉的分离器是采用高温绝热旋风分离器,左右侧各一只。旋风分离器的收集效率直接影响着收集的返料灰的多少,影响着锅炉经济运行。旋风分离器可以满足锅炉的运行,但我们也认为二只分离器效率不一样,由于床温热电偶已不准确,我们已无法分辨出那一侧的温度高和低,但二只分离器中心筒出口温度,也就是高温过热器前烟温始终存在差异,左侧高过前烟温高于右侧高过前烟温50℃左右,左侧低过前烟温高于右侧低过前烟温20℃左右,左侧省煤器前烟温高于右侧省煤器前烟温十几度,直到排烟温度左右差不多,烟道内左侧烟温普通高于右侧烟温,为什么?这个问题我们时常在思考,有个不成熟的想法:认为左侧分离器效率低于右侧分离器效率,左侧旋风分离器分离不彻底,使得一些高温细灰排至烟道内,至使左侧烟温高。

该U型自平衡返料器,我有个疑问,两侧的返料风室总是相差0. 7 kpa ~0.8 kpa左右,是热工仪表误差,还是真的存在风室风压差,返料风有大小?我们争取在以后停炉检查中弄明白这个问题。

密相区中呈现的是缺氧燃烧,稀相区中呈现的是过氧燃烧,是由二次风补充氧气而产生的,也是为了充分燃烧。

循环流化床锅炉燃烧调整的原则

在一定的负荷区,在“勤放、少放、稳放”灰渣稳定流化高度的前提下,以床温定风量,以炉膛物料浓度(即炉膛差压值)定锅炉出力;以返料温度、旋风筒进口负压控制炉膛物料浓度;以炉膛下部压力为0负压运行定引风;以放渣、放灰量定燃煤配比。

循环流化床锅炉燃烧调整中最基本的控制点为:床体温度、返料温度、料层差压、炉膛差压、炉膛下部压力及旋风筒进口负压。其控制参数关系图如下:

在负荷一定时:

循环灰是锅炉燃烧的热载体,积累到一定程度后,锅炉方可转入正常运行状态。否则一味加煤赶汽压带负荷,易造成燃烧失常,返料器二次燃烧,超温结焦。

料层差压的控制:料层差压是风室压力与密相区上部压力的差值。一定风量下合适的料层厚度,是床料良好流化的前提,在运行中要保持适当而稳定的料层差压,为提高煤的燃烧速度,料层差压应控制在8.0~9.0kPa,可通过炉底放渣来实现。

物料浓度的控制:一定的物料浓度对应一定的炉膛差压值,影响制约着锅炉出力。维护适量稳定的物料浓度是锅炉运行的关键,炉膛差压指炉膛下部压力与炉膛上部压力的差值,通过U型阀返料器底部放灰来控制。物料浓度过大,返料器不能形成良好的流化工况,极易造成旋风筒聚灰堵塞。物料浓度过小或一次放的过多,锅炉出力下降,床体温度上升,煤粒燃烧推迟,返料温度也上升易超极限,造成返料器超温结焦。正常运行中应根据燃煤灰分的高低控制U型阀返料器放灰量,控制旋风筒进口负压不大于700Pa。断煤及料层薄尤应注意引风不能偏大及给煤量的调整,预防返料中止。体现物料浓度是否足够,原则上掌握:低负荷运行时,床体温度略高于炉膛上部温度。中负荷区以上负荷运行时,床温度接近或略高于炉膛上部温度。

增加负荷时应当先少量增加一次风量和二次风量,再增加给煤量,使炉膛差压逐渐增加,然后再逐渐加风加煤交错进行,直到所需出力。减负荷时,应先减少给煤量,再适当减少一次风量和二次风量,并慢慢地放掉一部分循环灰,以降低炉膛差压,直到所需的出力为至。

锅炉正常运行中,应重点把握炉膛灰浓度的控制及一次风不低于最低安全流化风量两个问题。

防结焦:循环流化床锅炉在不同部位,因不同因素均可导致结焦:

在炉膛中:主要致焦因素是煤质和运行,本文不列为重点叙述。

在料腿和返料器中,流通截面最小,汇集了高温循环灰和煤渣,从降温、防止空气进入、防止烟气回窜三方面防止结焦。降温措施是水冷结构;防止空气进入,措施是防漏和运行调节;防止烟气回窜措施是精确实现设计通道的尺寸。所以此处防焦的关键一是运行管理,二是施工安装。

在旋风分离器中:旋风分离器的内壁安装有防磨内衬,外壁安装有保温材料,具有高蓄热性,在近于燃烧室的温度下运行,易于二次燃烧而愈发提高分离器内部的温度,一旦超过灰分的变形温度时,即造成结焦。防磨内衬若施工不良发生局部塌落,塌落的大块成为碳粒的聚集体,形成结焦堵塞。旋风分离器中存在冷风渗入的现象,此区域的锥体下端和灰渣出

口均可能漏入冷风,则相当于引入二次风,助长二次燃烧致结焦。防止上述两项结焦因素的措施是做好安装施工。

CFB锅炉除了需要监视风烟系统的压力外,还需要监视与控制床压、J阀各部位风压、冷渣器各室风压、炉膛上中下部压力等,以判断燃烧、给煤、排渣、物料再循环等系统的运行是否正常。

基于循环流化床的燃烧机理,需要合理的控制炉膛差压、料层差压、流化风量、循环倍率、蒸发量。

如果炉膛差压过低,有可能是返料量不够,分离效率低造成的。这将同时造成尾部受热面的加速磨损,过热器、省煤器的磨损泄漏;

如果料层差压偏低,则炉膛蓄热量少,一旦给煤出现问题,容易灭火。

如果料层差压偏高,则需较大的流化风量,又增加动力消耗和磨损。事实证明,超负荷运行,得不偿失,将付出巨大的代价。

根据实际运行情况来看,循环流化床锅炉的负荷最好不要超过额定负荷,以控制在80~95%为理想。在此负荷下,操作稳定,效率较高,磨损较轻,运行周期较长。因为,在超负荷情况下,循环倍率增加,流化风量加大,存在后燃现象,造成后部高温,甚者造成返料器结焦,危及锅炉的安全运行。

当床层整体温度低于灰渣变形温度而由于局部超温或低温烧结而引起的结焦称低温结焦,低温焦块是疏松的带有许多嵌入的未烧结颗粒。床层整体温度水平较高而流化正常时所形成的结焦现象称高温结焦,高温焦块表面上看基本上是熔融的,冷却后呈深褐色并夹杂少量气孔。运行中的床温、床压和流化都正常情况下出现的缓慢长大的焦块称渐进性结焦,这种结焦是较难察觉的。炉内结焦是由于高温结焦、低温结焦、渐进性结焦和油煤混燃时间较长以及流化不正常引起的结焦,不论是哪种原因引起的结焦,一旦渣块在床料中存在并随着时间的推移,焦块将象滚雪球似的越滚越大,造成流化更加困难,即结焦影响流化,流化不良易结焦,结果是堵塞排渣管,最后被迫停炉。

床温偏高和炉内流化工况不良是造成结焦的两个最主要的原因。结焦无论在点火或在正常运行调整中都可能发生,原因也有多种;它不仅会在启动过程或压火时出现在床内,也有可能出现在炉膛以外如旋风分离器的回料褪及回料阀内,灰渣中碱金属钾、钠含量较高时较易发生。

返料温度是指通过返料器送回到燃烧室中的循环灰的温度,它可以起到调节料层温度的作用。采用高温分离器的循环流化床锅炉,一般返料温度低于料层温度20-30℃,可以保证锅炉稳定燃烧,同时起到调整燃烧的作用。在锅炉运行中必须密切监视返料温度,出现后燃温度过高有可能造成返料器内结焦,运行时应控制返料温度最高不能超过950℃。返料温度通过调整给煤量,一、二次风量和返料风量都可以调节,如温度过高,可适当减少给煤量并加大一、二次风量和返料风量,并根据现象判断返料器有无堵塞现象,及时清除,确保返料器正常工作。

料层差压是反映燃烧室料层厚度的参数。通常将所测得的风室与燃烧室上界面之间的压力差值作为料层差压的监测数值,在运行中都是通过监视料层差压值来得到料层厚度大小的。料层厚度越大,测得的差压值亦越高。在运行中,料层厚度大小会直接影响锅炉的流化质量,如料层厚度过大,有可能引起流化不好造成炉膛结焦或灭火。一般来说,料层差压应控制在7500-9000Pa之间。料层差压可以通过调节炉底冷渣器转速快慢的方法来调节。在使用过程中,我们根据所燃用煤种设定料层差压的上限和下限分别为8800Pa和7800Pa作为排放底料开始和终止的基准点。

炉膛差压是反映炉膛内固体物料浓度的参数。通常将所测得的燃烧室上界面与炉膛出口之间的压力差作为炉膛差压数值。炉膛差压值越大,说明炉膛内的物料浓度越高,炉膛的传

热系数越大,则锅炉负荷可以带得越高,因此在锅炉运行中应根据所带负荷的要求,来调节炉膛差压。而炉膛差压则通过返料器下的放灰管排放的循环灰量的多少来控制,一般炉膛差压控制在500-1500Pa之间。我们根据燃用煤种的灰份和粒度设定1300-700Pa作为开始和终止循环物料排放的基准点。

此外,炉膛差压还是监视返料器是否正常工作的一个参数。在锅炉运行中,如果物料循环停止,则炉膛差压会突然降低,因此在运行中需要特别注意。

运行中要加强返料器床温的监视和控制。一般返料器处的床温最高不宜大于950℃。当返料器床温升得太高时,应减少给煤量和负荷,查明原因后消除。Y[qBK9

运行中监视料层差压及炉膛差压。正常运行中维持炉膛差压约500~1500Pa之间,料层差压约7000~9500Pa之间。炉膛差压通过返料器放灰管控制,料层差压通过风室下部排渣管控制。

返料器处的结焦主要是主燃室内床温过高和循环灰中含煤太多导致后燃所致。返料器不能有漏风,否则将使循环物料流率显著降低而使返料器内物料温度升高,形成结焦。I 控制返料量是循环流化床锅炉运行操作时不同于常规锅炉之处,根据前面提到的循环流化床锅炉燃烧及传热的特性,返料量对循环流化床锅炉的燃烧起着举足轻重的作用,因为在炉膛里,返料灰实质上是一种热载体,它将燃烧室里的热量带到炉膛上部,使炉膛内的温度场分布均匀,并通过多种传热方式与水冷壁进行换热,因此有较高的传热系数,(其传热效率约为煤粉炉的4-6倍)通过调整返料量可以控制料层温度和炉膛差压并进一步调节锅炉负荷。另一方面,返料量的多少与锅炉分离装置的分离效率有着直接的关系,也就是说,分离器的分离效率越高,分离出的烟气中的灰量就越大,从而锅炉对负荷的调节富裕量就越大,操作运行相对就容易一些。

试运行试验

1回料器的冷态试验

回料器的冷态试验分为空板阻力试验和回料观察试验。回料器的空板阻力特性曲线见图1。在回料量观察试验中,先将邻近炉回料灰从观察孔倒入,与观察孔同高。然后开启松动风和回料风风门,在炉膛人孔处观察,结果是当松动风风门开度20%,回料风风门开度30%时,已有细灰返回,回料器松动风空板阻力特性曲线见图2。

2布风板阻力特性试验

布风板具有合适的阻力是保证布风均匀和床料流化良好所必须的。测定布风板阻力时,布风板上不铺设物料,启动引风机、送风机,通过调节风门挡板和送风机入口导叶开度来控制风量,由小到大改变风量,记录不同风量下对应的布风板阻力,炉膛布风板空板阻力特性曲线见图3。

3料层阻力特性试验

在布风板上铺上邻炉炉渣作为床料,对厚度分别为370 mm和630 mm的料层阻力进行试验,其料层阻力特性曲线见图

循环流化床锅炉的循环物料中含有一定量的碳,具有可燃性,当循环物料在合适的供风范围时完全可以着火燃烧,当热量不能即时转移时,温度就可急剧上升,并可能超过循环灰熔点,发生返料器内结焦,从而影响返料器的正常工作,危及循环流化床锅炉的运行。这种情况在已投运的使用这种返料器的循环流化床锅炉上时有发生,美国的电厂运行人员称这种返料器内结成的焦块为“Sand Baby”。

布风板阻力是指布风板上铺料层时的阻力。测量方法:布风板上不铺料层,启动引风机维持炉室出口负压为-20Pa,风量由小逐渐增加,测出相应的布风板上的压力,根据布风板下风室压力,可计算出布风机压差,最后给出P=f (Q )曲线。

④布风板阻力测量

布风板阻力是指布风板上铺料层时的阻力。测量方法:布风板上不铺料层,启动引风机维持炉室出口负压为-20Pa,风量由小逐渐增加,测出相应的布风板上的压力,根据布风板下

风室压力,可计算出布风机压差,最后给出P=f (Q )曲线。

⑤不同料层厚度下,料层阻力与一次风量关系的测定。

料层厚度选为:300mm、350mm、400mm;物料选用沸腾炉渣粒度0-8mm;

在流化床上铺上一定料层的情况下,对应不同料层厚度,用测定布风板阻力的方法,测量每个风量下的差压值,减去这个风量下的布风板阻力值,就是料层阻力,给出料层阻力-风量关系曲线。

临界流化风量的测定:在布风板上铺设一定厚度料层,测量不同风量下的料层阻力,根据测量值绘出料层阻力与风量的关系曲线。水平线与斜线的交点即为临界流化风量。

③料层厚度的控制

料层薄,对锅炉稳定运行不利,因炉料的保留量少,放出的炉渣可燃物含量也高。若料层太厚,增加了料层阻力,虽然锅炉运行稳定,炉渣可燃物含量低,但增加了风机的电耗。为了经济运行,料层差压控制在7000-9000Pa之间。运行中料层差压超过此值时,可以通过放炉渣来调整,放渣的原则是少放、勤放,最好能连续少量放,一次放渣量太多,会影响锅炉的稳定运行、出力和效率。

④炉膛(悬浮段)物料浓度的控制

循环流化床与沸腾床明显的区别在于悬浮段物料浓度不同,两者相差几十到几百倍。循环流化床锅炉出力大小,主要是由悬浮段物料浓度所决定,对同一煤种,一定的物料浓度,对应着一定的出力。对于不同的煤种,同样出力下,挥发份高的煤比挥发份低的煤物料浓度低。一定的物料浓度。对应着一定炉膛差压值,控制炉膛差压值应当可以控制锅炉的出力,正常运行中,炉膛差压维持在700-900Pa,若差压值太大,通过放循环灰来调整。放灰原则少放、勤放。

高倍率循环流化床异常情况主要发生在升停炉或变负荷过程中,在对一、二次风量、返料量和给煤量进行调整时发生的,因而对高倍率循环流化床锅炉运行特点的把握至关重要。

炉膛上、下部(即密、稀相区)颗粒浓度分配(即燃烧份额)主要是由一、二次风量比例及返料量大小决定的(给煤量的变化也有影响但较弱)。因而如果在变负荷操作过程中,对一、二次风量及比例、返料灰量及给煤量的调整未能把握高倍率循环炉的特点而造成调整失当,势必引起炉膛内上下部颗粒浓度大幅度波动,当这种波动影响力达到使炉膛上下部颗粒浓度比例严重失调时,就会出现:或下部颗粒浓度过大物料将床层压死;或物料大部或全部集中于上部空间床层物料消失。同时,炉膛内颗粒浓度的大幅波动也使炉膛出口的颗粒浓度发生大幅波动,而这种浓度波动也引起炉膛出口含尘烟气温度和烟气速度(当炉膛出口负压值保持不变)的大幅度变化,进而对分离器的分离效率产生重大影响。或因炉膛出口颗粒浓度、温度、速度(此三者的变化方向是一致的,且三者变化值分别都与分离器效率变化值成正比例关系)大幅上升,分离器效率也大幅度提高(此上升幅度以近三次方速度进行),亦即分离器下来的返料量可大幅增加,造成返料器松动床所受到的压力大幅增加,如此压力增加是瞬间进行的,松动床将无法承受而被压死;反之,当炉膛出口颗粒浓度、温度、速度大幅下降时,分离器效率也大幅下降,返料量也随之减少。如发生床层压死等极端情况时,返料进入立管中的量几乎为零,而返料风如未被及时停用,则立管中仅存不多的返料仍将被送入炉膛,当立管中存料料位重力不足以抵消返料风压时,立管料层就会被击穿,造成返料器空床。由于引风机的抽吸力和分离器阻力的共同影响,炉膛床层中极细颗粒有可能沿返料通道反窜到尾部烟道。

一次风量增加或二次风量减小操作幅度过大、过快,炉内一、二次风量比例失衡:在升炉和加负荷过程中,运行人员往往依运行经验在进行一、二次风量调整时采用预先设置目标值,后由微机带动电动机构执行快速达到目标值的方法进行操作的。这种操作方法带来的后果是,依据循环流化床加负荷先加风、后加煤的操作原则,司炉在升炉和加负荷过程中,也是先加风后加煤,而在风量调整时又按先加一次风后加二次风的顺序进行。如此,当一次风量的增加是通过微机操作快速完成的(此时间只须几秒至十几秒),而且风量调整幅度达几万

立方米时的极端情况下,在此瞬间炉内工况可能发生根本性的改变,即当一次风量增加时二次风量、给煤量并未增加跟进,此时炉内一、二次风比例中一次风占绝对优势,炉内颗粒浓度份额(燃烧份额)随之发生根本性改变。大量原本停留在炉下部密相区内的颗粒,因一次风速随风量迅速加大而超过颗粒终端速度,被送入炉上部稀相区。床层颗粒浓度迅速下降,这使一次风速进一步加大(料层阻力在进一步减小),床层颗粒浓度进一步减小,除那些为数不多的终端速度大于一次风速大颗粒外,床层颗粒几乎全部离开密相区——床层物料消失。与此同时,稀相区也因瞬间浓度增加过快,稀相区燃烧份额迅速加大,使炉膛出口颗粒浓度和烟气温度迅速增加,如此时炉膛出口仍保持为负压则烟气速度也会增加。随着炉膛出口(即分离器进口)含尘气流的浓度、温度、速度的迅速增加,分离器分离效率也将迅速提高很多,被分离出来进入返料区域的返料量迅速加大,返料立管中灰柱对返料器形成的压力迅速加大。由于这种压力增加量远超过一次风增加量对返料风的影响,造成返料器堵塞。如正常运行时返料器烟温度接近1000℃,返料器被压死后就可能发生结焦。

一次风量或二次风量操作幅度过大、过快:在停炉或减负荷等变工况过程中,如一次风量或二次风量调整操作同样采用微机快速(几秒至十几秒)完成的方法,其幅度达到几万立方米时,将使炉内上下部物料颗粒浓度同样发生急剧变化。由于高倍率循环流化床锅炉炉内上下部物料颗粒浓度极高,二次风在锅炉运行过程中除加强对颗粒燃烧扰动、补氧提高燃烧效率外,还将炉膛划分为密相区和稀相区两个相对独立的燃烧区域,即起到进行炉内颗粒浓度分配的作用。在高倍率循环流化床锅炉运行中,炉膛内上部物料颗粒浓度极高,因而其重度(含内循环颗粒重度)也很大,往往是低倍率循环炉的2.5—3.0倍,故二次风还以其足够的刚度(其风速一般达60-100m/s)一定程度上起到支撑炉上部颗粒重度的作用。在此情况下,如锅炉停炉或减负荷等变工况操作中,减(或停)二次风量(机)时,也采用微机设定目标值快速完成操作,造成二次风量减小幅度过大、过快,二次风支撑炉膛上部物料支撑力瞬间减小很多(或消失),这样,大量终端速度超过一次风速的炉膛上部物料(含内循环物料)就会瞬间向床层集中,而次时即使一次风尚未减小,也难以承受整个炉膛物料重力瞬间对其产生的压力,床层由流化床变为固定床,床层被压死。不仅如此,即便在正常运行二次风量调整也会对床层高低产生一定影响,这在锅炉运行过程已得到了证明。而一次风量如减小时幅度和速度过大、过快,也会造成同样的后果。

返料器监视装置的完善:在条件允许情况下,可在立管下端分别设立一个测温和一个测压装置,运行人员利用该处测量数据并结合现有的返料器出口烟温测点数据,可对返料器运行情况有一个全面了解。同时,在返料器看火孔处设立平台,以便直观观察返料运行情况。这样,使返料器运行情况始终处在运行人员的监控之中。

3.2.2.返料风系统的完善:在条件允许的情况下,可在两个返料器的四个小风室的进风管上分别各设立一个风量测量装置,便于在进行返料风量调整时,运行人员可根据各小风室风量而不是单凭风压一个参数进行调整,真正确保返料器的运行稳定和安全。

返料器的结构设计的影响:该锅炉虽设计采用高倍率循环,有着浓度极大的物料循环,但锅炉厂在返料器的设计中对此并未予以充分关注,仍然采用传统的设计方法,将返料风室设计成矩形,而非布风性能优越的等压风室。在返料风和松动风量分配的结构设计时,也只不过是在布风板开孔率加以考虑,而返料风帽与松动风帽结构型式和风帽孔径却完全一样,并未在两种风帽结构设计上多想些办法。这些结构设计很难保证两个风室的风压在锅炉变工况即返料量大幅度变化时保持一致。同时,也未在返料立管下端(返料器进口)设置温度和压力测点,返料立管看火孔处也未设计观察平台,使运行人员无法从仪表和就地观察返料器内返料整体的运行情况,即使感到返料器运行不正常,进行返料风调整时很盲目。高倍率循环流化床锅炉中如此重要的返料器运行情况因结构设计不周而成为运行监视的盲区,锅炉运行工况特别是返料情况一旦大幅变化,运行人员无法根据实际情况作出快速判断和果断处理。这也是锅炉异常情况频发的又一重要影响因素。

返料风系统设计的影响:设计院在进行返料风系统流量测量装置设计时,只是在返料风

母管上设置了一个测量装置,正常运行时尚能保证监视需要。但因返料风量和松动风量无单独流量监视装置,当返料量发生大幅变化时,运行人员很难通过两个风室风量的调整保持左右两个返料器及同一返料器返料风室和松动风室的风量平衡。再加上返料器风室非等压设计,当返料大量增加时,松动风量急速下降风压急速上升。因返料器结构原因无法保持松动风室的压力恒定,大量风量向压力相对小些的返料风室流去,造成松动风量进一步减小,返料将返料器压死。反之,返料大量减少时,松动风因压头急速下降风量急速上升,将立管返料击穿,返料被吹散。这些因素加速了异常情况的发展。

如处理给煤机断煤时间过长,床层的稳定性被破坏,炉膛上下物料浓度分配发生改变,司炉此时若处置不当,异常情况亦随时可能发生。

返料器监视装置的完善:在条件允许情况下,可在立管下端分别设立一个测温和一个测压装置,运行人员利用该处测量数据并结合现有的返料器出口烟温测点数据,可对返料器运行情况有一个全面了解。同时,在返料器看火孔处设立平台,以便直观观察返料运行情况。这样,使返料器运行情况始终处在运行人员的监控之中。

返料风系统的完善:在条件允许的情况下,可在两个返料器的四个小风室的进风管上分别各设立一个风量测量装置,便于在进行返料风量调整时,运行人员可根据各小风室风量而不是单凭风压一个参数进行调整,真正确保返料器的运行稳定和安全。

2 返料器

返料器是循环流化床主要的组成部分之一。烟气携带的灰粒和正在燃烧的煤粒,通过炉膛进入分离器,在分离器内大部分固体颗粒被分离下来,经返料器又回到炉内,而烟气则通过分离器上部进入尾部受热面。一般循环流化床锅炉的循环倍率为5~20,十几倍于给煤量的返料灰需经过返料器返回燃烧室再次燃烧,同时循环倍率的大小也靠返料器来调节。因此返料器是关系到锅炉燃烧、过热汽温和负荷的重要部件。

返料器的安装要点:

(1) 保证返料器与料腿的相对尺寸。

(2) 返料器各个风帽小孔的孔径不同,相互只差0.5 mm。一般情况下孔径大的风帽安装在返料侧,孔径小的风帽安装在料腿侧。风帽小孔必须全部畅通,最下一层孔与返料器下平面保持10 mm的距离。不分清风帽类型安装的返料器,返料不畅。

(3) 返料器内部几何尺寸要严格控制,上部舌板的高度和前后距离、下部返料板的高度和角度、上下两板的重合高度等都是关键尺寸,上下两板的重合高度一般为40~50 mm。这几个关键尺寸有一个存在误差,便会导致返料不畅或不返料。

(4) 返料器砌筑材料为耐高温耐磨砖,材料选用为800~1 000℃温度区耐磨度最高的材料。材料不合格,返料器不能承受持续高温而发生故障,只能停炉处理。

风室漏风使其不能形成等压风室,布风不均匀,流化床存在局部死区。死区内燃料着火缓慢,一旦燃烧后热量又难以及时带走,形成局部热点,导致结焦。

旋风分离器漏风

旋风分离器内气流高速旋转,使飞灰及物料从烟气中分离出来。分离器漏风破坏了分离器内空气动力场,使分离器效率降低,旋风分离器出口飞灰浓度增大,尾部竖井磨损增大。消除分离器漏风的关键在于:

(1) 分离器外护板焊缝严密,炉墙砌筑砖缝不透风;

(2) 料腿观测窗密封严密。

解决结焦关,稳定运行周期。提高热电厂的经济效益,离不开锅炉的稳定连续运行。返料器结焦是流化床锅炉经常发生的问题,锅炉一旦出现结焦,轻则降负荷运行,重则停炉清理,少则一二天,多则一星期。

我厂流化床锅炉运行的初期,即从98年3月到9月份期间返料器结焦达高达8次之多,给我厂造成了极大的经济损失。

经过多次的观察、分析和研究,终于摸清了结焦的原因:一是返料风量不足,造成返料不畅;二是煤中的细粉末过多,在燃烧过程中,大量的细煤末未经燃烧进入返料器中,在返料器中二次燃烧,造成高温结焦;三是煤种变化太大,未能及时发现和调整。

针对这一状况,我们采取下列措施:

(1)加大返料风管的直径,增加返料风量,返料风管由原来Φ89mm更换成Φ133mm;同时将原设计150度的返料热风改造成自然冷风,降低了返料器内温度,解决了返料器结焦的根本问题。

(2)稳定入炉煤种,改变燃料的颗粒配比,严格按照设计煤种和粒度要求配煤,降低细煤颗粒所占的比例。保持较理想的粒度级配,使炉内有均匀的温度场。

上述改造完成投入运行后,再没出现因返料器结焦造成停炉的现象,从而保证了锅炉运行的稳定性。

旋风分离器的工作效率不是很高,返料灰量较少。由于采用的是高温旋风分离器,其进口尺寸和内部结构直接影着分离器的运行效率,经仔检查,发现其进口截面尺寸是930×2500mm,设计值是890×2400mm,进口截面的增大,使烟气流速降低,分离器效率降低,物料循环灰量大大减少,破坏了炉膛内的物料平衡,炉膛内的纵向温差达150℃,直接影响锅炉的出力。针对这种情况,我们采取了一些补救措施:一是增加了旋风分离器内中心筒的高度,在中心筒下方加宽为100mm的耐热钢板,提高了收尘效率;二是在中心筒内加8块扰流板,增加一个二级分离器,增大循环灰量。

循环流化床锅炉物料循环量的大小受燃烧粒度、燃烧成灰特性、燃烧室的风速、排灰系统的设置、分离器的分级分离效率、物料回送系统的性能、床料层厚度等诸多因素影响,同时也受回灰温度的制约。

高温热旋风筒分离器国内以济南锅炉厂为代表,国外以德国的Lurgi公司和芬兰的Ahlstrom公司为代表。其入口烟温在850℃左右,优点是技术成熟,锅炉燃烧效率高;缺点是体积庞大,密封和膨胀系统复杂、内衬厚、耐火材料及砌筑要求高、耐火材料用量大、费用高、启动时间长、运行中易出现故障。在燃用可燃性较强的煤种时,旋风筒内温度可能比炉膛温度更高,易引起旋风筒内超温而结焦等。这样就使得分离器内防磨材料磨损及启动热膨胀问题不易解决。

高温热旋风筒分离器前后膨胀节是长期运行的隐患,分离器内运行结焦不易控制。

高温热旋风筒分离器烟煤和无烟煤不能通用。烟气速度高、尾部烟道有磨损。

炉渣中硅铝比2SiO2/Al2O3偏大(>1.18%),易使煤灰熔化温度下降,导致结焦。

首次启动时,所采用的床料(河砂)颗粒偏粗,且K2O含量偏大(>3%),易引起结焦。

由于燃用的是当地小窑煤,挥发份低,热值低,固定碳高,且炉内局部出现过低温区域,易导致煤粉未完全燃烧现象的发生,烧结成焦块,这是引起第二次结焦的原因之一。

从测得的煤灰熔隔特性数据、运行参数及焦块性质分析可发现:除个别区域外,炉膛大部分区域的床温均小于灰渣变形温度DT和软化温度ST ,且焦块中嵌有未烧结的颗粒,因此,3号炉第二次结焦性质可归结为低温结焦[2],即只是由于局部超温并进行低温烧结而引发的。

瞬间给煤量增多,且烧得不完全,则易引起结焦。

对于不同类型的CFB炉对灰的要求即:灰量、灰的浓度梯度、灰的颗粒特性不是不同的,而对每台CFB炉,在各负荷下对灰的“要求”也有所不同。

灰平衡,简单地说就是炉内灰与锅炉负荷的平衡。(3)

灰平衡的概念包括三个含义:

灰量与锅炉的负荷的平衡;

灰的浓度梯度与负荷之间的平衡;

灰的颗粒特性与负荷的平衡。

上述三个含义,缺一不可。对于CFB炉,每一负荷工况下,均对应着一定的灰量,炉内灰量的减少和增加,必然影响炉内灰的浓度,从而影响物料的传热系数,即影响锅炉的负荷;如果仅仅灰量与负荷达到了平衡,但灰在炉内浓度的分布(梯度)不合理。如:大多聚集在炉内的下部或上部或某一处,而其它部位的灰量很小,也必然影响炉内温度场的均匀和热量的平衡。另外,既使上述两个条件满足,但灰的颗粒特性达不到设计要求(或者说锅炉本身的要求)也很难实现负荷的稳定调整。反过来说,在灰的颗粒与特性与负荷不平衡的条件下达到灰量和浓度的分布的平衡是很难的,有时是不可能的,如果仅仅用改变一、二次风比的方法来调整灰的浓度分布,必然影响炉内的动力特性。另外,不容忽视的是灰的颗粒大小对炉内传热系数也有一定的影响。

浅淡循环流化床锅炉返料装置的运行与调节

浅淡循环流化床锅炉返料装置的运行与调节 摘要:根据氯碱生产企业对热负荷调节的特点及要求,分析循环流化床锅炉返料系统的原理及在锅炉运行中的常见故障,并提出相应的解决方法。 关键词:氯碱循环流化床锅炉返料系统 一、氯碱生产企业对热负荷的要求 氯碱生产系统中,VCM转化及精馏、蒸发及固碱、供料回收、聚合、干燥、溴化锂机组等都需由锅炉房提供热负荷。由于氯碱生产系统较大,季节的不同及产能的变化,总的热负荷常常处于波动的状态,导致锅炉在运行过程中要经常调节,以适应整个氯碱生产系统对热负荷的需要。 根据我公司生产系统总热负荷的需要,配置3台40t/h循环流化床锅炉。主要参数如下表: 二、返料系统在循环流化床锅炉运行中的作用 1.返料在循环流化床锅炉运行中的作用 循环流化床锅炉与链条炉、煤粉炉、旋风炉等类型的锅炉不同,其主要特点是具有一套飞灰再燃烧系统,即循环燃烧系统。物料在循环流化床锅炉燃烧系统中正常循环是锅炉安全、可控运行的前提。返料装置正是其循环燃烧系统中的一个重要部件,对锅炉燃烧效率和运行调节起到关键作用,其工作的可靠性对循环流化床锅炉的正常运行至关重要。 1.1利用返料系统,使从锅炉炉膛出去的未燃尽的和大粒径高温物料被旋风分离器收集并通过料腿和返料装置稳定地送回压力较高的炉膛内,并且确保炉内高压侧的气体尽量少的反窜入旋风分离器内。 1.2当正常燃烧时返料异常或者不返料,就会造成床温不稳定,负荷不稳定,料层差压波动大,甚至会造成灭火和结焦事故。 1.3未完全反应的脱硫剂伴随灰和少量未燃烬燃料颗粒被旋风分离器收集,在返料器的作用下重新回到炉膛,提高脱硫剂的利用率。 2.返料装置 该循环流化床锅炉采用U型返料装置,由料腿、隔板、挡板、风帽、风室、回料管等组成。高温绝热旋风分离器分离下来的高温物料,在重力作用下循环物料在料腿内堆积成一定高的柱体,和返料装置溢流口形成高度差,因重力而产生的压差克服了料腿上部与燃烧室的气压差和返料装置的阻力,这样物料返回炉膛

循环流化床燃烧技术旋风分离器

循环流化床燃烧技术 一、概念 循环流化床(CFB)燃烧技术是一项近二十年发展起来的清洁煤燃烧技术。它具有燃料适应性广、燃烧效率高、氮氧化物排放低、低成本石灰石炉内脱硫、负荷调节比大和负荷调节快等突出优点。 自循环流化床燃烧技术出现以来,循环床锅炉在世界范围内得到广泛的应用,大容量的循环床锅炉已被发电行业所接受。 循环流化床低成本实现了严格的污染排放指标,同时燃用劣质燃料,在负荷适应性和灰渣综合利用等方面具有综合优势,为煤粉炉的节能环保改造提供了一条有效的途径。 二、循环流化床燃烧技术发展历史回顾 主循环回路是循环流化床锅炉的关键,其主要作用是将大量的高温固体物料从气流中分离出来,送回燃烧室,以维持燃烧室稳定的流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应,以提高燃烧效率和脱硫效率。 分离器是主循环回路的关键部件,其作用是完成含尘气流的气固分离,并把收集下来的物料回送至炉膛,实现灰平衡及热平衡,保证炉内燃烧的稳定与高效。从某种意义上讲,CFB锅炉的性能取决于分离器的性能,所以循环床技术的分离器研制经历了三代发展,而分离器设计上的差异标志了CFB燃烧技术的发展历程。 ●(一)绝热旋风筒分离器 德国Lurgi公司较早地开发出了采用保温、耐火及防磨材料砌装成筒身的高温绝热式旋风分离器的CFB锅炉[1]。分离器入口烟温在850℃左右。应用绝热旋风筒作为分离器的循环流化床锅炉称为第一代循环流化床锅炉,目前已经商业化。Lurgi公司、Ahlstrom公司、以及由其技术转移的Stein、ABB-CE、AEE、EVT等设计制造的循环流化床锅炉均采用了此种形式。 这种分离器具有相当好的分离性能,使用这种分离器的循环流化床锅炉具有较高的性能。但这种分离器也存在一些问题,主要是旋风筒体积庞大,因而钢耗较高,锅炉造价高,占地较大,旋风筒内衬厚、耐火材料及砌筑要求高、用量大、费用高启动时间长、运行中易出现故障;密封和膨胀系统复杂;尤其是

旋风分离器计算

作成 作成::时间时间::2009.5.14 一、問題提出 PHLIPS FC9262/01 這款吸塵器不是旋風除塵式的,現在要用這款吸塵器測參數選擇旋風分離裝置。二、計算過程 1.選擇工作狀況選擇工作狀況:: 根據空氣曲線選擇吸入效率最高點的真空度和流量作為旋風分離器的工作狀態。 吸塵器旋風分離器選擇 Bryan_Wang

已知最大真空度h和最大流量Q,則H-Q曲線的兩個軸截距已知,可確H-Q直線的方程。 再在這個直線上求得吸入功率H*Q最高點(求導數得)。求解過程不再詳述。求得最大吸入功率時真空度H=16.5kPa;流量Q=18.5L/s;吸入功率P2=305.25w 現將真空度及流量按照吸入功率計算值與實際值的比例放大,得真空度H=18.3kPa;流量Q=20.5L/s;2.選擇旋風分離器 為使旋風分離裝置體積最小,選擇允許的最小旋風分離器尺寸。一般旋風分離器筒體直徑不小于50mm,故選擇筒體直徑為50mm。按照標準旋風分離器的尺寸比例,確定旋風除塵器的結構尺寸。 D0=50mm b=12.5mm a=25mm de=25mm h0=20mm h=75mm H-h=100mm D2=12.5mm 計算α約為11度 發現計算得到的吸入功率最大值與產品標稱值375W相差一些,可能是由于測量誤差存在以及壓力損失的原因。

一般要求旋風分離器進氣速度不超過25m/s,這里取旋風分離器進氣速度為22m/s. 計算入口面積為S=3.125e-4平方米。 則單個旋風除塵器流量為Q=6.9e-3平方米/秒則所需旋風除塵器個數為3個計算分級效率 根據GB/T 20291-2006吸塵器標準,這里使用標準礦物灰塵,為大理石沙。进气粒径分布 103058 10019037575015002010 10102016113 顆粒密度ρp=2700kg/m3 進口含塵濃度取為10g/Nm3,大致選取空氣粘度μ=1.8e-6Pa*s 按照以下公式計算顆粒分級效率: 平均粒徑(μm)比重(%)

浅淡循环流化床锅炉返料装置的运行与调节

浅淡循环流化床锅炉返料装置的运行与调节 浅淡循环流化床锅炉返料装置的运行与调节 摘要:根据氯碱生产企业对热负荷调节的特点及要求,分析循环流化床锅炉返料系统的原理及在锅炉运行中的常见故障,并提出相应的解决方法。 关键词:氯碱循环流化床锅炉返料系统 一、氯碱生产企业对热负荷的要求 氯碱生产系统中,VCM转化及精馏、蒸发及固碱、供料回收、聚合、干燥、溴化锂机组等都需由锅炉房提供热负荷。由于氯碱生产系统较大,季节的不同及产能的变化,总的热负荷常常处于波动的状态,导致锅炉在运行过程中要经常调节,以适应整个氯碱生产系统对热负荷的需要。 根据我公司生产系统总热负荷的需要,配置3台40t/h循环流化床锅炉。主要参数如下表: 二、返料系统在循环流化床锅炉运行中的作用 1.返料在循环流化床锅炉运行中的作用 循环流化床锅炉与链条炉、煤粉炉、旋风炉等类型的锅炉不同,其主要特点是具有一套飞灰再燃烧系统,即循环燃烧系统。物料在循环流化床锅炉燃烧系统中正常循环是锅炉安全、可控运行的前提。返料装置正是其循环燃烧系统中的一个重要部件,对锅炉燃烧效率和运行调节起到关键作用,其工作的可靠性对循环流化床锅炉的正常运行至关重要。 1.1利用返料系统,使从锅炉炉膛出去的未燃尽的和大粒径高温物料被旋风分离器收集并通过料腿和返料装置稳定地送回压力较高 的炉膛内,并且确保炉内高压侧的气体尽量少的反窜入旋风分离器内。 1.2当正常燃烧时返料异常或者不返料,就会造成床温不稳定,负荷不稳定,料层差压波动大,甚至会造成灭火和结焦事故。 1.3未完全反应的脱硫剂伴随灰和少量未燃烬燃料颗粒被旋风分

离器收集,在返料器的作用下重新回到炉膛,提高脱硫剂的利用率。 2.返料装置 该循环流化床锅炉采用U型返料装置,由料腿、隔板、挡板、风帽、风室、回料管等组成。高温绝热旋风分离器分离下来的高温物料,在重力作用下循环物料在料腿内堆积成一定高的柱体,和返料装置溢流口形成高度差,因重力而产生的压差克服了料腿上部与燃烧室的气压差和返料装置的阻力,这样物料返回炉膛就有了动力源。物料落到U型返料器底部的小流化床上,然后在小风室流化风的作用下使其流化并溢流出返料器,再经回料管返回炉膛,重新参与循环燃烧。 高压的返料流化风使返料装置底部的细颗粒物料强化流动,从而避免了沉积或高温粘结。循环物料充满返料装置并在入口堆出有一定高度的流动料封,这样可以阻止燃烧室内的烟气窜入旋风分离器。 3.返料的调节 锅炉正常运行时,返料温度通常保持在850℃~950℃之间,根据煤种的含灰量不同,最低返料风量随含灰量的增加而增加,一般低于冷态最低流化风量,返料风量的大小靠调节阀来控制。根据炉膛压差的情况和生产系统对热负荷的要求及时调整返料风,使小流化床流化良好。 当燃用的燃料灰分比较高时,或者锅炉负荷较高时,灰量增大,炉膛压差增大,此时应加大返料风,甚至放掉部分循环物料,保持小流化床流化良好。当燃用无烟煤时,循环物料的可燃物增大,此时应减小返料风,避免循环物料因氧量过足而发生后燃结焦。 当投入返料风时,要观察炉膛内流化床温度的变化,如温度下降的很快时,则要立即关小返料风的调节阀门,并保持小流化床仍处于微流化状态,防止热灰结块影响小流化床的正常流化。同时,增加给煤量,等炉膛内流化床温度上升到正常以后,再加大返料风,如此反复,直到炉膛温度保持稳定。 当循环物料量增大时,料腿内料位升高造成压差增大,溢出物料量增多;反之则溢出物料量减少。循环灰量的多少也直接与风量和风压有关。因此根据负荷及时的调整返料量是循环流化床锅炉安全稳定运行的关键。

循环流化床锅炉旋风分离器改造

循环流化床锅炉旋风分离器改造 俞信福 (宁波热电股份有限公司,浙江宁波 315800) [摘要]通过对我公司6#炉主蒸汽流量长期达不到额定出力的分析,首先从运行的角度入手,查阅相关资料分析入口烟速、飞灰浓度和粒 径、烟气温度等因素对分离器的影响不致于使其阻力严重偏低;然后从结构上对照设计图纸,实地观察为分离器短路造成其压差偏少,因此有针对性地对旋风分离器进行了改造,取得了较好的效果,为以后类似问题的解决提供了一定的思路。[关键词]循环流化床锅炉;旋风分离器;中心筒;短路 分离器是循环流化床锅炉的主要部件之一,它的分离性能对整个锅炉设计与稳定运行起着至关重要的作用。旋风分离器是目前循环流化床锅炉中应用最为广泛的一种分离装置,其结构简单,且分离效率较高,问题主要是体积较大。 1设备介绍 我公司6#炉为次高压循环流化床锅炉,由杭州锅炉集团有限公司制造生产的,型号为:NG-130/5.3-M7,在炉膛与尾部烟道之间布置有两台蜗壳式旋风分离器。旋风分离器的上半部分为蜗壳式入口,下半部分为锥形。烟气出口为圆筒形,由防磨耐热铸件拼接而成。颗粒和烟气先旋转下流至圆柱体的底部,粗颗粒将被分离,洁净烟气向上流动,离开旋风分离器。粗颗粒进入回料器。 旋风分离器为膜式包墙过热器结构,其顶部与底部均与环形集箱相连,墙壁管子在顶部向内弯曲,使得在旋风分离器管子和烟气出口圆筒之间形成密封结构。旋风分离器中心筒由5排筒板构成,每排筒板由24块ZG8Cr26Ni4Mn3Nre 组成,筒体进口内径Φ1470mm ,出口内径1662mm ,中心筒伸出长度1545mm ,并要求满焊,中心筒上部与耐磨浇注料相接并采用密封套结构,密封套用不锈钢丝网将硅酸铝棉板裹住,并用不锈钢丝将其缝牢,不锈钢丝和不锈钢丝网材料均为1Cr18Ni9Ti ,在密封套与耐磨浇注料之间用硅酸铝棉板塞实,以防气流短路。 2问题的提出及分析 我公司6#炉2005年1月投入运行以来,流量只能达到110t/h ,再带高就出现主蒸汽超温,减温水每只6t/h 全开主蒸汽温度还在455℃以上。从运行的角度对影响旋风分离器分离效率的因素进行分析,由于主蒸汽超温,首先想到温度对旋风分离器分离效率的影响,通过查阅资料,烟气温度影响着烟气的粘度,随着温度的升高,烟气的粘度随之增加,因而作用在运动颗粒的粘性阻力也会增加,从而使其分离效率下降。但是烟气的密度随着温度的增加而减少,从而使粘性阻力减少,因此烟气的温度对旋风分离器分离效率的作用并不明显。 旋风分离器进口烟速对其分离效率的影响,分离器的效率随着进口烟速的增大而增大,虽然当进口烟速过高时,由于紊流增加和尘粒反弹等因素使分离器的效率有所下降,按运行锅炉炉膛出口的压力和高温过热器进口压力比较,进口烟速不可能过高。最后是灰粒,灰粒的许多物理化学性能都对旋风分离器性能有影响,其中飞灰的浓度和粒径影响较大,分离效率随着飞灰的浓度的增加而增大,同时也随着飞灰的粒径增加而增大,而运行中5#炉和6#炉在用同一种煤时颗粒也一样,既使燃用不同的煤种锅炉负荷还是不会上来。从结构上分析旋风分离器为锅炉厂整体制造提供,与其进口烟道接口的支吊架位置材料都由锅炉厂提供,现场只是整体拼装,不可能出现大的偏差。从运行的参数比较分析,主要为分离器阻力偏低,主蒸汽超温,锅炉流量带不上。运行时分析是否为旋风分离器保温有问题,但保温问题也不应该影响分离器的效率,也考虑筒板少装,但4#炉的中心筒只有4排比三期少一排,也未出现炉膛灰浓度提不上,锅炉流量带不上情况。因此问题还是出在旋风分离器本身,5月下旬6#炉停炉时,经检查旋风分离器保温完好,从旋风分离器出口烟道处检查发现中心筒上部筒板开裂严重,大的裂缝有20mm ,长度大的为300mm 以上(一块筒板的有效高度为525mm ),中心筒上部耐磨浇注料与密封套之间的硅酸铝棉板已大部分 被短路的烟气拉走,因此在中心筒上部第二块筒板处均匀地割了4块,高度为300mm ,塞入用不锈钢丝网将硅酸铝棉板裹住缝牢的密封套,并在密封套与耐磨浇注料之间通过4个孔用硅酸铝棉板塞实,再用原筒板把4个孔补回,用专用焊条( 奥407铬26镍21不锈钢焊条)焊接,较大的缝采取耐热钢筋衬,并且满焊。投入运行的初期,主蒸汽流量曾到过120t/h ,以后一直在100t/h 以内。经过分析可能为焊缝为表面成形,且从4个孔塞棉的难度较大,中心筒出现裂缝后把部分硅酸铝棉板拉走,重新形成短路。8月份6#炉停炉后,与有关技术老师傅探讨后,对旋风分离器中心筒与分离器的密封进行了改造,见图1。 图1分离器中心改造图 保温层与分离器中心筒之间用硅酸铝棉板塞实后,用4mm 的SUS309密封,密封板外径Φ1770mm 内径Φ1610mm 的圆环分成若干段安装,每隔100mm 加一块4mm 的SUS309尺寸为40mm ×80mm 的筋板,并要求满焊,对旋风分离器中心筒出现的裂缝再次进行满焊,焊条仍为奥407铬26镍21不锈钢焊条。 3分离器改造前后运行参数比较 旋风分离器改造前主蒸汽流量长期不超过100t/h ,炉膛顶部P16/P19差压不超过1kPa (一般在0.75kPa 左右),(下转第144页)

简述旋风分离器性能的优化

简述旋风分离器性能的优 化 摘要:综合了国内众多优秀论文的观点,从旋风分离器的结构设计、故障排除等角度讲述了提高旋风分离器工作效率,减少压降、阻力(延长使用寿命)的优化措施。阐述了工艺优化后旋风分离器性能上的改善,为进一步扩展其应用领域提供了必要的依据。 关键词:旋风分离器:分离效率;压降;使用寿命;性能优化 0 引言 旋风分离器作为一种重要的除尘设备,在石油化工、燃煤发电等许多行业都得到广泛应用。但是,由于其除尘效率一般多在90%左右,同时对粉尘粒径较小的粉尘除去效果一般,故对于除尘要求较高的生产场合,它一般只作为多级除尘中的一级除尘使用。这就使得旋风除尘器的使用条件受到了很大的限制。本文综合了国内众多优秀论文的观点,从旋风分离器的结构设计、故障排除等角度论述其性能优化的方法措施,使旋风分离器能适用于更广阔的应用领域。 1 旋风分离器结构设计对其性能优化的影响 1.1 旋风分离器与多孔材料的组合 人们为提高旋风分离器的效率,做了许多努力:将金属多孔材料安置于旋风分离器中,组合成的旋风—过滤复合式除尘器就是其中之一。这种结构设计在锥筒底部加了一段直管,机器到了增加分离的目的,又起到减缓旋流的目的,以避免二次扬尘的产生。 为此,实验人员做了相关的测定实验,选取了铁合金冶炼粉尘等4种直径大小从0.05μm~10μm的不等的颗粒(基本上涵盖了所有常见粉尘的粒径范围),让实验更具有广泛的实用性,分离效率可大幅提高至近100%。实验结束后,用氮气反吹滤管后,得到的结果非常理想,可进行再次实验,即实验的再生效果好。 1.2 改变入口切入角及外筒直径对旋风分离器性能的影响

影响旋风分离器性能的因素有很多,可以从改变其入口切入角和外筒直径这两个方面考虑工艺的优化。根据模拟结果显示,r=6000mm、θ=7.5°构造的旋风分离器效率接近95%,分离效果较好。现实验人员研究的就是在此基础上的设计优化。 首先,把入口切入角θ改为θ=9°及θ=6°两组,发现θ=9°比θ=6°入口速度高,但速度衰减慢,速度场分布均匀,速度偏差小,减少了对颗粒的二次卷吸,在外筒壁面处速度高,分离效率提高了。 其次,实验人员将外筒直径由6000mm变更为5600mm、5800mm、6200mm、6400mm,发现当直径增大,离心力作用小,分离效率降低;直径减少后,分离效果好,但由于在下部形成内旋涡卷吸了一些下沉颗粒,分离效果下降。故可利用此外筒直径与分离效率的变化关系,寻找最合适的外筒直径大小,以达到最佳的分离效率。 1.3加装循环管和防液罩对旋风分离器性能的影响 对旋风分离器加装循环管前后进行实验对比分析可知,加装循环管的旋风分离器压降小于不带循环管的分离器,这就是说,带循环管的旋风分离器在入口摩擦损失、器内气流旋转的动能损失等方面均要小于不带循环管的分离器。 防液罩的存在对分离器压降影响不大,但带防液罩的分离器在不同高度剖面上的切向速度明显大于不带防液罩的分离器,那么他的分离效率就会相应提高。因此,防液罩可以在不增加压降损失的同时,进一步提高切向速度,从而提高气、液相的分离效率。 1.4新设计样式的旋风分离器与旋风分离器性能的影响 已有许多研究人员着手于新型旋风分离器的设计与研究,新型双蜗壳旋风分离器就是新设计出的一种新型旋风分离器。他的上行流区的静压变化为顺压梯度,有利于气体的顺利排出,减少旋风分离器的压力损失。 另外,循环式旋风分离器也有着提高分离效率,降低系统能耗的作用。 2 排除故障以优化旋风分离器的效率 2.1 消除三旋单管堵塞 笔者以比较常见的三级旋风分离器为例,简述通过工艺手段,消除由于

循环流化床锅炉旋风分离器返料器设计运行

循环流化床锅炉旋风分离器返料器设计运行 作者:华升加油枪加油机日期:2010-9-10 22:58:2 字体大小: 小中大 永嘉县华升阀门厂:滑过渡造成旋风分离器内壁不光滑,施工后应采取措施保证内壁光滑,在直段和锥段结合处也要保证光滑过渡。1.2.2保证返料器和旋风分离器之间密封良好如果密封不严,则会破坏炉膛、旋风分离器及返料器之间的压力平衡,造成返料间断或不返料,导致旋风分离器因堵灰而结焦。施工过程中,在保证整个锅炉密封的同时,要更加注意旋风分离器和返料器之间的密封。不要在旋风分离器上随意开一些检修孔和观察孔,开孔过多会影响旋风分离器的性能,也会导致旋风分离器因密封不严而漏风。1.2.3保证返料器各处尺寸在施工过程中,要保证返料器各处的尺寸,特别要注意返料器尺寸中的A、B两个尺寸(见图1),以防偏大或偏小。由于各地的煤质不同,其颗粒度的大小也不同,特别是低位发热量较低且小颗粒所占比例较大的无烟煤,运行时循环灰量比较大。锅炉运行一定时间后,尺寸A因磨损而不断减小,要经常检查耐火砖的损坏情况,避免尺寸A的数值为零或负值。这样将会导致呈正压的炉膛密相区热烟气反窜进入旋风分离器内,破坏旋风分离器的工作条件,使返料被迫中止。在安装时,尺寸B过小会使返料阻力增大,过大则会影响返料器位置的物料充满度,均不利于返料,应严格按图纸施工。图1U型返料器1.2.4采用冷却套管结构,控制返料器的温度当今国内已经研制出包敷整个旋风分离器的鳍片式及单管式旋风分离器,分为水冷与汽冷两种型式。由于水冷式旋风分离器在边壁处对热灰的温降较大,不利于煤的燃尽,使飞灰含碳量较高,目前多采用绝热分离器与汽冷分离器。在绝热分离器的料腿位置加设水冷套,以防止此位置因温度过高而结焦。加设水冷套装置的绝热分离器,运行十分稳定,飞灰含碳量较低。汽冷分离器的使用不但缩短了锅炉启动时间,还保持分离器内壁处于较高温度,且能有效地防止结焦的发生,倍受用户的青睐。1.2.5采取合适的风管结构风量和风压是返料器正常运行的基础,风量和风压只有同时达到要求,才能使返料器正常工作,任何一项达不到,返料器都不能正常工作。随着循环流化床锅炉的发展,返料器位置当前的送风方式大致分为集中送风和分配送风两种。集中送风大多应用于75t/h以下锅炉中,返料量少,返料器位置的流化风与返料风共用一个风箱(见图2),两者的风量分配通过彼此的风帽开孔率来达到,风箱接于一次风入口(或出口)处,风箱前的阀门保持一定开度就能达到运行需要。分配送风大多应用于130t/h以上锅炉中,返料量大,返料器位置的流化风与返料风各有一个风箱,通过支管接于返料专用风机母管上,在支管上设置调节阀。母管上设置流量计(见图3),从而较好地分配风量和控制总风量,达到控制返料量和返料温度的目的。如果返料风量达到最大但仍达不到运行要求,说明返料风压衰降过多,多为返料风管的沿程阻力过大所致,可通过增粗返料风管的途径来达到提高返料风压的目的。图2U型返料器1一返料器;2一风室;3一调节阀;4一风管;5~放渣管图3U型返料器1一返料器;2一返料风室;3一流化风室;4一调节阀;5一流

旋风分离器工作原理

旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm 的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点

旋风分离器故障汇总

J阀(旋风分离器)故障(此故障主要出现在国产化的CFB锅炉)。 J阀(旋风分离器)故障主要现象 J阀入口静压波动大导致J阀回料不连续,床压、床温出现大幅度的波动,严重时破坏外循环,使尾部受热面积灰严重,造成尾部烟道再燃烧,损坏空预器。 J阀(旋风分离器)故障主要原因 1)旋风分离器回料不正常。旋风分离器因灰位较高而影响了分离器的分离效果,从而使一定量未分离灰进入烟道造成空预器积灰严重,引起J阀入口静压波动。 2)过高的循环倍率造成J阀循环灰量过大,超出J阀流通能力。 3)燃烧工况的突然改变破坏了J阀的循环。 4)流化风配比不恰当,J阀回料未完全流化。 J阀(旋风分离器)故障采取措施 1)发现回料不正常时,及时对旋风分离器的风量进行调整,必要时降低锅炉负荷;尾部烟道积灰严重时,加强对其吹灰(注意控制炉膛负压),必要时采用从事故放灰口放灰。 2)适当降低冷渣器用风,适当提高二次风量的比例,降低燃烧风量,保证炉内的燃料和床料在炉内有足够的停留时间,即增加内循环的时间和数量,降低旋风分离器的物料比例。 3)在燃烧工况突然改变导致循环被破坏时,应及时调整锅炉运行参数建立新的平衡。 4)加强对J阀风量配比的经验总结,寻找J阀各部分最优化参数,选择合适流化风量和松动风,建议在风量调定且回料正常时,不宜对该风量做随意变更。 料层差压不能控制的过于低。当料层过于薄时,一次风量也比较大的时候,一次风所形成的向上托力大大的大于了料层的重力(也就是对一次风的阻力),那么炉内物料将被气流带走,形成了气力输送,就象仓泵输灰一样,那么此时锅炉运行是非常危险的,大量的一次风都从炉膛内吹走了(料层对一次风阻力大大的减小了)。返料风所需的一次风大量减少,炉膛上部灰浓度大量增加,分离器收集的返料灰增加,返料器所返的灰增加、返料风却减小,将直接引起返料器堵灰,停止返料并有可能返料器内部结焦。煤粒加入炉膛后,由于一次风气力输送作用被吹到炉膛出口,由旋风分离器收集而进入返料器中,进行燃烧,引起返料器内部高温结焦。在通过冷渣机控制料层时,应尽量保持平稳增减,避免料层的过薄过厚,都将不利于锅炉的经济、安全运行。 旋风分离器不改变结构,提高收集效率,只能依靠入口烟速提高和烟气含灰量提高。旋风分离器提高了收集效率,可以捕捉到更多的细灰进入返料器,由返料器返入炉内平仰床温。 该炉的分离器是采用高温绝热旋风分离器,左右侧各一只。旋风分离器的收集效率直接影响着收集的返料灰的多少,影响着锅炉经济运行。旋风分离器可以满足锅炉的运行,但我们也认为二只分离器效率不一样,由于床温热电偶已不准确,我们已无法分辨出那一侧的温度高和低,但二只分离器中心筒出口温度,也就是高温过热器前烟温始终存在差异,左侧高过前烟温高于右侧高过前烟温50℃左右,左侧低过前烟温高于右侧低过前烟温20℃左右,左侧省煤器前烟温高于右侧省煤器前烟温十几度,直到排烟温度左右差不多,烟道内左侧烟温普通高于右侧烟温,为什么?这个问题我们时常在思考,有个不成熟的想法:认为左侧分离器效率低于右侧分离器效率,左侧旋风分离器分离不彻底,使得一些高温细灰排至烟道内,至使左侧烟温高。 该U型自平衡返料器,我有个疑问,两侧的返料风室总是相差0. 7 kpa ~0.8 kpa左

循环流化床锅炉返料系统的控制和调整

循环流化床锅炉返料系统的控制和调整 循环流化床锅炉是一种高校低污染的节能产品,其燃烧方式属于低温燃烧,设有高效率的分离装置,被分离下来的颗粒经过返料器又被送回炉膛,使锅炉炉膛内有足够高的灰浓度,大大提高了炉膛的传导热系数,确保锅炉达到额定出力。返料系统的控制和调整主要包括返料温度的控制和返料量的调整两个方面。 一、返料温度 返料温度是指通过返料器送回到燃烧室中的循环灰的温度,它可以起到调节料层温度的作用。对于汽冷式旋风分离器的循环流化床锅炉,其返料温度一般控制在与出料层温度相差20-30℃,可以保证锅炉稳定燃烧,同时起到调整燃烧的作用。在锅炉运行中必须密切监视返料温度,温度过高有可能造成返料器内结焦,特别是在燃用较难燃的无烟煤时,因为存在燃烧后燃的情况,温度控制不好极易发生结焦,运行时应控制返料温度最高不能超过1000℃.返料温度可以通过调整给煤量和返料风量来调节。 二、返料量 控制返料量是循环流化床锅炉运行操作时不同于常规锅炉之处,返料量对循环流化床锅炉的燃烧起着举足轻重的作用,因为在炉膛里,返料灰实质上是一种热载体,它将燃烧室里的热量带到炉膛上部,使炉膛内的温度场分布均匀,并通过多种传热方式与水冷壁进行换热,因此有较高的传热系数,通过调整返料量可以控制料层温度和炉膛差压并进一步调节锅炉负荷。另一方面,返料量的多少与锅炉分离装置的分离效果有着直接的关系. 返料系统作为循环流化床锅炉重要组成部分,该系统运行是否正常是锅炉能否正常带负荷的关键: 1.一二次风的配比 一次风比例大,导致密相区燃烧份额较高,此时就要求较多的温度低的循环灰返回密相区,带走燃烧所释放的热量,以维持密相区温度。如循环灰量不够,就会导致流化床温度过高,无法增加煤量,进而导致锅炉床温偏高。 2.煤的颗粒度大小 其影响主要表现在对密相床燃烧份额和物料平衡的影响上。燃料细颗粒多,密相床燃烧份额小,会有足够细颗粒吹入悬浮段,再次燃烧,传出热量,而且

旋风分离器设计

旋风分离器设计中应该注意的问题 旋风分离器被广泛的使用已经有一百多年的历史。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分。但人们还是对旋风分离器有一些误解。主要是认为它效率不高。还有一个误解就是认为所有的旋风分离器造出来都是一样的,那就是把一个直筒和一个锥筒组合起来,它就可以工作。旋风分离器经常被当作粗分离器使用,比如被当做造价更高的布袋除尘器和湿式除尘器之前的预分离器。 事实上,需要对旋风分离器进行详细的计算和科学的设计,让它符合各种工艺条件的要求,从而获得最优的分离效率。例如,当在设定的使用范围内,一个精心设计的旋风分离器可以达到超过99.9%的分离效率。和布袋除尘器和湿式除尘器相比,旋风分离器有明显的优点。比如,爆炸和着火始终威胁着布袋除尘器的使用,但旋风分离器要安全的多。旋风分离器可以在1093 摄氏度和500 ATM的工艺条件下使用。另外旋风分离器的维护费用很低,它没有布袋需要更换,也不会因为喷水而造成被收集粉尘的二次处理。 在实践中,旋风分离器可以在产品回收和污染控制上被高效地使用,甚至做为污染控制的终端除尘器。 在对旋风分离器进行计算和设计时,必须考虑到尘粒受到的各种力的相互作用。基于这些作用,人们归纳总结出了很多公式指导旋风分离器的设计。通常,这些公式对具有一致的空气动力学形状的大粒径尘粒应用的很好。在最近的二十年中,高效的旋风分离器技术有了很大的发展。这种技术可以对粒径小到5微米,比重小于1.0的粒子达到超过99%的分离效率。这种高效旋风分离器的设计和使用很大程度上是由被处

理气体和尘粒的特性以及旋风分离器的形状决定的。同时,对进入和离开旋风分离器的管道和粉尘排放系统都必须进行正确的设计。工艺过程中气体和尘粒的特性的变化也必须在收集过程中被考虑。当然,使用过程中的维护也是不能忽略的。 1、进入旋风分离器的气体 必须确保用于计算和设计的气体特性是从进入旋风分离器的气体中测量得到的,这包括它的密度,粘度,温度,压力,腐蚀性,和实际的气体流量。我们知道气体的这些特性会随着工艺压力,地理位置,湿度,和温度的变化而变化。 2、进入旋风分离器的尘粒 和气体特性一样,我们也必须确保尘粒的特性参数就是从进入旋风分离器的尘粒中测量获得的。很多时候,在想用高效旋风分离器更换低效旋风分离器时,人们习惯测量排放气流中的尘粒或已收集的尘粒。这种做法值得商榷,有时候是不对的。 获得正确的尘粒信息的过程应该是这样的。首先从进入旋风分离器的气流中获得尘粒样品,送到专业实验室决定它的空气动力学粒径分布。有了这个粒径分布就可以计算旋风分离器总的分离效率。 实际生产中,进入旋风分离器的尘粒不是单一品种。不同种类的尘粒比重和物理粒径分布都不相同。但空气动力学粒径分布实验有机地将它们统一到空气动力学粒径分布中。 3、另外影响旋风分离器的设计的因素包括场地限制和允许的压降。例如,效率和场地限制可能会决定是否选用并联旋风分离器,或是否需要加大压降,或两者同时采用。 4、旋风分离器的形状 旋风分离器的形状是影响分离效率的重要因素。例如,如果入口

旋风分离器

旋风分离器 旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质 和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度 旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。 压力降 正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。 设计使用寿命 旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。 设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点 旋风除尘器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较高(80~160毫米水柱)的净化设备,

循环流化床锅炉旋风分离器的最新发展与高效运行 刘佳斌资料

循环流化床锅炉旋风分离器的最新发展与高效运行 刘佳斌 (山东大学能源与动力工程学院济南250010) 摘要:循环流化床的分离机构是循环流化床的关键部件之一,其主要作用是将大量高温固体物料从气流中分离出来,送回燃烧室,以维持燃烧室的快速流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应。这样,才有可能达到理想的燃烧效率和脱硫效率。 关键词: 旋风分离器、循环流化床锅炉、循环效率、发展。 图1 75t/h循环流化床锅炉简图 1.循环流化床旋风分离器的工作原理 如图2、3为普遍采用的高温旋风分离器结构。此类分离器的体积庞大,占地面积与炉膛基本相当,它是利用旋转的含尘气体所产生的离心力,将颗粒从气流中分离出的一种干式气固分离装置。含灰烟气在炉膛出口处分进入旋风分离器,旋风分离器的圆形筒体和气体的切向入口使气固混合物进入围绕旋风分离器的2个同心涡流,外部涡流向下,内部涡流向上。由于固体密度比烟气密度大,在离心力作用下固体离开外部涡流移向壁面, 再沿旋风分离器的循环流化床的分离机构是循环流化床的关键部件 之一,其主要作用是将大量高温固体物料从气流中分 离出来,送回燃烧室,以维持燃烧室的快速流态化状态, 保证燃料和脱硫剂多次循环、反复燃烧和反应。这样, 才有可能达到理想的燃烧效率和脱硫效率。因此,循环 流化床分离机构的性能优劣,将直接影响整个循环流 化床锅炉的出力、效率及运行寿命。 随着循环流化床锅炉大型化的发展,对分离器提出 了更高的要求,它不但要能处理大容量的烟气,还要求 能在恶劣的环境中可靠、稳定运行。多年的商业运行 经验表明,高温旋风分离器目前仍是最适合(大型)循 环流化床锅炉的分离器之一。 图 3 高温旋风分离

循环流化床锅炉返料器异常原因研究

循环流化床锅炉返料器异常原因研究 发表时间:2018-11-13T19:08:23.760Z 来源:《电力设备》2018年第20期作者:杨博闻田平张少勇罗昌福李鹏辉[导读] 摘要:某电厂循环流化床锅炉返料器流化异常引起锅炉结焦,机组被迫停机,经现场检查分析,锅炉结焦原因为返料异常后主床料减少给煤偏多形成的局部高温现象,返料异常原因为分离器、返料器局部修补的耐火砖或浇注料脱落,现场发现返料器内也出现结焦现象,经分析原因为分离器分离效率不一致,料位高的一侧流化风量低、返料中断造成的。 (华电电力科学研究院有限公司陕西西安 710055) 摘要:某电厂循环流化床锅炉返料器流化异常引起锅炉结焦,机组被迫停机,经现场检查分析,锅炉结焦原因为返料异常后主床料减少给煤偏多形成的局部高温现象,返料异常原因为分离器、返料器局部修补的耐火砖或浇注料脱落,现场发现返料器内也出现结焦现象,经分析原因为分离器分离效率不一致,料位高的一侧流化风量低、返料中断造成的。针对原因提出了意见和防范措施。关键词:流化床锅炉;返料器;流化异常;原因分析 0前言 近年来由于流化床锅炉经常出现因返料器异常造成机组被迫停机事故的发生,究其原因,主要由于流化床锅炉长时间运行或资金原因,未及时进行大修,或浇筑料大面积脱落修复后未按要求进行烘炉工作,造成旋风分离器内浇筑料或浇筑砖再次发生脱落,返料器流化异常,锅炉床料结焦严重,机组被迫停机事故的发生。 文章[1]介绍了循环流化床锅炉返料器返料的几种原因,文章[2]说明了返料器结焦的几种原因,循环灰含碳量高,循环灰量少等原因。文章[3]介绍了各类返料器的原理,文章[4]举例说明了由于两侧分离器分离效率不同导致的返料中止,文章[5]介绍了由于设计和运行原因造成的返料堵塞案例。 1系统介绍及事件经过 某电厂2×135MW机组锅炉采用国外引进循环流化床技术,单锅筒、自然循环,循环物料分离采用高温绝热分离器。锅炉共布置有四个给煤口,全部布置于炉后。两个排渣口布置在炉膛前水冷壁下部,分别对应两台滚筒式冷渣器。返料器共配备有三台高压头的流化风机,每台风机出力为50%,正常运行时,其中两台运行、一台备用。风机为定容式。配备两台离心式一次风机、两台离心式送风机和两台离心式引风机。 锅炉主要由炉膛,两个高温绝热分离器、自平衡“U”形回料阀和尾部对流烟道组成。采用水冷布风板,大直径钟罩式风帽。锅炉采用两个内径为8.08米的高温绝热分离器,布置在燃烧室与尾部对流烟道之间,外壳由钢板制造,内衬绝热材料及耐磨耐火材料,分离器上部为圆筒形,下部为锥形。防磨绝热材料采用拉钩、抓钉、支架固定。 事件前机组状况,机组处于启动过程中,机组负荷75MW,总煤量70t/h,省煤器出口氧量3.77%,过热蒸汽压力12.98MPa,过热蒸汽温度528℃,再热蒸汽压力1.38MPa,再热蒸汽温度521.5℃,燃烧室密相区上部温度983℃,燃烧室密相区中部温度1032℃,燃烧室密相区下部温度1051℃,旋风分离器入口烟温887.9℃,旋风分离器料腿温度925.4℃,一次风总风量194070Nm3/h,燃烧室密相区下部压力8.27kPa,水冷风室压力12.83kPa。 事件发生时,流化风机出口母管压力从32kPa 至42kPa大幅波动,2号分离器返料器流化风异常,高压流化风母管压力最高升至62kPa。床压开始明显下降,最低降至1kPa,下部床温降至300℃左右,从炉膛前后墙看火孔观察炉内燃烧情况,床面出现局部结焦现象,通过调整冷渣机转速,加强床料置换,在调整过程中,返料器内返料塌回主床,随后,1号和2号冷渣机下渣口处结焦堵塞,排渣困难,通过维修人员采取人工方式进行排渣,加强床料置换,无法有效置换床料,床料结焦严重,被迫停炉。停机后检查1号和2号冷渣机落渣管下渣口处结焦堵塞,造成无法排渣;1号和2号旋风分离器返料器内有部分床料、浇注料和浇注砖,有结焦情况;炉膛内的床料高度达2m,返料器的返料口被堵住,炉膛整体存在结焦情况;清理结焦后检查发现,布风板部分风帽和返料器部分风帽损坏。 2原因分析 2.1锅炉结焦原因 事故发生后,检查2号旋风分离器,发现部分耐火砖和浇注料脱落,造成返料不畅,细床料无法返回炉膛,床温在细床料未返回至炉膛和锅炉继续给煤的双重作用下急剧上升,导致锅炉结焦严重。 2.2锅炉返料器流化风异常波动原因 (1)分离器、返料器耐火砖或浇注料脱落检查发现2号分离器顶部中心筒四周有部分耐火砖和浇注料脱落,遮盖一部分返料器流化风帽,造成返料器流化异常。部分较大浇注料脱落时砸坏部分流化风帽,造成2号返料器部分流化风帽损坏,影响了返料腿流化风的均匀性,返料器流化状态逐渐恶化,直至返料器的平衡被打破,回料中断。 (2)分离器分离效率不同,造成两侧回料量偏差较大启动初期,锅炉外循环未正常建立,分离器返料腿上升段风量显示正常;锅炉开始连续给煤后,分离器效率存在差异,造成料位高低不均衡、出现两侧返料腿料位高低不同,料位高的一侧流化风量低、返料中断及锅炉床压下降等情况,遇到此情况运行人员未及时发现和调整流化风量,造成锅炉结焦。(3)返料器内结焦当回料温度达到灰熔点的变形温度时,其流动性被破坏,流化状态静止,就会产生结焦现象。返料器内一旦发生结焦,将会很快发展,最终造成回料阀的堵塞,本次事故停机检查发现旋风分离器返料器内有部分床料、脱落的浇注料和浇注砖,导致返料流化状态变差,返料器内出现结焦情况。 2.3分离器及返料器内耐火砖、浇注料脱落原因 机组检修期间,脱落的部分耐火砖和浇注料只是采取局部修补的方法,未按烘炉厂家要求进行烘炉,由于炉内保温防磨材料的局部修补、机组启停频繁、日常调峰波动、煤质经常变化、给煤系统故障等原因导致耐火材料所处温度环境变化频繁且波动范围较大是其脱落的主要因素。 3防范措施 针对本次事故,为避免同类机组同类事故的发生,采取以下防范措施: (1)对炉膛内焦块进行清理并检查风帽,更换损坏的风帽,重新添加合格的启动床料。

旋风分离器计算结果.doc

旋风除尘器性能的模拟计算 一、下图为旋风除尘器几何形状及尺寸,如图1所示,图中D、L 及入口截面的长宽比在数值模拟中将进行变化与调整,其余参数保持不变。 图1 旋风分离器几何形状及尺寸(正视图)

旋风分离器的空间视图如图2所示。 图2 旋风分离器空间视图 二、旋风分离器数值仿真中的网格划分 仿真计算时,首先对旋风除尘器进行网格划分处理,计算网格采用非结构化正交网格,如图3所示。 图3 数值仿真时旋风分离器的网格划分(空间)

图4为从空间不同角度所观测到的旋风分离器空间网格。 图4 旋风分离器空间网格空间视图 本数值仿真生成的非结构化空间网格数大约为125万,当几何尺寸(如D、L及长宽比)改变时,网格数会略有变化。 三、对旋风分离器的数值模拟仿真 采用混合模型,应用Eulerian(欧拉)模型,欧拉方法,对每种工况条件下进行旋风分离器流场与浓度场的计算,计算残差<10-5,每种工况迭代约50000步,采用惠普工作站计算,CPU耗时约12h。 以下是计算结果的后处理显示结果。由于计算算例较多,此处仅列出了两种工况条件下的计算后处理结果。 图5是L=1.3m ,D=1.05m 入口长宽比1:3 ,入口速度10m/s时,在y=0截面(旋风分离器中心截面)上粒径为88微米烟尘的体积百分数含量分布图。可以明显看出由于旋风除尘器的离心作用,灰尘被甩到外壁附近,而在靠近中心排烟筒下方筒壁四周,烟尘的体积浓度最大。

粒径88微米烟尘的空间浓度分布(空间) 粒径88微米烟尘的浓度分布(旋风分离器中心截面)

粒径200微米烟尘的空间浓度分布(空间) 粒径200微米烟尘的浓度分布(旋风分离器中心截面) 图5 L=1.3m、D=1.05m、长宽比1:3 ,入口速度10m/s时烟尘空间分布

循环流化床返料器

谈循环流化床锅炉的返料中止故障 【摘要】循环流化床锅炉的物料循环系统对锅炉的安全稳定和经济运行起着决定性的作用。返料中止是制约循环流化床锅炉实现长周期运行的关键问题,运行操作人员必须监视控制好返料器的稳定运行。 1、前言 循环流化床燃烧作为一种新型的洁净、高效燃烧方式,最基本的特点之一是大量的固体颗粒在燃烧室、分离机构和回送装置所组成的固体颗粒循环回路中循环再燃烧。固体物料回送装置是循环流化床锅炉的关键部件,直接影响锅炉安全稳定运行。运行中返料器正常工作是实现物料循环的关键;锅炉要达到其额定出力必须保证炉膛稀相区物料的平衡,因此循环灰量的多少决定着锅炉带负荷能力。一旦返料器运行异常,诸如堵灰、结焦等,只有停炉压火处理,影响循环流化床锅炉长周期连续安全运行。 2、返料器的结构 回送装置必须保证产生足够的压差来克服负压差,既起到气体的密封作用,又能将固体颗粒送回床层。我厂循环流化床锅炉为中科热物理研究所与济南锅炉厂联合开发的75t/h次高压循环流化床锅炉。设计为两级高温分离,第一级为惯性分离;第二级为旋风分离,回送装置为U型回料阀。U型回料阀结构如图1所示。 U型阀是非机械阀中的一种,阀的底部布置有一定数量的风帽,阀体由隔板和挡板分成三部分。隔板的右侧与立管连通,左侧为上升段,两侧之间一长方形孔口使物料通过,它实际上是一个小流化床,并起着灰封的作用。回料风由下部风室通过流化风帽进入阀体内。这种阀主要是将固体颗料从低压处送到高压处,而对固体颗粒流量的调节作用很小,阀和立管依据自身的压力平衡自动地平衡固体颗粒的流量,当空气作用于颗粒上的作用力大于弯段阻力时,颗粒就开始流动。图1U型回料阀结构 1.挡板 2.回料口 3.立管 4.隔板 5.风帽 6.返料风室 3、运行控制最佳循环倍率 物料循环倍率是循环流化床锅炉独有的概念,它是由物料分离器捕捉下来且返送回炉内的物料量与给进的燃煤量之比,它直接影响锅炉的燃烧和传热,影响它的因素主要有: (1)一次风量:一次风量大小,将直接影响物料回送量。尤其是一次风量过小,炉内物料的流化状态将发生变化,燃烧室上部物料浓度降低,进入分离器的物料量也相对减少,这样不仅影响分离器效率,也必然降低分离器捕捉量,回送量也自然减少。 (2)燃料颗粒特性:运行中煤的颗粒特性(即粒度、粒比度)发生变化,也将影响回料量的多少,如果入炉煤的颗粒较粗,且所占份额较大(与设计值比),在一次风量不变的情况下,炉膛上部的物料浓度也降低。 (3)分离器效率:分离器效率对物料回送量的影响是很大的,实际上循环倍率在很大程度上是靠分离器的效率来保证的。分离器效率提高后,有更多的物料被送回炉内,炉内颗粒浓度增加,受热面传热系数增加。影响分离器效率的因素有旋风筒进口风速,内套筒的高度及内套筒是否变形裂缝等,旋风筒的进口风速与引风机出力及烟道、除尘器漏风量有关。 (4)煤质的优劣:该炉设计燃用烟煤,烟煤的灰份大部分在炉渣中,飞灰量相当

相关主题
文本预览
相关文档 最新文档