当前位置:文档之家› 无杆气缸四大品牌ORIGA、诺冠、SMC、费斯托的比较

无杆气缸四大品牌ORIGA、诺冠、SMC、费斯托的比较

无杆气缸四大品牌ORIGA、诺冠、SMC、费斯托的比较
无杆气缸四大品牌ORIGA、诺冠、SMC、费斯托的比较

无杆气缸的比较

无杆气缸四大品牌ORIGA、诺冠、SMC、费斯托的比较.

?基本密封系统.

?规格参数差异.

?基本型负荷比较.

?平面导轨负荷比较.

?滚珠轴承导轨负荷比较.

?其他特点

结论分析:ORIGA无杆气缸是最好的!论据如下:

一、基本密封系统.

二、规格参数差异

三、 基本型负荷比较

.

四、 平面导轨负荷比较

ORIGA

五、滚珠轴承导轨负荷比较

六、其他特点

气缸的耗气量计算公式

气缸的耗气量可以分成最大耗气量和平均耗气量。 最大耗气量是气缸以最大速度运动时所需要的空气浏览,可以表示成: qr=0.0462D^2*um(P+0.102) 例如缸径D为10cm,最大速度为300mm/s,使用压力为0.6Mpa,则 气缸的最大耗气量qr=0.046*10^2*300*(0.6+0.102)=968.76(L/min),因此选用cv值为1.0或有效截面积为18mm左右的电磁阀即可满足流量要求。 若气缸的使用压力为0.5Mpa,最大速度为200mm/s,则气缸的最大耗气量为qr=553.84。 如果缸径D为50cm,最大速度为300mm/s,使用压力为0.6Mpa,则气缸的最大耗气量为qr=242.19,因此选用cv值选用0.3左右的即可。 平均耗气量是气缸在气动系统的一个工作循环周期内所消耗的空气流量。可以表示成: qca=0.00157(D^2*L+d^2*ld)N(p+0.102) 上式中, qca:气缸的平均耗气量,L/min(ANR); N:气缸的工作频率,即每分钟内气缸的往复周数,一个往复为一周,周/min; L:气缸的行程,cm; d:换向阀与气缸之间的配管的内径;cm ld:配管的长度,cm。 例如,缸径D为100mm(10cm)、行程L为100mm(10cm)的气缸,动作频率N为60周/min,d=10mm(1cm),ld=60mm(6cm), qca=0.00157(D^2*L+d^2*ld) N(p+0.102)=0.00157*(10^2*10+1^2*6))*60*(0.6+0.102)=66.5251704L/min(ANR). 平均耗气量用于选用空压机、计算运转成本。最大耗气量用于选定空气处理原件、控制阀及配管尺寸等。最大耗气量与平均耗气量之差用于选定气罐的容积。

气缸推力表

神威气动https://www.doczj.com/doc/f114142184.html, 文档标题:plf无杆气缸 plf无杆气缸的介绍: 引导活塞在缸内进行直线往复运动的圆筒形金属机件。空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。 二、气缸种类: ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒) 运动的动能,借以做功。 ⑤无杆气缸:没有活塞杆的气缸的总称。有磁性气缸,缆索气缸两大类。 做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 三、气缸结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示: 2:端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3:活塞 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄

无杆气缸原理

无杆气缸原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

无杆气缸原理 无杆和普通气缸的的工作原理一样,只是外部连接、密封形式不同 无杆气缸示意图 气缸两边都是空心的,活塞杆内的永磁铁带动活塞杆外的另一个磁体(运动部件),我想说的是它对清洁度要求蛮高的,我们公司的磁偶的无杆气缸经常要拆下来汽油清洗,可能与它的工作环境有关吧。 无杆气缸里有活塞,而没有活塞杆的,活塞装置在导轨里,外部负载给活塞相连,作动靠进气。 磁偶式的运动是利用空心活塞杆内的永磁铁带动活塞杆外的另一个磁铁运动来实现的,因其在速度快,负载高时内外磁环易脱开,故现在比较少用了。其负载质量的大小需查找其质量与速度的特性曲线。现在机械式的用的比较多。 无杆气缸的分类 无杆气缸分为磁偶无杆气缸和机械接触式无杆气缸。无杆气缸是指利用活塞直接或方式连接外界执行的机械,并使其跟随活塞实现往复运动的气缸,这种气缸的最大优点是节省安装空间。 (1)磁偶无杆气缸: 活塞通过磁力带动缸体外部的移动体做同步移动。它的工作原理:在活塞上安装一组高强磁性的永久磁环,磁力线通过薄壁缸筒与套在外面的另一

组磁环作用,由于两组磁环磁性相反,具有很强的吸力。当活塞在缸筒内被气压推动时,则在磁力作用下,带动缸筒外的磁环套一起移动。气缸活塞的推力必须与磁环的吸力相适应。 (2)机械接触式无杆气缸 在气缸缸管轴向开有一条槽,活塞与尚志在槽上部移动。为了防止泄漏及防尘需要,在开口部采用不锈钢封带和防尘不锈钢带固定在两端缸盖上,活塞架穿过槽地,把活塞与尚志连成一体。活塞与尚志连接在一起,带动固定在尚志上的执行机构实现往复运动。 无杆气缸特点 1、与普通气缸相比,在同样行程下可缩小1/2安装装置; 2、不需设置防转机械; 3、适用于缸径10-80mm,最大行程可达; 4、速度10m/s 无杆气缸缺点 1、密封性能差,容易产生外漏。在使用三位阀时必须选用中压式; 2、受负载力小,为了增加负载能力,必须增加导向机械。 无杆气缸实例 无杆气缸的品牌:现在市场上流通的无杆气缸主要有ORIGA无杆气缸、诺冠无杆气缸、FESTO无杆气缸、SMC无杆气缸、小金井等,这几个品牌还

压缩空气用气量计算

压缩空气用气量计算 压缩空气用气量计算 压缩空气理论――状态及气量 1、标准状态 标准状态的定义是:空气吸入压力为0.1MPa,温度为15.6℃(国内行业定义是0℃)的状态下提供给用户系统的空气的容积。如果需要用标准状态,来反映考虑实际的操作条件,诸如海拔高度、温度和相对湿度则将应实际吸入状态转换成标准状态。 2、常态空气 规定压力为0.1MPa、温度为20℃、相对湿度为36%状态下的空气为常态空气。常态空气与标准空气不同在于温度并含有水分。当空气中有水气,一旦把水气分离掉,气量将有所降低。 3、吸入状态 压缩机进口状态下的空气。 4、海拔高度 按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。既然在海拔上的空气比较稀薄,那么电动机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度内运行。EP200 标准机组的最大容许运行海拔高度为2286米。 5、影响排气量的因素: Pj、Tj、海拔高度、n、V余、泄漏等。 6、海拔高度对压缩机的影响: (1)、海拔越高,空气越稀薄,绝压越低,压比越高,Nd越大; (2)、海拔越高,冷却效果越差,电机温升越大; (3)、海拔越高,空气越稀薄,柴油机的油气比越大,N越小。 7、容积流量 容积流量是指在单位时间内压缩机吸入标准状态下空气的流量。用单位:M3/min (立方米/分)表示。标方用N M3/min表示。 1CFM=0.02832 M3/min, 或者1 M3/min=35.311CFM, S--标准状态,A--实际状态 8、余隙容积 余隙容积是指正排量容积式(往复或螺杆)压缩机冲程终端留下的容积,此容积的压缩空气经膨胀后返回到吸入口,并对容积系数产生巨大的影响。 9、负载系数

气缸选型对照表

气缸的选型 根据气缸推力拉力的大小要求,选定气缸使用压力参数以及缸径尺寸 气缸推力计算公式:气缸推力F1=πD2P 气缸拉力计算公式F2=π(D2-d2)P 公式式中:D-气缸活塞直径(cm) d-气缸活塞杆直径(cm) P-气缸的工作压力(kgf/cm2) F1,F2-气缸的理论推拉力(kgf) 上述出力计算适用于气缸速度50~500mm/s的范围内 气缸以上下垂直形式安装使用,向上的推力约为理论计算推力的50% 气缸横向水平使用时,考虑惯性因素,实际出力与理论出力基本相等 为了避免用户选用时的有关计算,下附双作用气缸输出力换算表,用户可根据负载、工作压力、动作方向从表格中选择合适的缸径尺寸 双作用气缸输出力表单位Kgf 缸径mm 气缸的理论输出力(推力)单位:KG/公斤 使用空气压力MPa 10 16 20 25 32 40

50117137157 63125156187218250 80100151201251300352402 100157236314393471550628 125245368491615736859982 1604026038041005120614071608 18050876310181272152717812036 20062894212571571188521992514 250981147319632454294534363926 3201608241232164021482556296432 40025313796502662837539879610052 选定气缸的行程:确定工作的移动距离,考虑工况可选择满行程或预留行程。当行程超过推荐的最长行程时,要考虑活塞杆的刚度,可以选择支撑导向或选择特殊气缸。 选定气缸缓冲方式:根据需要选择缓冲形式,无缓冲气缸,固定缓冲气缸,可调缓冲气缸 选择润滑方式:有给油润滑气缸,无给油润滑气缸 选择气缸系列:根据以上条件,按需选择适当系列的气缸 选择气缸的安装形式:根据不同的用途和安装需要,选用适当的安装形式 气缸附件的选择:前(后)法兰,脚架,单(双)悬耳,中间铰轴式,铰轴支座式

2014年度SMC中国产品介绍交流会会议笔记

SMC 新品展参观报告 目 参观展 台 SMC 产品在电子、IC 相关、汽车、机床、食品、医疗等领域,具体的典型应用机床有自动清洗机、娱乐机器人、血液分析仪、牛奶罐装机、自动包装机、数控机床、激光加工机、保护膜处理/曝光、汽车组装线。 由于初次接触SMC 公司的元件,但回忆起车间实习过程中,切片机上的很多元器件就是SMC 提供,此次又对元件的种类进行详细记录: 一、产品类型 1.高压类元件(通过压缩空气注入为动力,进行相关开关、 流量压力的控制等) 2.高频、高响应、长寿命类元件(主要是气缸、电磁继电 器、电机相关作用下的高频控制) 3.氟素树脂类元件(接头、线材等) 4.空气清净化与辅助类元件(气源三联件、吸尘、排尘等 方面的应用) 5.不锈钢类元件(主要是多通接头、直线导轨、高强度导 轨等) 6.流体阀类元件(开关阀门、法兰阀门等) 7.其他类元件(其它类型产品) 二、产品实拍

产品作了介绍,SMC公司的产品种类非常多,有11000 个规格,适应了各种各样的用途,总体印象是SMC公司是一个将产品做到极致的公司,对客户的任何需求都耐心适应而不是让用户适应公司的产品。 公司的适应客户的极致服务 在汽车的生产过程中,需要对车体钣金件进行打孔、焊接、喷漆等处理,这个过程中需要对钣金件进行定位,而每一种车型的定位加紧孔大小不同,SMC公司就进行用户定制类型的生产,将产品去适应汽车的生产线,在此则是一个公司强大的表现。

户,在一些零件搬运时使用了机器人,机器人抓取装置使用的是吸盘,在一些装配中需要等待若干分钟,在这个时候需要持续不断地对吸盘进行抽真空,不然工件会掉落 公司的新型吸盘加入压力传感器,在气压不足时候进行抽真空,富士康采用此吸盘之后吵闹的车间变成了是不是有断续的吸气声音,并且节 在吹气检测设备中,可以见到气缸,通过气缸的动作,

无杆气缸原理

无杆气缸原理 无杆和普通气缸的的工作原理一样,只是外部连接、密封形式不同 无杆气缸示意图 气缸两边都是空心的,活塞杆内的永磁铁带动活塞杆外的另一个磁体(运动部件),我想说的是它对清洁度要求蛮高的,我们公司的磁偶的无杆气缸经常要拆下来汽油清洗,可能与它的工作环境有关吧。 无杆气缸里有活塞,而没有活塞杆的,活塞装置在导轨里,外部负载给活塞相连,作动靠进气。 磁偶式的运动是利用空心活塞杆内的永磁铁带动活塞杆外的另一个磁铁运动来实现的,因其在速度快,负载高时内外磁环易脱开,故现在比较少用了。其负载质量的大小需查找其质量与速度的特性曲线。现在机械式的用的比较多。 无杆气缸的分类 无杆气缸分为磁偶无杆气缸和机械接触式无杆气缸。无杆气缸是指利用活塞直接或方式连接外界执行的机械,并使其跟随活塞实现往复运动的气缸,这种气缸的最大优点是节省安装空间。 (1)磁偶无杆气缸: 活塞通过磁力带动缸体外部的移动体做同步移动。它的工作原理:在活塞上安装一组高强磁性的永久磁环,磁力线通过薄壁缸筒与套在外面的另一组磁环作用,由于两组磁环磁性相反,具有很强的吸力。当活塞在缸筒内被气压推动时,则在磁力作用下,带动缸筒外的磁环套一起移动。气缸活塞的推力必须与磁环的吸力相适应。 (2)机械接触式无杆气缸 在气缸缸管轴向开有一条槽,活塞与尚志在槽上部移动。为了防止泄漏及防尘需要,在开口部采用不锈钢封带和防尘不锈钢带固定在两端缸盖上,活塞架穿过槽地,把活塞与尚志连成一体。活塞与尚志连接在一起,带动固定在尚志上的执行机构实现往复运动。 无杆气缸特点 1、与普通气缸相比,在同样行程下可缩小1/2安装装置; 2、不需设置防转机械;

SMC无杆气缸的作用和结构

SMC无杆气缸的内径大小代表了气缸输出力的大小。活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。小型气缸有使用不锈钢管的。 带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。 SMC无杆气缸使用中除了通过检测汽缸压力判断缸垫是否烧蚀外,还可取下水箱盖,启动发动机中速运转,观察水箱内有无气泡冒出。若发现水箱加水口不断有气泡冒出,为之缸垫烧蚀。或其水面波动随发动机转速提高而加剧,同时有水喷出,则为汽缸垫水道周围部分冲毁。这时可逐缸断火查出不工作的汽缸,拆下火花塞电极检查是否有水珠;启动发动机,观察是否有水或水蒸汽从火花塞孔喷出,即可确定缸垫是否烧损。 SMC无杆气缸工作时,用手沿缸垫四周移动,若感觉到有气体冲手为之烧蚀。当缸垫损坏严重时,可在缸盖与缸体接合处有气泡冒出为缸垫密封失效。 SMC无杆气缸使用中当发现水箱中水位下降较快,拔出机油尺检查发现机油中有水(机油颜色发黄甚至发白),为之缸垫漏水;另外水箱中冷却水温度上升太快,经常开锅,加水口翻水花,而进水管无凹瘪现象,冷却水无明显消耗,为缸垫漏气,遇上述现象应予更换新缸垫。 4、SMC无杆气缸垫途中烧蚀急救措施 SMC无杆气缸途中发现缸垫烧损,又无备件时可采取以下急救措施:缸垫拆下来认真检查,若是冲坏一道小口,可用烟盒内包装锡纸、废容电器内锡铂或石棉线等物填补在冲坏处,并仔细敲平压实即可;若冲坏面较大时,可用千牛皮垫或从废缸垫相同部位剪下- -块贴补代用,车辆回场后重新按技术规范修复。 5、缸垫的使用维护 使用中,缸垫应在高温高压气体作用下,有足够的强度,不易损坏:还要具有耐热、耐腐蚀特性;有一定弹性,能补偿接合面的平面度,具有良好的密封性;

气缸的设计计算

4.1 纵向气缸的设计计算与校核 由设计任务可以知道,要驱动的负载大小位140N,考虑到气缸未加载时实际所能输出的力,受气缸活塞和缸筒之间的摩擦、活塞杆与前气缸之间的摩擦力的影响,并考虑到机械爪的质量。在研究气缸性能和确定气缸缸径时,常用到负载率β: 由《液压与气压传动技术》表11-1 : 运动速度v=30mm/s,取β=0.7 ,所以实际液压缸的负载大小为:F=F0/ β=200N 4.1.1 气缸内径的确定 D=1.27 =1.27 =66.26mm F—气缸的输出拉力N; P —气缸的工作压力P a 按照GB/T2348-1993 标准进行圆整,取D=20 mm

气缸缸径尺寸系列 4.1.2 活塞杆直径的确定 由d=0.3D 估取活塞杆直径d=8mm 4.1.3 缸筒长度的确定 缸筒长度S=L+B+30 L 为活塞行程;B 为活塞厚度 活塞厚度B=(0.6 1.0)D= 0.7 20=14mm 由于气缸的行程L=50mm ,所以S=L+B+30=886 mm 导向套滑动面长度A: 一般导向套滑动面长度A,在D<80mm时,可取A=(0.6 1.0)D ;在D>80mm 时, 可取A=(0.6 1.0)d 。 所以A=25mm 最小导向长度H: 根据经验,当气缸的最大行程为L,缸筒直径为D,最小导向长度为:代入数据即最小导向长度H + =80 mm 活塞杆的长度l=L+B+A+80=800+56+25+40=961 mm 4.1.4 气缸筒的壁厚的确定

由《液压气动技术手册》可查气缸筒的壁厚可根据薄避筒计算公式进行计算:式中 —缸筒壁厚(m); D—缸筒内径(m); P—缸筒承受的最大工作压力(MPa); —缸筒材料的许用应力(MPa); 实际缸筒壁厚的取值:对于一般用途气缸约取计算值的7 倍;重型气缸约取计算值的20 倍,再圆整到标准管材尺码。 参考《液压与气压传动》缸筒壁厚强度计算及校核 , 我们的缸体的材料选择45 钢,=600 MPa,= =120 MPa n 为安全系数一般取n=5 ;缸筒材料的抗拉强度(Pa) P—缸筒承受的最大工作压力(MPa)。当工作压力p≤16 MPa 时,P=1.5p;当工作压力p>16 MPa时,P=1.25p 由此可知工作压力0.6 MPa 小于16 MPa,P=1.5p=1.5×0.6=0.9 MPa = =0.3mm

气缸耗气量的计算

气缸耗气量的计算 通常在标准气缸的选择上,各公司都为客户提供了标准缸径理论输出力选查表。然在实际应用中往往不能满足一些非标用 户的需要(主要是非标缸径和非标活塞杆用户)。因此气缸的耗气量计算式每个参与设计到采购环节人员所必须要掌握的。 气缸耗气量就是指气缸在以单位速度运动时需消耗的气体流量。通常在设计中我们需要考虑的是最大耗气量和平均耗气量。 1、气缸最大耗气量计算公式: Qmax=0.047*D*S *( p+0.1) / 0.1*1/ t 式中: max Q ——最大耗气量(L/min) D——缸径(cm) S ——气缸行程(cm) t ——气缸一次夹紧(或松开)动作时间(sec),(夹紧和松开的时间一般认为相等) p ——工作压力(Mpa) 2、平均耗气量计算公式一: 单作用气缸耗气量max Q =t*Q /T 平均 双作用气缸耗气量max Q =2*t*Q /T 平均 式中:Q平均——平均耗气量(L/min) t ——气缸一次夹紧(或松开)动作时间(sec),(夹紧和松开的时间一般认为相等) max Q ——最大耗气量(L/min) T ——循环周期(sec) 3、平均耗气量计算公式二: 单作用气缸耗气量Q =s*n*q 平均 双作用气缸耗气量Q =2*s*n*q 平均 式中:Q平均——平均耗气量(L/min) q ——单位行程耗气量(L/cm),(可从气动工具书上查出此值)s ——行程(cm) n ——单位时间气缸工作循环次数(min?1 ),(即每分钟循环的次数)。n=60/T 4、当T=2t 时(即气缸一直不停的往复动作),导入平均耗气量计算公式一。得: 单作用气缸最大耗气量max Q =2*Q =2* s*n*q 平均() 双作用气缸最大耗气量max Q =Q =2* s*n*q 平均() 5、气缸全部耗气量还包括非工作容积(含缸内及气管等,这大概占实际耗气量的20%至50%),所以需将耗气量计算结果乘以CBWEE 经验系数1.25 至2,一般取2.

气缸力计算公式

气缸力计算公式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

气缸推力计算公式 气缸理论出力的计算公式: F:气缸理论输出力(kgf) F′:效率为85%时的输出力(kgf)--(F′=F×85%) D:气缸缸径(mm) P:工作压力(kgf/cm2) 例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少芽输出力是多少 将P、D连接,找出F、F′上的点,得: F=2800kgf;F′=2300kgf 在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1中查出。 例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为 132kgf,(气缸效率为85%)问:该选择多大的气缸缸径 ●由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F′/85%=155(kgf) ●由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为63的气缸便可满足使用要求。 2.气缸理论基准速度为u=1920XS/A (mm/s).其中S为排气回路的合成有效面积,A为排气侧活塞的有效面积. 、耗气量:气缸往复一个行程的情况下,气缸以及缸与换向阀之间的配管内所消耗的空气量(标准大气压状态下) 2、最大耗气率:气缸活塞以最大速度运动时,单位时间内所消耗的空气量(标准大气压状态下)

气缸的最大耗气量: Q=活塞面积 x 活塞的速度 x 绝对压力通常用的公式是: Q=2v(p+) Q------标准状态下的气缸最大耗气量(L/min) D------气缸的缸径(cm) v------气缸的最大速度(mm/s) p------使用压力(MPa)气缸耗气量及气管流量计算方法

气缸的设计计算1

4.1纵向气缸的设计计算与校核: 由设计任务可以知道,要驱动的负载大小位140N,考虑到气缸未加载时实际所能输出的力,受气缸活塞和缸筒之间的摩擦、活塞杆与前气缸之间的摩擦力的影响,并考虑到机械爪的质量。在研究气缸性能和确定气缸缸径时,常用到负载率β: 由《液压与气压传动技术》表11-1: /β=200N 运动速度v=30mm/s,取β=0.7,所以实际液压缸的负载大小为:F=F 4.1.1气缸内径的确定 D=1.27=1.27 =66.26mm F—气缸的输出拉力 N; P —气缸的工作压力P a 按照GB/T2348-1993标准进行圆整,取D=20 mm 气缸缸径尺寸系列

8 10 12 16 20 25 32 40 50 63 80 (90)100 (110)125 (140)160 (180)200 (220)250 320 400 500 630 4.1.2活塞杆直径的确定 由d=0.3D 估取活塞杆直径 d=8mm 4.1.3缸筒长度的确定 缸筒长度S=L+B+30 L为活塞行程;B为活塞厚度 活塞厚度B=(0.6 1.0)D= 0.720=14mm 由于气缸的行程L=50mm ,所以S=L+B+30=886 mm 导向套滑动面长度A: 一般导向套滑动面长度A,在D<80mm时,可取A=(0.6 1.0)D;在D>80mm 时, 可取A=(0.6 1.0)d。 所以A=25mm 最小导向长度H: 根据经验,当气缸的最大行程为L,缸筒直径为D,最小导向长度为:H

代入数据即最小导向长度H + =80 mm 活塞杆的长度l=L+B+A+80=800+56+25+40=961 mm 4.1.4气缸筒的壁厚的确定 由《液压气动技术手册》可查气缸筒的壁厚可根据薄避筒计算公式进行计算: 式中 —缸筒壁厚(m); D—缸筒内径(m); P—缸筒承受的最大工作压力(MPa); —缸筒材料的许用应力(MPa); 实际缸筒壁厚的取值:对于一般用途气缸约取计算值的7倍;重型气缸约取计算值的20倍,再圆整到标准管材尺码。 参考《液压与气压传动》缸筒壁厚强度计算及校核 ,我们的缸体的材料选择45钢,=600 MPa, ==120 MPa n为安全系数一般取 n=5;缸筒材料的抗拉强度(Pa) P—缸筒承受的最大工作压力(MPa)。当工作压力p≤16 MPa时,P=1.5p;当工作压力p>16 MPa时,P=1.25p 由此可知工作压力0.6 MPa小于16 MPa,P=1.5p=1.5×0.6=0.9 MPa

气缸压力计算

气缸压力计算 推力:Ft(N)=0.25TDDP 拉力:Fl(N)=0.25T(DD-dd)P D:活塞直径d活塞杆直径P:工作压力(MPa) 气缸的压力和受力面积怎么计算? 举个例子:50x100的气缸怎么算出它的压力和受力面积(气缸内径的平方X3.14-活塞杆直径的平方X3.14)X 气压=气缸理论出力 注意单位。算压强再乘以受力面积我想你是问气缸的拉力跟推力了吧。压力就是气源的压力,受力面积是活塞的面积。受力面积看缸的缸径.50的就是...求圆面积公式自己算.电脑打不出来.压力?出力?推力=活塞面积*气源力*负荷率.压力应该是指气源压力吧?看空气压缩机. 算这个压力和受力面积还的看你出气量的大小 气缸工作原理(带图) 一、单作用气缸只有一腔可输入压缩空气,实现一个方向运动。其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。 单作用气缸的特点是: 1)仅一端进(排)气,结构简单,耗气量小。

2)用弹簧力或膜片力等复位,压缩空气能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输力。 3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。 4)气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。 由于以上特点,单作用活塞气缸多用于短行程。其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。单作用柱塞缸则不然,可用在长行程、高载荷的场合。 二、双作用气缸 工作原理图 双作用气缸指两腔可以分别输入压缩空气,实现双向运动的气缸。其结构可分为双活塞杆式、单活塞杆式、双活塞式、缓冲式和非缓冲式等。此类气缸使用最为广泛。

SMC气缸选型介绍

SMC气缸选型介绍 1、SMC气缸按功能分类 超小型气缸:SMC CJ2系列气缸,缸径最小2.5mm 针型气缸:SMC CJP2系列气缸,缸径有6、10、15mm三种 标准型气缸:SMC CJ2系列气缸、CM2系列气缸、CA2系列气缸、MB1、MB系列气缸、CS2、CS1系列气缸 欧洲标准型气缸:SMC C55、C85、C96、CP96系列气缸 自由安装型气缸:SMC CU、CUJ系列气缸 薄型气缸:SMC CQ2、CQS系列气缸 轻巧型气缸:SMC CG1系列气缸 椭圆活塞型气缸:SMC MU系列气缸 锁紧型气缸:SMC CL、CN系列气缸 端锁型气缸:SMC CB系列气缸 气动滑台气缸:SMC MX系列气缸 滑动装置型气缸:SMC CXW系列气缸 双联型气缸:SMC CXS系列气缸 机械式无杆气缸:SMC MY1、MY3系列气缸 磁性无杆气缸:SMC CY1、CY3系列气缸

带导杆薄型气缸:SMC MGP、MGQ系列气缸 带导杆型气缸:SMC MGG、MGC系列气缸 止动型气缸:SMC RS系列气缸 回转夹紧型气缸:SMC MK系气缸 2、SMC气缸按尺寸分类: MC气缸按缸径分类,通常将缸径为10mm以下的气缸称为微型缸,缸径为10~25mm的气缸称为小型缸,缸径为32~100mm的气缸称为中型缸,直径大于100mm的气缸称为大型缸。 3、SMC气缸按安装方式分类: 基本安装型气缸:利用气缸缸体上的螺纹或通孔等进行安装 脚座型气缸:通过L型叫做进行安装 法兰型气缸:通过法兰进行安装,分杆侧法兰安装、无杆侧法兰安 装 耳环型气缸:通过耳环进行安装,可以实现气缸的摆动,分为单耳环、双耳环和和一体耳。 耳轴型气缸:通过耳轴进行安装,可以实现气缸的摆动,分为无杆 侧耳轴、杆侧耳轴和中间耳轴。

气缸耗气量(精华)

耗气量计算方法 1、气缸最大耗气量计算公式: Q max = 0.047D2S(p+0.1)/0.1X1/t 式中:Q max ----- 最大耗气量(L/min) D ----- 缸径(cm) S ----- 气缸行程(cm) t ----- 气缸一次夹紧(或松开)动作时间(s),(夹紧和松开的时间一般认为相等) p ----- 工作压力(MPa) 2、平均耗气量计算公式一: 单作用气缸耗气量Q平均= tQ max/T 双作用气缸耗气量Q平均=2tQ max/T 式中:Q平均----- 平均耗气量(L/min) t ----- 气缸一次夹紧(或松开)动作时间(s),(夹紧和松开的时间一般认为相等) Q max ----- 最大耗气量(L/min) T ----- 循环周期(s)

3、平均耗气量计算公式二: 单作用气缸耗气量Q 平均=sXnXq 双作用气缸耗气量Q 平均=2X(sXnXq) 式中:Q 平均----- 平均耗气量(L/min) q ----- 单位行程耗气量(L/cm),(可从气动工具书上查出此值) s ----- 行程(cm) n ----- 单位时间气缸工作循环次数(min -1),(即每分钟循环的次 数)。n=60/T 4、当T=2t 时(即气缸一直不停的往复动作),导入平均耗气量计算公式 一。得: 单作用气缸最大耗气量Q max =2Q 平均=2X(sXnXq) 双作用气缸最大耗气量Q max = Q 平均=2X(sXnXq) 5、气缸全部耗气量还包括非工作容积(含缸内及气管等,这大概占实际耗气量的20%至50%),所以需将耗气量计算结果乘以CBWEE 经验系数1.25至2。一般取2。 在0.5Mpa 压力下气管流量近似计算公式: Q=CV ×1000=18 S ×100055.5S(L/min) ≈

气缸耗气量及气管流量计算方法

耗气量计算方法: 1、气缸最大耗气量计算公式: Q max = 0.047D2S(p+0.1)/0.1X1/t 式中:Q max ----- 最大耗气量(L/min) D ----- 缸径(cm) S ----- 气缸行程(cm) t ----- 气缸一次夹紧(或松开)动作时间(s),(夹紧和松开的时间一般认为相等) p ----- 工作压力(MPa) 2、平均耗气量计算公式一: = tQ max/T 单作用气缸耗气量Q 平均 =2tQ max/T 双作用气缸耗气量Q 平均 式中:Q ----- 平均耗气量(L/min) 平均 t ----- 气缸一次夹紧(或松开)动作时间(s),(夹紧和松开的时间一般认为相等) Q max ----- 最大耗气量(L/min) T ----- 循环周期(s) 3、平均耗气量计算公式二: 单作用气缸耗气量Q =sXnXq 平均 =2X(sXnXq) 双作用气缸耗气量Q 平均

式中:Q 平均----- 平均耗气量(L/min) q ----- 单位行程耗气量(L/cm),(可从气动工具书上查出此值) s ----- 行程(cm) n ----- 单位时间气缸工作循环次数(min -1),(即每分钟循环的次数)。n=60/T 4、当T=2t 时(即气缸一直不停的往复动作),导入平均耗气量计算公式一。得: 单作用气缸最大耗气量Q max =2Q 平均=2X(sXnXq) 双作用气缸最大耗气量Q max = Q 平均=2X(sXnXq) 5、气缸全部耗气量还包括非工作容积(含缸内及气管等,这大概占实际耗气量的20%至50%),所以需将耗气量计算结果乘以CBWEE 经验系数1.25至2。一般取2。 在0.5Mpa 压力下气管流量近似计算公式: Q=CV ?1000=18 S ?1000≈55.5S(L/min) 式中:Q ----- 气管流量(L/min) S ----- 气管内径截面积(mm 2) 导入公式得几个常用气管的流量: 内径12.7mm ,0.5Mpa 下,气管流量: A=m in 70005.556.1265.551L S ≈?=? 内径9.5mm ,0.5Mpa 下,气管流量: B=m in 39005.558.705.552L S ≈?=? 内径6.3mm ,0.5Mpa 下,气管流量: C=m in 17005.552.315.553L S ≈?=?

气缸压力计算

气缸压力计算 计算公式是:F=P*A-f F:气缸出力(kgf) A:截面积(cm2) P:使用的压力(kgf/cm2) f:摩擦阻力(kgf) 无杆腔截面积*工作气压力=活塞推力 有杆腔截面积*工作气压力=活塞回程力 常见气动元件设计的正常工作压力为0.4兆帕 按照smc的标准的话,也给你一个计算方式,首先要确定你的推动是平推还是 托举,这样子气缸的输出力的大小不同,如果是平推,且忽略摩擦系数,那么就 是说气缸的活塞输出力只要大于等于该物体的重力即可,G=m*g,计算一下, F=700*10=7000N,然后你要给出气缸使用的压缩空气的力,这里面我假设是 0.45MPa,也就是4.5公斤的样子,那么气缸的活塞面积约为:S=7000/0.45*(10 的六次方)这个单位是平方米,按照面积计算公式s=3.14*半径的平方,可以计 算出活塞面积的半径,那么直径就计算出来了,这就是所需气缸的缸经,选型的 时候只要大于该缸径,一般即可使用。另外气缸的行程得于你需要将该工件推出 多远,反复的推,比如推5厘米,那么行程就是5厘米,这样子您的汽缸就可以 得出缸径和行程了 g=9.8N/Kg 气缸压力计算 推力:Ft(N)=0.25TDDP 拉力:Fl(N)=0.25T(DD-dd)P D:活塞直径d活塞杆直径P:工作压力(MPa) 气缸的压力和受力面积怎么计算? 举个例子:50x100的气缸怎么算出它的压力和受力面积(气缸内径的平方 X3.14-活塞杆直径的平方X3.14)X 气压=气缸理论出力 注意单位。算压强再乘以受力面积我想你是问气缸的拉力跟推力了吧。压力就 是气源的压力,受力面积是活塞的面积。受力面积看缸的缸径.50的就是...求圆 面积公式自己算.电脑打不出来.压力?出力?推力=活塞面积*气源力*负荷率.压力 应该是指气源压力吧?看空气压缩机. 算这个压力和受力面积还的看你出气量的 大小

压缩空气用气量计算

压缩空气用气量计算 压缩空气理论――状态及气量 1、标准状态 标准状态的定义是:空气吸入压力为0.1MPa,温度为15.6℃(国内行业定义是0℃)的状态下提供给用户系统的空气的容积。 如果需要用标准状态,来反映考虑实际的操作条件,诸如海拔高度、温度和相对湿度则将应实际吸入状态转换成标准状态。 2、常态空气 规定压力为0.1MPa、温度为20℃、相对湿度为36%状态下的空气为常态空气。常态空气与标准空气不同在于温度并含有水 分。当空气中有水气,一旦把水气分离掉,气量将有所降低。 3、吸入状态 压缩机进口状态下的空气。 4、海拔高度 按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。既然在海拔上的空气比较稀薄,那么电动机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度内运行。EP200 标准机组的最大容许运行海拔高度为2286米。 5、影响排气量的因素: Pj、Tj、海拔高度、n、V余、泄漏等。 6、海拔高度对压缩机的影响: (1)、海拔越高,空气越稀薄,绝压越低,压比越高,Nd越大; (2)、海拔越高,冷却效果越差,电机温升越大; (3)、海拔越高,空气越稀薄,柴油机的油气比越大,N越小。 7、容积流量 容积流量是指在单位时间内压缩机吸入标准状态下空气的流量。用单位:M3/min (立方米/分)表示。标方用N M3/min表示。 1CFM=0.02832 M3/min, 或者1 M3/min=35.311CFM, S--标准状态,A--实际状态 8、余隙容积 余隙容积是指正排量容积式(往复或螺杆)压缩机冲程终端留下的容积,此容积的压缩空气经膨胀后返回到吸入口,并对容 积系数产生巨大的影响。 9、负载系数 负载系数是指某一段时间内压缩机的平均输出与压缩机的最大额定输出之比。不明智的做法就是卖给用户的压缩机,正好满足用户的最大的需求,增加一个或几个工具或有泄漏会导致工厂的压力下降。为了避免这种情况,英格索兰多年来一直建议采用负载系数:取用户系统所需气量的极大值,并除以0.9或0.8的负载系数。(或任何用户认为是个安全系数) 这种综合气量选择能顾及未预计到的空气需量的增加。无需额外的资本的投入,就可做一些小型的扩建。 10、气量测试 (1)、往复式压缩机气缸容积

气缸用气量计算

怎样计算气缸的耗气量,谢谢!!! Qmax=0.047D*D*s(P+0.1)/0.1*1/t Qmax---最大耗气量L/min D--------缸经,cm t---------气缸一次往返所需的时间,s P-------工作压力,MPa t---------气缸一次往返所需的时间,s 若是电磁阀控制,这个t怎么确定呀? 可以计算平均耗气量 Q=0.00157ND*D*s(P+0.1)/0.1 Q---平均耗气量L/min D--------缸经,cm N--------气缸每分钟的往返次数 P-------工作压力,MPa 是不是还应该与实际行程或活塞的平均速度有关系呀。

气动系统的设计 一.工作方式设计 1.运动一的工作顺序图(单个工作周期为19秒) 2.运动二的工作顺序图(单个工作周期为42秒) 3.运动三的工作顺序图(单个工作周期为53.5秒)

〈下一页〉 二.执行元件选择 1、执行元件耗气量计算: 查《机械设计手册》第5分册,可知伸缩型气缸的耗气量: 有活塞杆腔时, 无活塞杆腔时, 式中:q v1——缸前进时(杆伸出)无杆腔(包括柱塞缸)压缩空气消耗量(m3/s); q v2——缸后退时(杆缩回)有杆腔压缩空气消耗量(m3/s); D——气缸内径(柱塞缸的柱塞直径)(m) d——活塞杆直径 (m) t1——气缸前进(杆伸出)时完成全行程所需时间 (s)

t2——气缸后退(杆缩回)时完成全行程所需时间 (s) s——缸的行程 (m) 查SMC培训教材《现代实用气动技术》,可知摆动气缸的耗气量: 式中:q rH——摆动气缸的最大耗气量;(L/min) V——摆动气缸的内部容积;(cm3) P——使用压力,(MPa) t——摆动时间,(s) ①夹紧气缸: 已知气缸内径D=0.040(m),行程s=0.04(m),全行程所需的时间t1=0.5(s) 那么该气缸的耗气量: ②伸缩气缸: 已知气缸内径D=0.032(m),活塞杆直径d=0.012(m),行程s=0.5(m),全行程所需的时间t2=2(s) 那么该气缸的耗气量: ③手腕回转气缸: 已知气缸体积V=94.25(cm3),使用压力P=0.5(MPa),摆动时间t=0.5(s) 那么该气缸的耗气量:

压缩空气用气量计算2008

压缩空气用气量计算2008-09-21 13:49 分类:工业 字号:大中小 压缩空气用气量计算 压缩空气理论――状态及气量 1、标准状态 标准状态的定义是:空气吸入压力为0.1MPa,温度为15.6℃(国内行业定义是0℃)的状态下提供给用户系统的空气的容积。如果需要用标准状态,来反映考虑实际的操作条件,诸如海拔高度、温度和相对湿度则将应实际吸入状态 转换成标准状态。 2、常态空气 规定压力为0.1MPa、温度为20℃、相对湿度为36%状态下的空气为常态空气。常态空气与标准空气不同在于温度并含有水分。当空气中有水气,一旦把 水气分离掉,气量将有所降低。 3、吸入状态 压缩机进口状态下的空气。 4、海拔高度

按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。既然在海拔上的空气比较稀薄,那么电动机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度内运行。EP200 标准机组的最大容许运 行海拔高度为2286米。 5、影响排气量的因素: Pj、Tj、海拔高度、n、V余、泄漏等。 6、海拔高度对压缩机的影响: (1)、海拔越高,空气越稀薄,绝压越低,压比越高,Nd越大; (2)、海拔越高,冷却效果越差,电机温升越大; (3)、海拔越高,空气越稀薄,柴油机的油气比越大,N越小。 7、容积流量 容积流量是指在单位时间内压缩机吸入标准状态下空气的流量。用单位:M3/min (立方米/分)表示。标方用N M3/min表示。 1CFM=0.02832 M3/min, 或者1 M3/min=35.311CFM, S--标准状态,A--实际状态 8、余隙容积

用气量计算

缩空气用气量计算2008-09-21 13:49 分类:工业 字号:大中小 压缩空气用气量计算 压缩空气理论――状态及气量 1、标准状态 标准状态的定义是:空气吸入压力为0.1MPa,温度为15.6℃(国内行业定义是0℃)的状态下提供给用户系统的空气的容积。如果需要用标准状态,来反映考虑实际的操作条件,诸如海拔高度、温度和相对湿度则将应实际吸入状态转换成标准状态。 2、常态空气 规定压力为0.1MPa、温度为20℃、相对湿度为36%状态下的空气为常态空气。常态空气与标准空气不同在于温度并含有水分。当空气中有水气,一旦把水气分离掉,气量将有所降低。 3、吸入状态 压缩机进口状态下的空气。 4、海拔高度 按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。既然在海拔上的空气比较稀薄,那么电动机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度内运行。EP200 标准机组的最大容许运行海拔高度为2286米。 5、影响排气量的因素: Pj、Tj、海拔高度、n、V余、泄漏等。 6、海拔高度对压缩机的影响: (1)、海拔越高,空气越稀薄,绝压越低,压比越高,Nd越大; (2)、海拔越高,冷却效果越差,电机温升越大; (3)、海拔越高,空气越稀薄,柴油机的油气比越大,N越小。 7、容积流量 容积流量是指在单位时间内压缩机吸入标准状态下空气的流量。用单位:M3/min (立方米/分)表示。标方用N M3/min表示。 1CFM=0.02832 M3/min, 或者 1 M3/min=35.311CFM,

气缸用气量计算

气缸用气量计算 怎样计算气缸的耗气量,谢谢!!! Qmax=0.047D*D*s(P+0.1)/0.1*1/t Qmax---最大耗气量L/min D--------缸经,cm t---------气缸一次往返所需的时间,s P-------工作压力,MPa t---------气缸一次往返所需的时间,s 若是电磁阀控制,这个t 怎么确定呀? 可以计算平均耗气量 Q=0.00157ND*D*s(P+0.1)/0.1 Q---平均耗气量L/min D--------缸经,cm N--------气缸每分钟的往返次数 P-------工作压力,MPa 是不是还应该与实际行程或活塞的平均速度有关系呀。 气动系统的设计 一.工作方式设计 1.运动一的工作顺序图(单个工作周期为19秒) 2.运动二的工作顺序图(单个工作周期为42秒) 3. 运动三的工作顺序图(单个工作周期为53.5秒) 〈下一页〉 二.执行元件选择 1、执行元件耗气量计算: 查《机械设计手册》第5分册,可知伸缩型气缸的耗气量: 有活塞杆腔时, 无活塞杆腔时, 3 式中:q v1——缸前进时(杆伸出)无杆腔(包括柱塞缸)压缩空气消耗量(m /s) ;

q v2——缸后退时(杆缩回)有杆腔压缩空气消耗量(m 3/s) ; D ——气缸内径(柱塞缸的柱塞直径)(m ) d ——活塞杆直径 (m ) t 1——气缸前进(杆伸出)时完成全行程所需时间 (s ) t 2——气缸后退(杆缩回)时完成全行程所需时间 (s ) s ——缸的行程 (m ) 查SMC 培训教材《现代实用气动技术》,可知摆动气缸的耗气量: 式中:q rH ——摆动气缸的最大耗气量;(L /min ) V ——摆动气缸的内部容积;(cm ) 3 P ——使用压力,(MPa ) t ——摆动时间,(s ) ① 夹紧气缸: 已知气缸内径D =0.040(m ) ,行程s =0.04(m ) ,全行程所需的时间t 1=0.5(s ) 那么该气缸的耗气量: ② 伸缩气缸: 已知气缸内径D =0.032(m ) ,活塞杆直径d =0.012(m ) ,行程s =0.5(m ) ,全行程所需的时间 t 2=2(s ) 那么该气缸的耗气量: ③ 手腕回转气缸: 已知气缸体积V =94.25(cm ) ,使用压力P =0.5(MPa ) ,摆动时间t =0.5(s ) 3 那么该气缸的耗气量: ④ 手臂升降气缸: 已知气缸内径D =0.05(m ) ,活塞杆直径d =0.02(m ) ,行程s =0.3(m ) ,全行程所需的时间 t 2=1.5(s ) 那么该气缸的耗气量: ⑤ 摆动气缸:

相关主题
文本预览
相关文档 最新文档