当前位置:文档之家› 铁氰化锰修饰玻碳电极的制备及其电化学行为

铁氰化锰修饰玻碳电极的制备及其电化学行为

铁氰化锰修饰玻碳电极的制备及其电化学行为
铁氰化锰修饰玻碳电极的制备及其电化学行为

食品中重金属检测的方法研究与仪器研制

食品中重金属检测的方法研究与仪器研制 【摘要】:食品安全问题一直是人类关注的焦点。随着工农业生产的迅速发展,食品污染问题越来越严重,其中重金属是最主要的污染物质之一。重金属可以在土壤中积累和作物体内残留,通过食物链而进入人体内蓄积,构成对人体的潜在危害。人体内重金属含量过量时,会导致各种疾病的发生。食品重金属污染问题已引起全世界的高度重视和深入研究,对不同种类食品和水体中的重金属污染进行监测和分析研究,对于评价食品质量、保护人类健康和维持社会经济可持续发展具有重要的现实意义。该课题得到了上海市世博会重点项目专项基金的资助。纳米材料是指在三维空间中至少有一维处于1~100nm纳米尺度范围或由它们作为基本单元构成的材料。纳米复合材料是近年来发展较为迅速的一种新兴纳米材料,它是由两种或两种以上的吉布斯固相至少在一维以纳米级大小复合而成的纳米材料。在纳米复合材料中,纳米尺度的分散相不仅大大增加了两相界面面积,而且由于其纳米尺度效应将大大增强界面相互作用。它与单一纳米材料和纳米相材料不同,不仅具有纳米尺度物质单元的基本特性:量子尺寸效应、表面效应、小尺寸效应、量子隧道效应、介电限域效应等,又存在纳米结构组合所引起的新效应:量子耦合效应和协同增强效应等,使得纳米复合材料的综合性能优于原组成材料而能够满足各种不同的实际应用要求,被誉为是21世纪最有前途的材料之一。随着纳米技术的发展,纳米复合材料作为一种新型的电极材料在电化学检测和分析

方面受到人们的日益关注。微波辐射作为一种快速、简单和高效的加热技术,已经广泛地被运用于化学反应和多种纳米材料的合成。与传统的加热方法比较,微波加热具有快速和均匀的优点,从而可以大大加快反应速度,得到更小和更均匀的纳米粒子。微波—电化学是将微波技术与电化学原理相结合形成的一种新型科学技术,将微波技术引入电化学检测还是一个较新的领域,尤其是微波一电化学联用技术应用于重金属的检测是一种全新的理念和思路。虽然微波技术在电化学检测领域已经得到初步的应用,但这一领域的研究目前还处于起步阶段。特别是微波条件下快速合成纳米材料,并将合成的纳米材料应用于微波—电化学检测重金属离子的研究还未见报道。本论文通过电化学方法、微波辐射合成方法制备纳米复合材料,并将其作为电极材料应用于食品中痕量重金属,如Pb、Cd、Hg、As、Cr的电化学检测与分析。通过扫描电子显微镜、透射电子显微镜、原子力显微镜、能量散射X-射线光谱对合成的纳米复合材料形貌和组成进行表征,运用阳极溶出伏安法、线性扫描伏安法、安培检测法、微波—电化学协同体系对痕量重金属进行检测与分析,并在此基础上研制与开发重金属快速分析仪。本论文共分为九章:第一章绪论本章内容主要包括重金属污染及危害、重金属检测技术的研究与发展、纳米复合材料及其应用于重金属检测的研究与进展、重金属快速分析仪研究现状四部分。文中简要介绍了食品中重金属污染现状、光谱方法应用于重金属检测的研究,着重综述了电分析方法应用于重金属的检测和发展;对纳米复合材料的分类、性能和制备进行了概述,着重阐述了微波合成纳米

线性扫描伏安法测定废水中的镉

线性扫描伏安法测定废水中的镉 蔡孟珂(13322006) 蔡景恒蔡镓鹂 中山大学化学与化学工程学院,化学类 A 班 摘要:本实验采用线性扫描伏安法,通过测定一系列浓度Cd2+浓度并与测定待测溶液进行比对,计算出待测溶液中Cd2+含量为90.57mg/L。实验采用常规峰电流和半微分峰电流两种处理方法进行计算,提高了实验精度。电流峰高与浓度成正比,据此进行定量分析。同时通过半微分(semi-derivative)处理,可将伏安波动半峰形转化成峰形,改善了峰形和峰分辨率。该方法方便快捷,且成本不高,适用于快速简便地测定废水中的镉含量。 关键词:线性扫描伏安法镉离子废水 1 引言: 镉是一种具有银白色光泽、软性、延展性好、耐腐蚀的稀有金属,加热即会挥发,其蒸汽可与空气中的氧结合形成氧化镉。镉类化合物具有较大脂溶性、生物富集性和毒性,并能在动物、植物和水生生物体内蓄积。随着近年来水环境中镉污染事故的不断出现,人们对环境中镉污染的恐惧也在不断增加。[1] 铬的污染主要由工业引起。铬的开采、冶炼、铬盐的制造、电镀、金属加工、制革、油漆、颜料、印染工业,都会有铬化合物排出。如制革工业通常处理一吨原皮,要排放含铬410mg/l 的废水50-60吨;若每天处理原皮十吨,则年排铬72-86吨。[2] 水和废水中镉的测定,有比色法、原子吸收分光光度法及阳极溶出伏安法等。也有报道用离子选择电极法测定显像管废水和用极谱法测定水中的微量镉。[3] linear sweep voltammetry;LSV 是一种伏安法技术。将线性电位扫描(电位与时间为线性关系)施加于电解池的工作电极和辅助电极之间。工作电极是可极化的微电极,如滴汞电极、静汞电极或其他固体电极;而辅助电极和参比电极则具有相对大的表面积,是不可极化的。常用的电位扫描速率介于0.001~0.1V/s。可单次扫描或多次扫描。根据电流-电位曲线测得的峰电流与被测物的浓度呈线性关系,可作定量分析,更适合于有吸附性物质的测定。

线性扫描伏安法测定废水中的镉离子含量

线性扫描伏安法测定废水中的镉 摘要:本实验利用线性扫描伏安法扫描废水中镉离子浓度,使用铋膜碳电极为工作电极,Ag/AgCl 电极为参比电极,Pt为辅助电极的三电极系统,在CHI660A电化学工作站采用常规峰电流对镉离子浓度作回归方程,结果测得:对常规峰进行处理后得方程y = 356.44x + 0.0348,相关系数R2达0.9997,测得含量为50.40 mg.L-1。此法精度高、迅速、灵敏,结果令人满意。 关键词:线性扫描伏安法镉离子常规峰电流半微分峰电流 1.引言 镉(Cadmium)是一种重金属,与氧、氯、硫等化学元素形成无机化合物分布于自然界中。人体健康的危害主要来源于工农业生产所造成的环境污染。镉在工业中有广泛应用,如电池、电镀合金、油漆和塑料等的生产和使用。镉对肾、肺、肝、睾丸、脑、骨骼及血液系统均可产生毒性,且环境中的镉不能生物降解,所以现今镉的污染已经处于较为严重的状况[1]。 目前国家对于镉离子分析的标准测定方法有:无火焰原子吸收分光光度法、火焰原子吸收分光光度法、双硫脉分光光度法[2]。 伏安法和极谱法是一种特殊的电解方法。以小面积、易极化的电极为工作电极,以大面积、不易极化的电极为参比电极组成电解池,电解被分析物质的稀溶液,由所测得的电流-电压特性曲线来进行定性和定量分析的方法。使用滴汞电极或其他表面能够周期性更新的液体电极者称极谱法,使用表面静止的液体或固体电极者称伏安法。伏安法由极谱法发展而来,后者是伏安法的特例。极谱法的使用涉及到汞,毒性问题较为严重;且若采用极谱法,则需要消除氧波(加入Na2SO3、抗坏血酸、通惰性气体或N2保护)和极谱极大(加入一些表面活性物质如明胶、PVA、Triton X-100等)的干扰,过程较为繁琐。由于线性扫描伏安法扫描的速度比较快,氧波和前波的干扰很小,可不除氧,前放电物质存在也不干扰测定[3]。 伏安法作为一种非分析方法,主要用于研究各种介质中的氧化还原过程、表面吸附过程以及化学修饰电极表面电子转移机制。伏安法选择性和灵敏度较高,而且随着低成本的电子放大装置出现,伏安法开始大量用于医药、生物和环境分析中[4]。相对于其他测定痕量镉的方法包括 ICP-AES[5],火焰原子光谱法[2]等,这些方法同样需要绘制回归方程,相对误差较大(在1%-5%左右),相关系数R一般比较低。而采用线性伏安法仪器造价低廉、灵敏度高、有一定精确度、测试速度快、维护成本较低、携带方便。 综上所述,本实验中将采用线性扫描伏安法对废水样品中镉离子浓度进行测量。 2.实验部分

石墨烯修饰铂电极传感器测定水中微量重金属镉和铅

DOI :10.3724/SP.J.1096.2013.20547 石墨烯修饰铂电极传感器测定水中微量重金属镉和铅 唐逢杰1,2 张凤1,2 金庆辉*1 赵建龙1 1 (中国科学院上海微系统与信息技术研究所传感技术联合国家重点实验室,上海200050) 2 (中国科学院大学,北京100039) 摘 要 建立了石墨烯修饰铂电极(G/Pt )共沉积铋膜测定水中微量重金属镉和铅的方法三采用微机电系统(MEMS )工艺制作铂电极,并利用CVD 法在铂电极上原位生长石墨烯,制备了石墨烯修饰铂电极,与Ag/AgCl 参比电极二铂丝对电极构成三电极体系;采用差分脉冲阳极溶出伏安法对水中微量的镉和铅进行测定三在pH =4.5的醋酸?醋酸钠(HAc ?NaAc )底液中,Cd 2+和Pb 2+分别在-0.72和-0.48V 灵敏地产生溶出峰,线性范围分别为0.05~10mg/L 和0.03~5mg/L ,检出限均为10m g/L 三本方法操作简单二安全快速二重现性好,适合于废水二地表水二及生活用水中镉和铅的测定三 关键词 石墨烯修饰铂电极;差分脉冲阳极溶出伏安法;铋膜;重金属离子  2012?05?25收稿;2012?09?11接受 本文系国家973计划(Nos.2012CB933303,2011CB707505),国家科技支撑计划(No.2012BAK08B05)以及上海市科委(Nos.11391901900,11530700800,11ZR1443900,10391901600)资助项目*E ?mail:jinqh@https://www.doczj.com/doc/f414096976.html, 1 引 言 镉和铅具有极大的生物毒性,富集在人体内会造成极大的危害[1]三因此,研制出灵敏二快速二准确的 重金属检测传感器尤为重要三溶出伏安法广泛地应用于重金属离子的测定,早期的工作电极采用汞膜电极,但汞有毒性且易挥发,存在汞污染问题[2,3]三后来常用低毒的铋代替汞进行测定[4~7]三2004年,石墨烯被首次发现[8]三因为其具有许多优异而独特的性能而被广泛地应用于微纳电子器件二新型复合材料二传感器材料等领域[9,10]三采用石墨烯修饰电极测定重金属离子已有多篇报道,2009年,Li 等[11]用石墨烯纳米片溶液和Nafion 溶液混合制作石墨烯修饰玻碳电极,并预镀铋膜,测定了Cd 和Pb 三 Wang 等[12]用同样的修饰方法制得石墨烯修饰玻碳电极,并镀汞膜,采用溶出伏安法测定了Cu ,Pb 和Cd 三Brownson 等[13]用市售的石墨烯溶液制作石墨烯修饰丝网印刷碳电极,测定了Cd 三石墨烯修饰电极用于电化学分析有以下特点:吸附能力强二传质速率高二抗氧化腐蚀等[11,12]三 采用微机电系统(Micro ?electro ?mechanical systems ,MEMS )技术制作工作电极,具有成本低廉二一致性好二微型化二易集成等优点[5,14,15]三本研究采用MEMS 工艺制作出铂电极,然后利用CVD 法在铂电极上生长石墨烯得到G/Pt 电极,与Ag/AgCl 参比电极二铂丝对电极构成三电极体系三利用本传感器检测HAc ?NaAc 缓冲液中的Cd 2+和Pb 2+,考察了共沉积铋液浓度二电沉积电位二电沉积时间等对实验结果的影响,同时考察了传感器检测的线性范围二检出限二抗干扰性等三利用本传感器测定水样中的Cd 2+和Pb 2+,结果较好三 2 实验部分 2.1 仪器与试剂 Ag/AgCl 电极(上海辰华仪器公司);IM6ex 电化学工作站(德国Zahner 公司);TL1200管式炉(南京意帆仪器公司)三AZ4620光刻胶,AZ400K 显影液(日本Fuji Film 公司)三将C 4H 6CdO 4四2H 2O,C 4H 6PbO 4四3H 2O 和Bi (NO 3)3四5H 2O 分别加入到醋酸?醋酸钠缓冲溶液 (pH =4.5)中,配制成重金属离子浓度梯度和共沉积铋膜溶液三 2.2 石墨烯修饰铂电极的制备 采用氧化工艺,在硅片上制作厚度为微米级的SiO 2氧化层,利用Lift ?off 工艺制备图形化的铂电极; 第41卷2013年2月 分析化学(FENXI HUAXUE ) 研究简报Chinese Journal of Analytical Chemistry 第2期278~282

2021年食品安全检测中电化学分析法的运用

食品安全检测中电化学分析法的运用 食品安全检测中电化学分析法的运用 电位分析法是一种通过测量电极电位来获得溶液中待测物质浓度信息的分析方法,下面是一篇关于食品安全检测中电化学分析法运用探究的,欢迎阅读了解,希望对你的有帮助。 随着 ___发展和生活水平不断提高,食品作为人们最基本生活必需品的消费逐渐从数量型向质量型转变,食品质量与安全成为广大民众普遍关心的问题。因此,为了提高食品质量和保证食品安全,必须充分发挥食品质量安全检验检测的效能,不断丰富食品检测方法,改进测试手段,逐步提高检测水平,为人们吃上安全的放心食品提供保障。目前,仪器分析方法已经成为食品安全检测的主要方法,如,光学分析法(分光光度法、原子荧光光谱法、原子吸收光谱法)、电化学分析法、色谱分析法(气相色谱法、高效液相色谱法)等方法[1]. 电化学分析法是建立在化学电池的一些电学性质(如电导、电位、电流、电量等)与被测物质浓度之间存在某种关系而进行测定的一种仪器分析方法。按照实验过程中测定的电学参数不同,可将电化学分析法区分为电导分析法、电位分析法、电解分析法、库仑分析法、伏安法和极谱法等。与其它仪器分析方法比较,电化学分析法具有灵敏度和准确度高、测量范围宽、仪器设备简单、容易实现自动化等特点,已经在食品质量检测中广泛应用[2,3].本文根据电化学分析方法类

型,对电位分析法、伏安分析法、极谱分析法和电化学传感器法等几种方法在食品检测方面的研究和应用情况进行了评述。 电位分析法是一种通过测量电极电位来获得溶液中待测物质浓度信息的分析方法,分为直接电位法和电位滴定法。电位滴定法不需要指示剂,也不受溶液浑浊和颜色 ___,可以准确判断终点,在食品检测中应用较为普遍。比如,采用电位滴定法可以测定食品中调味品之一的 NaCl 含量。通常采用银电极和饱和甘汞电极组成原电池,用AgNO3标准溶液滴定 Cl-离子至终点电位。陈泽林等[4]采用电位滴定法测定了酱油、午餐肉和香肠三种食品中 NaCl 含量。为了克服盐桥中饱和氯化钾溶液对 Cl-离子测定结果 ___,他们将参比电极改为双盐桥饱和甘汞电极,滴定终点确定采用二次微商法,使测定结果更为准确和合理,实验加标回收率为98.54%~101.06%.郑自强等[5]和喻利娟等[6]的研究也表明,采用电位滴定法测定罐头、水、酱油等食品中 NaCl 含量,具有准确度高、精密度好等优点,更重要的是方法简便易行,尤其适用于有色浑浊食品中 NaCl 含量的测定。 乳制品是人体摄取蛋白质的之一,其营养价值以蛋白质含量高低作为主要指标,因此,乳制品中蛋白质含量的测定备受关注。采用凯氏定氮法测定乳制品中蛋白质含量,虽然具有结果准确、重现性好的优点,但容易受到三聚氰胺、尿素等一些非蛋白氮干扰,且操作过程复杂,产生的 SO2等气体对环境有污染。为了解决凯氏定氮法存

方波溶出伏安法测定头发中锌的含量

收稿日期:2006-07-18 作者简介:汪洋(1962-),男,江苏如皋人,商丘职业技术学院高级教师,主要从事应用化学教学与研究.文章编号:1671-8127(2007)05-0068-04 方波溶出伏安法测定头发中锌的含量 汪 洋,张向前 (商丘职业技术学院,河南商丘476000) 摘 要:在pH =6.00的乙二胺-盐酸缓冲溶液中,采用铋膜电极做工作电极,饱和甘汞电极为参比电极,铂为 辅助电极,测定头发样品中的锌的含量.结果:方波溶出伏安法的灵敏度高,线性范围较宽,因此该方法是一种灵敏 度和正确度较高的测定微量锌含量的方法,且操作方便快捷,仪器装置简单,价格低廉,适合测量人发中锌的微量 含量. 关键词:头发样品;铋膜电极;锌 中图分类号:O65 文献标识码:A 人体的微量元素是维持人体生命活动的必要物质,在人体内具有重要的生理功能和营养作用.人发作为人体组织的一部分,其中元素含量能反映人体内微量元素运动变化的平均水平及累计情况.人发一经生长出来,其中的微量含量是基本稳定的,具有较好的分析重现性,对人发中微量元素进行测定分析,并对所 得大量数据进行分析研究,对于了解人体内微量元素与各种疾病之间的联系有积极的作用[1].虽然微量元 素在体内含量甚微,却具有高度的生物活性,对维护机体正常代谢及生命活动至关重要.头发和血液中的测定在反映体内这些元素营养状态中的作用各有侧重,血液中的锌含量测定对临床诊断短期内这些元素缺乏和近期疗效评价较为灵敏,而头发是人体的终末排泄器官,测定头发中的锌可以反映机体内这些微量元素和矿物质在过去数周及数月中的营养状况和代谢变化.因此,对长期或慢性因素引起的这些元素缺乏的临 床诊断尤为可靠[2]. 到目前为止,已经报道了许多测定头发中微量元素的方法,有石墨炉分光光谱法、分光光度法、原子吸收法,还有一些电位溶出法;当使用电位溶出法时,有时所用的试剂选择性较差,用于某些复杂样品分析时, 常借用一些适当的分离富集手段以消除干扰;分光光度法是国内外的标准方法,但它的操作烦琐[3],引入试 剂多,测定时易造成污染;原子吸收法仪器昂贵,分析成本高、不易于普及;电位化学方法的方波溶出伏安法并不多见,有分辨高、重现性好、灵敏度和正确度都较好,且简单快捷、易于掌握、仪器装置简单、价格廉价、 操作方便等优点[4]. 1 实验原理 方波溶出伏安法的测定分为电积和溶出两个基本过程,电积过程是用其要测的金属离子控制电位(电解的方法富集于工作电极上,使电极表面金属浓度相当大),然后电位扫描预测物质从电极上溶出,进入溶液,记录溶出过程的I -e 曲线进行分析的方法.富集与溶出全过程可表示为: Me +ne +B i ==Me (B i ) 在富集沉积阶段,溶液应进行搅拌,以提高工作电极表面的富集量;在平衡阶段,溶液应停止搅拌,使溶液充分静止,以使在溶出过程得到纯的扩散电流;在溶出阶段,富集在电极表面的欲测物质氧化为离子,重新进入溶液,进行电位扫描,并得到溶出峰,以此进行定量分析. 2 实验部分 2.1 主要试剂 1.000ug/L 锌标液:称取1.000g 高纯锌(99.99%,)以适量的盐酸溶解,用蒸馏水定量至1L,用时稀释2007年第5期第6卷(总第32期) 商丘职业技术学院学报JOURNAL OF SHANG Q I U VOC ATI O NAL AND TECHN I CAL C OLLEGE Vol .6,No .5Oct .,2007

实验50 线性扫描伏安法测定废水中的镉

实验50线性扫描伏安法测定废水中的镉 【实验目的】 (1)学习CHI750A电化学工作站的操作使用 (2)熟悉铋膜电极的制备,掌握线性扫描伏安法的基本原理 (3)掌握线性扫描伏安法测定废水中痕量镉的方法。 【实验原理】 线性扫描伏安法是在电极施加一个线性变化的电压,即电极电位是随外加电压线性变化记录工作电极上的电解电流的方法。根据电流-电位曲线测得的峰电流与被测物的浓度呈线性关系,可作定量分析。工作电极是可极化的微电极,如滴汞电极、静汞电极或其他固体电极;而辅助电极和参比电极则具有相对大的表面积,是不可极化的。 Cd2+在多种底液中都有良好的极谱波。经典单极谱扫描伏安法工作电极为滴汞电极或悬汞电极,后改用金基汞膜电极作为工作电极。实验中采用1.0mol/L HCL做底液,在-0.3~-0.8V 进行线性电势扫描,Cd2+在汞膜上发生如下电极反应: Cd2++2e+Hg=Cd(Hg)E1/2=-0.67V(vs.SCE) 由于汞具有很强的毒性,存在很大的污染问题。铋膜电极是新近发展起来的具有和汞膜电极相似性能的固体电极,操作简便,灵敏度高,无毒,铋膜易除去,不会造成环境污染。 实验采用醋酸-醋酸钠缓冲液(pH=4.7)作底液,在-0.3~-0.9V进行线性电势扫描,Cd2+在铋膜上还原为Cd,和铋形成类似于汞齐的合金。而且电流峰高与浓度成正比,据此进行定量分析。由于线性扫描伏安法的电位扫描速度较快,不可逆的氧波影响不大,当被测物质浓度较大时可不必除氧。 实验使用CHI750A电化学工作站,它集成了多种常用的电化学测量技术,包括循环伏安法、线性扫描伏安法、阶梯扫描伏安法、差分脉冲伏安法、方波伏安法、交流伏安法、交流阻抗技术等。本实验采用线性扫描伏安法(linear sweep voltammetry,LSV)技术。仪器软件部分具有很强的数据处理功能,包括电流峰电位、峰高和峰面积(电量)的自动测量,半微分、半积分和导数处理等。通过半微分(semi-derivative)处理,可将伏安波动半峰形转化成峰形,改善了峰形和峰分辨率。这种多组分的同时测定中是十分有用的。 【仪器试剂】 1.仪器 CHI750A电化学工作站;三电极系统;铋膜电极为工作电极,Ag/AgCl电极为参比电极,Pt为辅助电极。 2.试剂 5000mg L-1硝酸铋(A.R.)储备液;5000mg L-1溴化钾(A.R.)储备液; 醋酸-醋酸钠缓冲液(pH=4.7):醋酸钠83g溶于水,加冰醋酸60mL,加水稀释至1000mL;镀铋液(500mg L-1):量取5mL硝酸铋储备液和5mL溴化钾储备液于50mL容量瓶中,再用醋酸-醋酸钠缓冲液稀释至50mL; 0.5mg mL-1Cd2+标准溶液;样品溶液:含Cd2+的废水样(已含缓冲液) 【实验步骤】 1.铋膜修饰玻碳电极的制备

环境检测中电化学传感器的应用

环境检测中电化学传感器的应用 摘要:随着时代的发展以及国家综合实力的提升,大量高新技术被应用到了环 境检测工作中。近年来,很多科研团队以及相关部门都对环境检测技术以及仪器 设备的应用提高了重视,并对检测技术的应用原理和要点进行了多层次探讨。电 化学传感器的应用就是现阶段很多科研团队关注的重点内容,一些行业领域在发 展中还会将电化学传感器应用其中,如工业领域或农业领域等。 关键词:电化学传感器;环境检测;应用研究 1 电化学传感器在工作时的原理及特点分析 1.1原理分析 电化学传感器在不断创新和发展下已经具有较强的实用性,其工作原理是通 过和被测对象发生反应,进而形成气体,而气体的浓度数值与设定的信号能得到 相应的检测结果。一般形式的电化学传感器主要是由传感电极与反电极所组成, 同时由一个薄电解层装置予以隔开。在实际应用中通过电极间连接的电阻器,与 被测气浓度成正比的电流会在正极与负极间流动。测量该电流即可确定气体浓度。其实质主要应用污染物质在电极表面发生电化学反应,然后通过先进的转换装置 对检测的信息进行转化,实现可识别的信息与数字,进而实现定性与定量的分析 检测目标的一种仪器装置。 1.2 特点分析 对电化学传感器的应用特点进行深入研究,能够进一步提高环境检测工作的 效率与质量,还能有效的提升化学传感器的应用价值,其主要特点体现在以下几 个方面: 第一,电化学传感器其实在很早之前就被应用到氧气检测中,受到时代发展 以及国家科学技术水平提高的影响,电化学传感器还能在毒气检测以及环境检测 中发挥出很大的效果,目前已经被广泛的应用到了很多领域的发展中,是现阶 段环境检测邻域发展中不可缺少的重要设备。 第二,电化学传感器之所以受到环境检测部门以及相关科研团队的关注,是 因为这种传感器具有较强的选择性和敏感性,能够在环境检测工作中发挥出很大 的作用。比如电化学传感器较其他设备相比,能够对环境中的检测成分进行选择,并有效的提高环境检测的准确效果。 第三,电化学传感器能保证在消耗较少电能的同时保证环境检测工作的开展,而且对电源的要求较低,是一种节能降耗的环境检测设备。另外,电化学传感器 的可移动性效果明显,既方便环境检测团队的操作,有减轻了工作人员的负担。 第四,虽然电化学传感器具有很多优点,但也存在不足之处,那么就是电化 学传感器在使用过程中主要处在较恶劣环境中,如果不能对其进行及时的维护与 保养,那么就会出现使用寿命缩短或者损坏情况。因此环境检测部门需要对这 方面内容提高关注。 2 电化学传感器在环境检测中的应用探析 2.1 在重金属离子检测中的应用 现阶段,重金属离子检测的方式通常有以下几种:电化学方法、光谱法以及 质谱法。其中,电化学方法的操作流程比较容易,且其花费的成本较低。所以, 在重金属离子检测中应用的比较广泛,对相关行业的影响也较大。在重金属离子

电化学实验步骤

电化学实验 1. 电极的预处理 将玻碳电极在金相砂纸上打磨成镜面(如果电极表面光滑,这一步可省去),依次用0.3 μm和0.05 μm湿润的Al2O3在抛光布上抛光,用蒸馏水冲洗干净,在0.005 mol/L铁氰化钾+0.1mol/L KCl溶液中于–0.2–+0.6 V的电位范围内以0.1V/s 的扫描速度扫描得到循环伏安曲线,峰电位差在70–80 mV,认为电极符合实验要求。 2.0.005 mol/L铁氰化钾+0.1mol/L KCl溶液的配制 铁氰化钾摩尔质量329.24 g·mol–1;KCl的摩尔质量74.551 g·mol–1,如果配置500mL溶液,则需要铁氰化钾和KCl的质量分别为: 329.24 g/mol×0.005 mol/L×0.5 L =0.0.8231g 74.551 g/mol×0.1 mol/L×0.5 L =3.7276 g 二者配在同一溶液中。 3. 0.1 mol/L KH2PO4不同pH磷酸盐缓冲溶液的配制 1 mol/L NaOH 250 mL 1×0.25 ×40=10 g 1mol/L H3PO4 (浓磷酸的摩尔浓度大概是14.6 mol/L)250 mL 0.1mol/L KH2PO4(136.09 g/mol) 136.09 g/mol ×0.1 mol/L × 2 L=27.2180 g 如果做铋膜修饰电极试验,需要配以下试剂,如果不做铋膜修饰电极实验,则不需要配置以下溶液。 (1)溶液的配置; 1000 mg/L Bi3+储备液:在一定量二次水中加入19 mL浓硝酸,再加入0.58 g Bi(NO3)3.5H2O,使用二次水稀释至250 mL,备用。其中,硝酸浓度为5%。 100 mg/L Bi3+电镀液:用25 mL移液管移取1000 mg/L Bi3+储备液于250 mL 容量瓶中,使用二次水稀释至刻度,备用。 0.1 mol/L NaAc–HAc缓冲溶液:称取1.2300 g NaAc.3H2O,移取0.9 mL冰醋 酸,混合,使用二次水稀释至250 mL,再使用HAc或NaOH,准确调节至所需pH,备用。 1 mol/L NaAc–HAc 溶液配置:称取12.3000 g NaAc.3H2O,移取9.1 mL冰醋 酸,混合后用二次水稀释至250mL,实验室用HAc或NaOH调节所需pH值以备用。 1 g/L Zn2+储备液的配置:准确称取0.4463 g ZnSO4·7H2O(287.54,161.44), 用二次水溶解后定容至250 mL容量瓶中,备用。

相关主题
文本预览
相关文档 最新文档