当前位置:文档之家› 弹性力学题库

弹性力学题库

弹性力学题库
弹性力学题库

第一章绪论

1、所谓“完全弹性体”是指(B)。

A、材料应力应变关系满足虎克定律

B、材料的应力应变关系与加载时间、历史无关

C、本构关系为非线性弹性关系

D、应力应变关系满足线性弹性关系

2、关于弹性力学的正确认识是(A)。

A、计算力学在工程结构设计中的作用日益重要

B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设>

C、任何弹性变形材料都是弹性力学的研究对象

D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析

3、下列对象不属于弹性力学研究对象的是(D)。

A、杆件

B、板壳

C、块体

D、质点

4、弹性力学研究物体在外力作用下,处于弹性阶段的应力、应变和位移。

5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围和精度。与材料力学相比弹性力学的特点有哪些

答:1)研究对象更为普遍;

2)研究方法更为严密;

3)计算结果更为精确;

-

4)应用范围更为广泛。

6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。(×)

改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围和精度。

7、弹性力学对杆件分析(C)。

A、无法分析

B、得出近似的结果

C 、得出精确的结果

D 、需采用一些关于变形的近似假定 8、图示弹性构件的应力和位移分析要用什么分析方法(C ) A 、材料力学 B 、结构力学 C 、弹性力学 D 、塑性力学

解答:该构件为变截面杆,并且具有空洞和键槽。

9、弹性力学与材料力学的主要不同之处在于( B )。

A 、任务

B 、研究对象

C 、研究方法

D 、基本假设 10、重力、惯性力、电磁力都是体力。(√) 11、下列外力不属于体力的是(D )

A 、重力

B 、磁力

C 、惯性力

D 、静水压力 12、体力作用于物体内部的各个质点上,所以它属于内力。(×) 解答:外力。它是质量力。

13、在弹性力学和材料力学里关于应力的正负规定是一样的。( × ) 解答:两者正应力的规定相同,剪应力的正负号规定不同。

14、图示单元体右侧面上的剪应力应该表示为(D )

A 、xy τ

B 、yx τ

C 、zy τ

D 、yz τ

1

τ2

τ3

τ4

τO

x

z

15、按弹性力学规定,下图所示单元体上的剪应力( C )。

A 、均为正

B 、41,ττ为正,32,ττ为负

C 、均为负

D 、31,ττ为正,42,ττ为负

16、按材料力学规定,上图所示单元体上的剪应力( D )。 A 、均为正 B 、41,ττ为正,32,ττ为负 C 、均为负 D 、31,ττ为正,42,ττ为负

17、试分析A 点的应力状态。

答:双向受压状态

18、上右图示单元体剪应变γ应该表示为( B ) A 、xy γ B 、yz γ C 、zx γ D 、yx γ

19、将两块不同材料的金属板焊在一起,便成为一块(D )。

A、连续均匀的板

B、不连续也不均匀的板

C、不连续但均匀的板

D、连续但不均匀的板

20、下列材料中,(D )属于各向同性材料。

'

A、竹材

B、纤维增强复合材料

C、玻璃钢

D、沥青

21、下列那种材料可视为各向同性材料(C )。

A、木材

B、竹材

C、混凝土

D、夹层板

22、物体的均匀性假定,是指物体内各点的弹性常数相同。

23、物体是各向同性的,是指物体内某点沿各个不同方向的弹性常数相同。

24、格林(1838)应用能量守恒定律,指出各向异性体只有21 个独立的弹性常数。

25、如图所示受轴向拉伸的变截面杆,若采用材料力学的方法计算其应力,所得结果是否总能满足杆段平衡和微元体平衡

27、解答弹性力学问题,必须从 静力学 、 几何学 和 物理学 三方面来考虑。 28、对棱边平行于坐标轴的正平行六面体单元,外法线与坐标轴正方向 一致 的面称为正面,与坐标轴 相反 的面称为负面,负面上的应力以沿坐标轴 负 方向为正。 29、弹性力学基本方程包括 平衡微分 方程、 几何 方程和 物理 方程,分别反映了物体 体力分量 和 应力分量 , 形变分量 和 位移分量 , 应力分量 和 形变分量 之间的关系。

30、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、应变和位移。但是 并不直接 作强度和刚度分析。

31、弹性力学可分为数学弹性力学和实用弹性力学两个部分。前者只用精确的数学推演而不引用任何关于应变状态或应力分布的 假定 ;在实用弹性力学里,和材料力学类同,也引用一些关于应变或应力分布的假设,以便简化繁复的数学推演,得出具有相当实用价值 近似解 。

32、弹性力学的研究对象是 完全弹性体 。 33、所谓“应力状态”是指( B )。 A. 斜截面应力矢量与横截面应力矢量不同 B. 一点不同截面的应力随着截面方位变化而改变 C. 3个主应力作用平面相互垂直

|

D. 不同截面的应力不同,因此应力矢量是不可确定的 34、切应力互等定理根据条件( B )成立。 A. 纯剪切 B. 任意应力状态 C. 三向应力状态 D. 平面应力状态

35、在直角坐标系中,已知物体内某点的应力分量为:

???

?

? ??-=01001-001010-00

1ij σMPa ;试:画出该点的应力单元体。 解:该点的应力单元体如下图(强调指出方向);

|

36、试举例说明正的应力对应于正的应变。

解答:如梁受拉伸时,其形状发生改变,正的应力(拉应力)对应正的应变。 37、理想弹性体的四个假设条件是什么

解答:完全弹性的假设、连续性的假设、均匀性的假设、各向同性的假设。凡是满足以上四个假设条件的称为理想弹性体。

38、xy τ和yx τ是否是同一个量xy γ和yx γ是否是同一个量 解答:不是,是。 39、

第二章 平面问题的基本理论

1、如图所示的三种情况是否都属于平面问题如果是平面问题,是平面应力问题还是平面应变问题

(

x

x

y

y

y

y

y

y

O

O

O

O

O

O

Z

Z

q

q

q

()

z q ()

z q ()

()

b ()

c

答:平面应力问题、平面应变问题、非平面问题

2、当问题可当作平面应力问题来处理时,总有0===yz xz z ττσ。(√) 解答:平面应力问题,总有0===yz xz z ττσ

3、当物体可当作平面应变问题来处理时,总有0===yz xz z γγε。(√) 解答:平面应变问题,总有0===yz xz z γγε

4、图示圆截面柱体R <

解答:平面应变问题所受外力应该沿柱体长度方向不变。 5、图示圆截面截头锥体R <

解答:对于平面应变问题,物体应为等截面柱体。

6、严格地说,一般情况下,任何弹性力学问题都是空间问题,但是,当弹性体具有某些特殊的形状,且受有某种特殊的外力时,空间问题可简化为平面问题。

7、平面应力问题的几何形状特征是 等厚度薄板(物体在一个方向的几何尺寸远小于其他两个方向的几何尺寸)。

8、平面应变问题的几何形状特征是很长的等截面柱体 。 9、下列各图所示结构应力分析问题属于什么问题

薄板属于

问题挡土墙属于

问题隧道属于问题

答:平面应力、平面应变、平面应变

10、柱下独立基础的地基属于 问题,条形基础下的地基属于 问题。

答:半空间半平面、平面应变

.

11、高压管属于 平面应变 问题;雨蓬属于 板 问题。

12、平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为z 轴方向)( C )。

A 、x

B 、y

C 、z

D 、z y x ,, 13、平面应力问题的外力特征是(A )。 A 只作用在板边且平行于板中面 B 垂直作用在板面

C 平行中面作用在板边和板面上

D 作用在板面且平行于板中面

14、在平面应力问题中(取中面作xy 平面)则 (C )。 A 、0=z σ,0=w

%

B 、0≠z σ,0≠w

C 、0=z σ,0≠w

D 、0≠z σ,0=w

15、在平面应变问题中(取纵向作z 轴)(D )。

A 、0=z σ,0=w ,0=z ε

B 、0≠z σ,0≠w ,0≠z ε

C 、0=z σ,0≠w ,0=z ε

D 、0≠z σ,0=w ,0=z ε

16、下列问题可简化为平面应变问题的是(B )。 A 、墙梁 B 、高压管道

C 、楼板

D 、高速旋转的薄圆盘

17、下列关于平面问题所受外力特点的描述错误的是(D )。 A 、体力分量与z 坐标无关 B 、面力分量与z 坐标无关 C 、z f ,z f 都是零 D 、z f ,z f 都是非零常数

18、在平面应变问题中,z σ如何计算(C ) A 、0=z σ不需要计算

B 、由()[]

y x z z E

εεμεσ+-=

1

直接求 C 、由()

y x z σσμσ+=求

(

D 、=z σz

f

解答:平面应变问题的()[]

y x z z E

σσμσε+-=

1

,所以()

y x z σσμσ+= 19、平面应变问题的微元体处于(C )。 A 、单向应力状态 B 、双向应力状态

C 、三向应力状态,且z σ是一主应力

D 、纯剪切应力状态

解答:因为除了y x σσ,以外,0≠z σ,所以单元体处于三向应力状态;另外z σ作用面上的剪应力0=zx τ,0=zy τ,所以z σ是一主应力

20、对于两类平面问题,从物体内取出的单元体的受力情况 有(平面应变问题的单元体上有z σ ) 差别,所建立的平衡微分方程 无 差别。 21、平面问题的平衡微分方程表述的是( A )之间的关系。

:

A 、应力与体力

B 、应力与面力

C 、应力与应变

D 、应力与位移

22、设有平面应力状态,by ax x +=σ,dy cx y +=σ,x ay dx xy γτ---=,其中d c b a ,,,均为常数,γ为容重。该应力状态满足平衡微分方程,其体力是( D )。 A 、0=x f ,0=y f B 、0≠x f ,0=y f C 、0≠x f ,0≠y f D 、0=x f ,0≠y f

解答:代入平衡微分方程直接求解得到

23、如图所示,悬臂梁上部受线性分布荷载,梁的厚度为1,不计体力。试利用材料力学知识写出x σ,xy τ表达式;并利用平面问题的平衡微分方程导出y σ,xy τ表达式。

1

分析:该问题属于平面应力问题;在材料力学中用到了纵向纤维互不挤压假定,即无y

σ存在,可以看出上边界存在直接荷载作用,则会有应力y σ存在,所以材料所得结果是不精确的;在平衡微分方程二式中都含有xy τ,联系着第一、二式;材料力学和弹性力学中均认为正应力x σ主要由弯矩引起。

解:横截面弯矩:l qx M Z 63

-=,横截面正应力y x lh

q J y M Z Z x 332-==σ 代入平衡微分方程的第一式得:()x f y x lh

q ydy x lh q dy x x xy +==??-

=??2

2323

36στ(注意未知量是y x ,的函数),由()

02

=h

y xy

τ得出()2

43x lh

q x f -

=,

可见()

222

3

443h y x lh

q xy -=

τ 将xy τ代入平衡微分方程的第二式得:()

()x g x y h y lh

q

dy x

xy y +--

=??-

=?

233

342τσ ()

02

==h

y y σ,()x l q x g 2-

=,()

x h y h y lh

q y 3233342+--=σ 24、某一平面问题的应力分量表达式:23

x xy Ax σ=-+,32xy By Cx y τ=--,

232

y Bxy σ=-,体力不计,试求A ,B ,C 的值。

解答:两类平面问题的平衡微分方程是一样的,且所给应力分量是实体的应力,它对实体内任意一点均是成立的。将所给应力分量代入平衡微分方程中:

代入第一式:

0=+??+??x yx

x f y

x τσ, 即:2

2

2

2

3300y Ax By Cx -+--+=,()()22

3310A C x B y --+=

]

30A C -=,310B +=,13

B =-

代入第二式:

0=+??+

??y xy y f x

y

τσ,

即:2300Cxy Bxy --+=,()320B C xy -+=,320B C +=,12C =,16

A =

设物体内的应力场为3

126x c xy x +-=σ,222

3

xy c y -

=σ,y x c y c xy 2332--=τ,0===zx yz z ττσ,试求系数123,,c c c 。

解:由应力平衡方程的:

2222123326y 3c x 3c y c x 02c xy 3c xy 0yx x zx

yx y yz

x y z x y z

τσττστ???++=-+--=??????++=--=??? 即:()()0x c -3c y 3c 623122=++- (1)

03c 2c 23=-- (2)

有(1)可知:因为x 与y 为任意实数且为平方,要使(1)为零,必须使其系数项为零,因此,2630c --= (3)

|

1230c c -= (4) 联立(2)、(3)和(4)式得: 即:1231,2,3c c c ==-=

25、画出两类平面问题的微元体受力情况图。

26、已知位移分量函数(

)

xy k v y x k u 22

21,=+=,21,k k 为常数,由它们所求得形变分量不一定能满足相容方程。(×)

解答:由连续可导的位移分量按几何方程求得的形变分量也一定能满足相容方程。因为几何方程和相容方程是等价的。

27、形变状态()

()0,2,,222≠==+=k kxy ky y x k xy y x γεε是不可能存在的。(×) 解答:所给形变分量能满足相容方程,所以该形变分量是可能存在的。 28、在y 为常数的直线上,如0=u ,则沿该线必有0=x ε。(√)

29、若取形变分量0=x ε,0=y ε,kxy xy =γ(k 为常数),试判断形变的存在性

解:利用y x x y xy

y x ???=

??+??γεε2

2

222得出k =+00,不满足相容方程,由几何方程第一式0=??=

x

u

x ε,积分得出()y f u 1=,由第二式0=??=y v y ε积分得()x f v 2=,将u ,v 代入第三式kxy x

v

y u xy ≠??+??=

γ,相互矛盾。 30、平面连续弹性体能否存在下列形变分量,0≠≠≠c b a ,??

?

????===cxy y bx axy xy y x γεε2

2

解:代入相容方程有:c y x by ax x y xy y

x =???≠+=??+??γεε22

2

22,相互矛盾。

31、应力主面上切应力为零,但m ax τ作用面上正应力一般不为零,而是2

y

x σσσ+=

32、试证明在发生最大与最小切应力的面上,正应力一般不为零,而是2

2

1σσσ+=

证明:

33、应力不变量说明( D )。

A. 应力状态特征方程的根是不确定的

B. 一点的应力分量不变

C. 主应力的方向不变

D. 应力随着截面方位改变,但是应力状态不变 34、关于应力状态分析,( D )是正确的。

A. 应力状态特征方程的根是确定的,因此任意截面的应力分量相同

B. 应力不变量表示主应力不变

C. 主应力的大小是可以确定的,但是方向不是确定的

D. 应力分量随着截面方位改变而变化,但是应力状态是不变的 35、应力状态分析是建立在静力学基础上的,这是因为( D )。

A. 没有考虑面力边界条件

B. 没有讨论多连域的变形

C. 没有涉及材料本构关系

D. 没有考虑材料的变形对于应力状态的影响 36、下列关于几何方程的叙述,没有错误的是( C )。

A. 由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移

B. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移

C. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量

D. 几何方程是一点位移与应变分量之间的唯一关系

37、下列关于“刚体转动”的描述,认识正确的是( A )。

A. 刚性转动描述了微分单元体的方位变化,与变形位移一起构成弹性体的变形

B. 刚性转动分量描述的是一点的刚体转动位移,因此与弹性体的变形无关

C. 刚性转动位移也是位移的导数,因此它描述了一点的变形

D. 刚性转动分量可以确定弹性体的刚体位移。

38、已知位移分量可以完全确定应变分量,反之,已知应变分量(满足相容方程)不能完全确定位移分量。

39、对两种平面问题,它们的几何方程是相同的,物理方程是不相同的。

40、已知图示平板中的应力分量为:322030x y yx σ=-+,230xy y x τ=-,310y y σ=。

试确定OA 边界上的x 方向面力和AC 边界上的x 方向面力,并在图上画出,要求标注方向。

解:1、OA 边界上的x 方向面力:1,0l m =-=,在0x =处,

?

x x yx f l m στ=+=()323203020y yx y --+=,正值表示方向和坐标轴正向一致,且成

三次抛物线分布,最大值为3

20a 。

2、AC 边界上的x 方向面力:0,1l m ==,在y a =处,

x x yx f l m στ=+=230y x -=230a x -,负值表示方向和坐标轴正向相反,成直线分布,

最小值为0,最大值为3

30a 。

41、微分体绕z 轴的平均转动分量是???

? ????-??=

y u x v 21ω。 42、已知下列应变状态是物体变形时产生的,试求各系数之间应满足的关系。

()(

)

(

)

?????+++=++++=++++=222104422104

42210C

y x xy C C y x y x B B y x y x A A xy

y x γεε 解:为了变形连续,所给应变分量必须满足相容方程,将其代入到式相容方程中得出

()()()02231231221112121=-++-+-C C B A y C x C ,上式应对任意的y x ,均成立,所

以有:???=-+=-022*********C C B A C ,由此可得到各系数之间应满足的关系是???=+=211

124C B A C 。

系数000,C ,B A 可取任意值,同时也说明了常应变不论取何值,实体变形后都是连续的。

'

设222(2);;x y xy a x y bx axy εεγ=-==,其中,a b 为常数,试问该应变场在什么情况下成立

解:对22

(2)x a x y ε=-求y 的2次偏导,即:

22

4y x

a ε?=-? 2y 22

b x ε?=? 2xy a x y

γ?=?? 2

222242y

xy x a b a

y x x y

εγε???+=-+==???? ,25a b = 即:2

5

a b =时上述应变场成立。

已知平面应变状态下,变形体某点的位移函数为:

131420040u x y =

++,111525200

v x y =+-,试求该点的应变分量xy y x γεε,,。

解:0.015x u x ε?==?,-0.005y v y ε?==?,0.01625xy u v y x γ??=+=??

-

43、当应变为常量时,即c b a xy y x ===γεε,,,试求对应的位移分量。

某理想塑性材料在平面应力状态下的各应力分量为75x σ=,15y σ=,0z σ=,15xy τ=(应

力单位为MPa ),若该应力状态足以产生屈服,试问该材料的屈服应力是多少

注利用密席斯屈服准则直接求材料的屈服应力:

s σ=

解:由由密席斯屈服准则得该材料的屈服应力为:

73.5s MPa σ=

44、试由下述应变状态确定各系数与物体体力之间的关系。

23,,Dy C By Axy xy y x -===γεε,0===yz xz z γγε

分析:该问题为平面应变问题,因为平面应变问题总有0===yz xz z γγε;所给应变存在的可能性,即应变分量必须满足相容方程,才是物体可能存在的;因为要求求出体力,体力只是和平衡微分方程有关,需要先求出应力分量,而应力分量可通过应力与应变关系即物理方程求出,由应变求出应力,注意两类问题的物理方程不一样,需要应用平面应变问题的物理方程。

解:(1)检验该应变状态是否满足相容方程,因为:00022222=???=??=??y x ,x

,y xy y x

γεε,

即y x x y xy y

x ???=

+=??+??γεε22

2

2200,满足。 (2)将应变分量代入到平面应变问题的物理方程式(2-23)中求出应力分量:

()()()()()()()()???

?

??

???-+=???? ??---+-=???? ??---+-=2

33121211112111Dy C E Axy By E By Axy E xy y x μτμμ

μμμσμμμμμσ (3)将上述应力分量代入到平衡微分方程式(2-2)中,可得到各系数与物体体力之间的关系:

()()()???

???

????? ??---+--=???? ??---+=Ax By E f A D Ey f y x μμμμμμμμ132******** {

(4)讨论:若无体力(0==y x f f ),则由上式可得

???

????=----=0

132112

Ax By A D μμμ

μ,根据它对物体内的任意一点y x ,均成立,又可得?????===000D B A 结论:若体力不为零,各系数与物体体力之间的关系即是(3)的结果;若体力为零,则是(4)的结果;C 是任意值。

已知弹性实体中某点在x 和y 方向的正应力分量为Pa x 35=σ,Pa y 25=σ,而沿z 方向的应变完全被限制住。试求该点的z σ、x ε和y ε。(Pa E 5

102?=,3.0=μ) 解:代入物理方程中:

()[]

z y x x E σσμσε+-=

1

()[]

z x y y E σσμσε+-=1

()[]

x y z z E

σσμσε+-=1

代入:Pa E 5

102?=,3.0=μ,Pa x 35=σ,Pa y 25=σ,0=z ε

得出:0001105.0=x ε,0000455.0=y ε,Pa z 18=σ 45、如果在平面应力问题的物理方程式中,将弹性模量E 换为2

1μ-E ,泊松比μ

换为μμ

-1,就得到平面应变问题的物理方程式。

46、列出应力边界条件时,运用圣维南原理是为了 简化 应力的边界条件。 47、设有周边为任意形状的薄板,其表面自由并与Oxy 坐标面平行。若已知各点的位移分量为,1,1y E

p v x E p

u μ

μ--=--=,则板内的应力分量为0,,=-=-=xy y x p p τσσ。 48、已知某物体处在平面应力状态下,其表面上某点作用着面力为,0,==Y a X 该点附近的物体内部有,0=xy τ则:=x σl a /,=y σ 0 。

49、有一平面应力状态,其应力分量为:MPa MPa MPa xy y x 6,10,12===τσσ及一主应力MPa 08.171=σ,则另一主应力等于 。

50、设某一平面应变问题的弹性体发生了如下的位移:y a x a a u 210++=,

y b x b b v 210++=,式中i i b a ,(2,1,0=i )均为常数。试证明:各形变分量在实体内为常

量。

证明:利用几何方程,对于平面应变问题有0===yz xz z γγε(常数),

1a x

u

x =??=

ε(常数)

,1b y v y =??=ε(常数),21a b y u x v xy +=??+??=γ(常数) 50、在发生最大与最小切应力的面上,正应力一般不为零,而是=σ2

2

1σσ+。

$

51、微分体绕z 轴的平均转动分量是=ω

???

?

????-??y u x v 21。 52、下左图示结构腹板和翼缘厚度远远小于截面的高度和宽度,产生的效应具有局部性的力和力矩是(P 2=M/h )( D )。

A 、P 1一对力

B 、P 2一对力

C 、P 3一对力

D 、P 4一对力构成的力系和P 2一对力与M 组成的力系

53、下左图中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b )两种情况由边界条件确定的常数A 及B 的关系是( C )。 A 、A 相同,B 也相同 B 、A 不相同,B 也不相同 C 、A 相同,B 不相同 D 、A 不相同,B 相同

下图中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b )两种情况由边界条件确定的常数A 及B 的关系是( B )。

A 、A 相同,

B 也相同 B 、A 不相同,B 也不相同

C 、A 相同,B 不相同

D 、A 不相同,B 相同

54、设有平面应力状态x ay dx dy cx by ax xy y x γτσσ---=+=+=,,,其中,d c b a ,,,均

为常数,γ为容重。该应力状态满足平衡微分方程,其体力是( D )

A 、0,0==Y X

B 、0,0=≠Y X

C 、0,0≠≠Y X

D 、0,0≠=Y X 55、某弹性体应力分量为:)4(,0,22y h C qxy xy

y x -===τσσ(不计体力),系数=C 2

q

56、已知一平面应变问题内某一点的正应力分量为:3.0,25,35===μσσMPa MPa y x ,则=z σ 18MPa 。

57、将平面应力问题下的物理方程中的μE ,分别换成2

-E 和μμ

-1就可得到平面应变问题下相应的物理方程。

58、平面应变问题的微元体处于( C )。

A 、单向应力状态

B 、双向应力状态

`

C 、三向应力状态,且z σ是一主应力

D 、纯剪切应力状态

59、如图所示为矩形截面水坝,其右侧受静水压力,顶部受集中力作用。试写出水坝的应力边界条件(下边界不写)。

解:应力边界条件公式为:X m l xy x =+τσ;Y m l y xy =+στ。 1)左右边界为主要边界,利用面力边值条件:

左面(h x =):,0,1==m l 0==Y X ,则:,0=x σ0=xy τ 右面(h x -=):,0,1=-=m l 0,==Y y X γ,则:,y x γσ-=0=xy τ 2)上端面(0=y )为小边界应用静力等效:

弹性力学试题

第一章绪论 1、所谓“完全弹性体”是指(B)。 A、材料应力应变关系满足虎克定律 B、材料的应力应变关系与加载时间、历史无关 C、本构关系为非线性弹性关系 D、应力应变关系满足线性弹性关系 2、关于弹性力学的正确认识是(A )。 A、计算力学在工程结构设计中的作用日益重要 B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设 C、任何弹性变形材料都是弹性力学的研究对象 D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析 3、下列对象不属于弹性力学研究对象的是(D )。 A、杆件 B、板壳 C、块体 D、质点 4、弹性力学研究物体在外力作用下,处于(弹性)阶段的(应力)、(应变)和(位移) 5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围和精度。与材料力学相比弹性力学的特点有哪些? 答:1)研究对象更为普遍; 2)研究方法更为严密; 3)计算结果更为精确; 4)应用范围更为广泛。 6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。(×) 改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围和精度。 7、弹性力学对杆件分析(C) A、无法分析 B、得出近似的结果 C、得出精确的结果 D、需采用一些关于变形的近似假定 8、图示弹性构件的应力和位移分析要用什么分析方法?(C)

A 、材料力学 B 、结构力学 C 、弹性力学 D 、塑性力学 解答:该构件为变截面杆,并且具有空洞和键槽。 9、弹性力学与材料力学的主要不同之处在于( B )。 A 、任务 B 、研究对象 C 、研究方法 D 、基本假设 10、重力、惯性力、电磁力都是体力。(√) 11、下列外力不属于体力的是(D ) A 、重力 B 、磁力 C 、惯性力 D 、静水压力 12、体力作用于物体内部的各个质点上,所以它属于内力。(×) 解答:外力。它是质量力。 13、在弹性力学和材料力学里关于应力的正负规定是一样的。( × ) 解答:两者正应力的规定相同,剪应力的正负号规定不同。 14、图示单元体右侧面上的剪应力应该表示为(D ) A 、xy τ B 、yx τ C 、zy τ D 、yz τ 1 τ2 τ3 τ4 τO x z 15、按弹性力学规定,下图所示单元体上的剪应力( C )。

11弹性力学试题及答案

2012年度弹性力学与有限元分析复习题及其答案 (绝密试题) 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为

最新期末考试试卷(a答案)—弹性力学

,考试作弊将带来严重后果! 华南理工大学2011年期末考试试卷(A )卷 《弹性力学》 1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在答题纸上; .考试形式:闭卷; 20分) 、五个基本假定在建立弹性力学基本方程时有什么用途?(10分) 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 (2分) 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 (4分) 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。 (6分) 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 (8分) 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 (10分) 2、试分析简支梁受均布荷载时,平面截面假设是否成立?(5分) 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?(5分) 解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。 三、计算题(80分) 2.1 已知薄板有下列形变关系:,,,2 3 Dy C By Axy xy y x -===γεε式中A,B,C,D 皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。(10分) 1、 相容条件: 将形变分量带入形变协调方程(相容方程)

弹性力学试卷上学期答案及评分标准

2016-2017第二学期弹性力学考试答案及评分标准 一、 概念问答题 1、 以应力作未知量,应满足什么方程及什么边界条件? 答:以应力作为未知量应满足平衡微分方程、相容方程及边界条件。(5分) 2、平面问题的未知量有哪些?方程有哪些? 答:平面问题有σx、σy 、τxy 、εx 、εy 、γxy 、u 、v 八个,方程有两个平衡方程,三个几何方程,三个物理方程。(5分) 3、已知200x Pa σ= ,100y Pa σ=-,50xy Pa τ=-及100r Pa σ=,300Pa θσ=, 100r Pa θτ=-,试分别在图中所示单元体画出应力状态图。 (2分) (3分) 4、简述圣维南原理。 答:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同),那么,近处的应力分量将有显著的改变,但远处所受的影响可以不计。(5分) 5、简述应变协调方程的物理意义。 答: ⑴ 形变协调条件是位移连续性的必然结果。连续体→位移连续→几何方程→形变协调条件。(2分) ⑵ 形变协调条件是与形变对应的位移存在且连续的必要条件。 形变协调→对应的位移存在→位移必然连续; 形变不协调→对应的位移不存在→不是物体实际存在的形变→微分体变形后不保持连续。(3分) 6、刚体位移相应于什么应变状态。 答:刚体位移相应于零应变状态,对平面问题为 εx =εy =γxy =0 (5分) 7、简述最小势能原理,该原理等价于弹性力学的哪些基本方程? 答:由位移变分方程可得 ()()0U Xu Yv Zw dxdydz Xu Yv Zw dS δ??-++-++=?? ????? 或0δ∏= x y 200Pa =Pa Pa 100r Pa =-100Pa =-

弹性力学试题

第一章绪论 1、所谓“完全弹性体”就是指(B)。 A、材料应力应变关系满足虎克定律 B、材料的应力应变关系与加载时间、历史无关 C、本构关系为非线性弹性关系 D、应力应变关系满足线性弹性关系 2、关于弹性力学的正确认识就是(A )。 A、计算力学在工程结构设计中的作用日益重要 B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设 C、任何弹性变形材料都就是弹性力学的研究对象 D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析 3、下列对象不属于弹性力学研究对象的就是(D )。 A、杆件 B、板壳 C、块体 D、质点 4、弹性力学研究物体在外力作用下,处于(弹性)阶段的(应力)、(应变)与(位移) 5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围与精度。与材料力学相比弹性力学的特点有哪些? 答:1)研究对象更为普遍; 2)研究方法更为严密; 3)计算结果更为精确; 4)应用范围更为广泛。 6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。(×) 改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围与精度。 7、弹性力学对杆件分析(C) A、无法分析 B、得出近似的结果 C、得出精确的结果 D、需采用一些关于变形的近似假定 8、图示弹性构件的应力与位移分析要用什么分析方法?(C) A、材料力学 B、结构力学

C 、弹性力学 D 、塑性力学 解答:该构件为变截面杆,并且具有空洞与键槽。 9、弹性力学与材料力学的主要不同之处在于( B )。 A 、任务 B 、研究对象 C 、研究方法 D 、基本假设 10、重力、惯性力、电磁力都就是体力。(√) 11、下列外力不属于体力的就是(D) A 、重力 B 、磁力 C 、惯性力 D 、静水压力 12、体力作用于物体内部的各个质点上,所以它属于内力。(×) 解答:外力。它就是质量力。 13、在弹性力学与材料力学里关于应力的正负规定就是一样的。( × ) 解答:两者正应力的规定相同,剪应力的正负号规定不同。 14、图示单元体右侧面上的剪应力应该表示为(D) A 、xy τ B 、yx τ C 、zy τ D 、yz τ 1τ2 τ3τ4τO x z 15、按弹性力学规定,下图所示单元体上的剪应力( C )。

弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz、、zx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题:

弹性力学复习题期末考试集锦 (2)

弹性力学复习题(06水工本科) 一、选择题 1. 下列材料中,()属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 2 关于弹性力学的正确认识是()。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 3. 弹性力学与材料力学的主要不同之处在于()。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 4. 所谓“完全弹性体”是指()。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 5. 所谓“应力状态”是指()。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 6. 变形协调方程说明()。 A. 几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的; B. 微分单元体的变形必须受到变形协调条件的约束; C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件; D. 变形是由应变分量和转动分量共同组成的。 7. 下列关于弹性力学基本方程描述正确的是()。 A. 几何方程适用小变形条件; B. 物理方程与材料性质无关; C. 平衡微分方程是确定弹性体平衡的唯一条件; D. 变形协调方程是确定弹性体位移单值连续的唯一条件; 8、弹性力学建立的基本方程多是偏微分方程,最后需结合()求解这些微分方程,以

弹性力学期末试卷

华中科技大学土木工程与力学学院 《弹性力学》试卷 2003~2004学年度第一学期 一. 如图所示为两个平面受力体,试写出其应力边界条件。(固定边不考虑) x (a)(b) 二.已知等厚度板沿周边作用着均匀压力σx=σy= - q ,若O点不能移动或转动, 试求板内任意点A(x,y)的位移分量。 q x 三.如图所示简支梁,它仅承受本身的自重,材料的比重为γ, 考察Airy应力函 数:y Dx Cy By y Ax2 3 5 3 2+ + + = ? 1.为使?成为双调和函数,试确定系数A、B、C、D之间的关系; 2.写出本问题的边界条件。并求各系数及应力分量。

四. 如图所示一圆筒,内径为a ,外径为b ,在圆筒内孔紧套装一半径为a 的刚性圆柱体,圆筒的外表面受压力q 的作用,试确定其应力r σ,θσ。 q

五. 如图所示单位厚度楔形体,两侧边承受按 τ=qr 2(q 为常数)分布的剪应力作用。试利用应力函数 θθθφ2cos 4cos ),(4244r b r a r += 求应力分量。 O y qr 2 qr 2 x 六. 设]27 4)3(1[),(22 32 2 a xy x a y x m y x F ---+=,试问它能否作为如图所示高为a 的等边三角形杆的扭转应力函数(扭杆两端所受扭矩为M)?若能,求其应力分 量。 (提示:截面的边界方程是3a x -=,3 323a x y ±= 。) α α

1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分) (1)薄板小挠度弯曲时,体力可以由薄板单位面积内的横向荷载q 来等代。 (√) (2)对于常体力平面问题,若应力函数),(y x ?满足双调和方程02 2 =???,那么由) ,(y x ?确定的应力分量必然满足平衡微分方程。 (√) (3)在求解弹性力学问题时,要谨慎选择逆解法和半逆解法,因为解的方式不同,解的结 果会有所差别。 (×) (4)如果弹性体几何形状是轴对称时,就可以按轴对称问题进行求解。 (×) (5)无论是对于单连通杆还是多连通杆,其载面扭矩均满足如下等式: ??=dxdy y x F M ),(2,其中),(y x F 为扭转应力函数。 (×) (6)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。 (√) (7)平面应力问题和平面应变问题的应变协调方程相同,但应力协调方程不同。 (√) (8)对于两种介质组成的弹性体,连续性假定不能满足。 (×) (9)位移变分方程等价于以位移表示的平衡微分方程及以位移表示的静力边界条件。(√) (10)三个主应力方向一定是两两垂直的。 (×) 2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。)(共20分,每小题2分) (1)弹性力学是研究弹性体受外界因素作用而产生的 应力、应变和位移 的一门学科。 (2)平面应力问题的几何特征是: 物体在一个方向的尺寸远小于另两个方向的尺寸 。 (3)平衡微分方程则表示物体 内部 的平衡,应力边界条件表示物体 边界 的平衡。 (4) 在通过同一点的所有微分面中,最大正应力所在的平面一定是 主平面 。 (5)弹性力学求解过程中的逆解法和半逆解法的理论基础是: 解的唯一性定律 。 (6)应力函数()4 2 2 4 ,cy y bx ax y x ++=Φ如果能作为应力函数,其c b a ,,的关系应该是 033=++c b a 。

《弹性力学》试题

《弹性力学》试题 一.名词解释 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2.圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 二.填空 1.最小势能原理等价于弹性力学基本方程中:平衡微分方程,应力边界条件。 2.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以分为位移边界条件、应力边界条件和混合边界条件。 3.一组可能的应力分量应满足:平衡微分方程,相容方程(变形协调条件)。 4.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 5.平面问题的应力函数解法中,Airy应力函数 在边界上值的物理意义为边界上某一点(基准点)到任一点外力的矩。 6.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 7.弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 8.利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1 MT -2 。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa , =2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa , =2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa , =2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

同济【弹性力学试卷】2008年期终考试A-本科

同济大学课程考核试卷(A 卷) 2008 — 2009 学年第 一 学期 命题教师签名: 审核教师签名: 课号:030192 课名: 弹性力学 考试考查:考试 此卷选为:期中考试( )、期终考试(√ )、重考( )试卷 年级 专业 学号 姓名 得分 一.是非题(正确,在括号中打√;该题错误,在括号中打×。)(共30分,每小题2分) 1. 三个主应力方向必定是相互垂直的。( ) 2. 最小势能原理等价于平衡方程和面力边界条件。( ) 3. 轴对称的位移对应的几何形状和受力一定是轴对称的。( ) 4. 最大正应变是主应变。( ) 5. 平面应力问题的几何特征是物体在某一方向的尺寸远小于另两个方向的尺寸。( ) 6. 最大剪应力对应平面上的正应力为零。( ) 7. 弹性体所有边界上的集中荷载均可以按照圣维南原理放松处理边界条件。( ) 8. 用应力函数表示的应力分量满足平衡方程,但不一定满足协调方程。( ) 9. 经过简化后的平面问题的基本方程及不为零的基本未知量(应力、应变和位移)均为8 个。( ) 10. 运动可能的位移必须满足已知面力的边界条件。( ) 11. 实对称二阶张量的特征值都是实数。( ) 12. 对单、多连通弹性体,任意给出的应变分量只要满足协调方程就可求出单值连续的位 移分量。( ) 13. 若整个物体没有刚体位移,则物体内任意点处的微元体都没有刚体位移。( ) 14. 出现最大剪应力的微平面和某两个应力主方向成45度角。( ) 15. 对任意弹性体,应力主方向和应变主方向一致。( ) 二.分析题(共20分,每小题10分) 1.已知应力张量为()()2211e e e e σ?-+?+=b a b a ,0>>a b (1) 设与xy 平面垂直的任意斜截面的法向矢量为21sin cos e e n θθ+=,试求该斜截面上的正应力与剪应力。 (2) 求最大和最小剪应力值。

弹性力学试卷

一、列出下图所示问题的全部边界条件(,单位厚度)。在其中的小边界上,采用圣维南原理改用积分的应力边界条件来代替。 二、(a)、平面问题中的应力分量应满足哪些条件? (b)、检查下面的应力在体力为零时是否是可能的解答. бx = 4x2,бy = 4y2, τxy=- 8xy (c)、在平面应变状态下,已知一组应变分量为 为非零的微小常数,试问由此求得的位移分量是否存在? 三、平面问题,直角坐标,研究一点的变形,考虑通过P点的二个正向微段PA∥x, ,PB∥y,PA=dx, PB=dy, P 点位移为u,v, (1) 正应变、剪应变的定义和正负号规定?(2) PA是x正向微段,PB是y正向微段,为何要正向微段? (3)写出A点和B点位移,推导出几何方程 四、(1)平面应力问题z面上任一点的应力( s z t zx t zy) 是近似为0还是精确为0?为什么?(2)平面应变问题的z面上任一点的应力( t zx t zy) 是近似为0还是精确为0?为什么?

五、空间问题的物理方程为: e x=[s x- ms y- ms z]/E r xy=t xy/G e y=[s y- ms x- ms z]/E r xz=t xz/G e z=[s z- ms x- ms y]/E r zy=t zy/G 由上式推导出平面应力问题和平面应变问题的物理方程。 六、已知平面应力问题矩形梁,梁长L,梁高h, 已知E=200000, μ= 0.2. 位移分量为:u(x,y)=6(x-0.5 L)y/E v(x,y)=3(L-x)x/E-3μy2/E 求以下物理量在点P(x=L/2,y=h/2)的值: (1) 应变分量 (2) 应力分量, (3) 梁左端(x=0)的面力及面力的合力和合力矩。 七、回答以下问题: 1)单元结点力是什么?正负号规定? 2)单元结点荷载是什么?正负号规定? 3)单元劲度矩阵的某一个元素的物理意义? 4)整体劲度矩阵的某一个元素的物理意义? 5)有限单元法结点的平衡方程是什么力和什么力的平衡? 6)有限单元法中一个离散的结构只有有限个自由度,为什么? 八、设平面问题中r=50mm的圆周上的点在外力作用下都移动至r=51mm的圆周上,求r=50mm的圆周上

(完整word版)弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆 截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )? ??=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

弹性力学期末考试卷A答案

2009 ~ 2010学年第二学期期末考试试卷(A )卷 一.名词解释(共10分,每小题5分) 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显着的改变,但是远处所受的影响可以不计。 二.填空(共20分,每空1分) 1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以 分为位移边界条件、应力边界条件和混合边界条件。 2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是 作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于 远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题(共10分,每小题5分) 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1 图3-2 四.简答题(24分) 1.(8分)弹性力学中引用了哪五个基本假定五个基本假定在建立弹性力学基本方程时有什么用途 答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分) 1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。 3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。 5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸

弹性力学期末考试第一份试卷和答案

2011----2012学年第二学期期末考试试卷(1 )卷题号一二三四五六七八九十总分评分 评卷教师 一.名词解释(共10分,每小题5分) 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 二.填空(共20分,每空1分) 1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以 分为位移边界条件、应力边界条件和混合边界条件。 2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是 作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于 远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题(共10分,每小题5分) 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1

期末考试试卷A答案—弹性力学

,考试作弊将带来严重后果! 华南理工大学2011年期末考试试卷(A )卷 《弹性力学》 1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在答题纸上; .考试形式:闭卷; 20分) 、五个基本假定在建立弹性力学基本方程时有什么用途?(10分) 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 (2分) 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 (4分) 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。 (6分) 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 (8分) 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 (10分) 2、试分析简支梁受均布荷载时,平面截面假设是否成立?(5分) 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?(5分) 解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。 三、计算题(80分) 2.1 已知薄板有下列形变关系:,,,2 3 Dy C By Axy xy y x -===γεε式中A,B,C,D 皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。(10分) 1、 相容条件: 将形变分量带入形变协调方程(相容方程)

弹性力学基本概念和考点汇总

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

最新弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。

相关主题
文本预览
相关文档 最新文档