当前位置:文档之家› 第二代测序技术简介

第二代测序技术简介

第二代测序技术简介
第二代测序技术简介

第二代测序技术(Next-Generation Sequencing)

NGS之基础篇

2001年,美、英、法、德、日、中六国合作,历时十年,耗资数十亿美元的人类基因组计划(Human Genome Project,HGP)宣告完成。转眼又是十年过去,在此期间,各国科学家仍在为解读基因的密码而不懈努力,这其中最大的突破,就是第二代测序技术的推出。HGP的顺利完成证明了我们有能力对自身的遗传信息进行研究,然而,高昂的成本、漫长的时间、巨大的人力需求,无不限制着对遗传密码的进一步认识。从HGP开始的第一天期,科学家们就在寻求更好的方法来对基因组进行研究,“鸟枪法”就是其中之一。2006年,美国X大奖基金会(https://www.doczj.com/doc/ff14062427.html,)设立了奖金高达1000万美元的基因组Archon X大奖,旨在奖励第一个在10天内以低于100万美元的成本完成100个人类基因组测序的民间团队。而罗氏(Roche)、应用生物系统(Applied Biosystems,ABI)、Illumina三家公司先后推出了各自的第二代高通量测序平台,成为NGS领域的领头羊。

2005年底,454公司推出第一个基于焦磷酸测序原理的高通量基因组测序系统——Genome Sequencer 20 System,这是核酸测序技术发展史上里程碑式的事件。随后,罗氏公司以1.55亿美元收购了454公司,并在2006年推出了更新的GS FLX测序系统,该系统可在10小时的运行中获得100万条读长(reads),4~6亿个碱基信息(base pair),且准确率达到99%以上。2008年,GS FLX系统再次升级,通量提高了

5倍,读长和准确率也有所增加。虽然454 GS测序平台也许不是市场占有率最高的测序仪,但截至2011年3月,利用该系统进行研究的论文已发表超过1000余篇,而它在读长上的优势明显胜于另两套系统,因此在从头测序(de novo)和宏基因组测序(meta genome)方面有着不可替代的地位。

2006年,Solexa公司也推出了自己的NGS系统——Genome Analyzer,简称GA。这套基于DNA簇(DNA cluster)、桥式PCR(Bridge PCR)和可逆阻断(Reversible terminator)等核心技术的系统具有高通量、低错误率、低成本、应用范围广等优点。2007年,Illumina公司以6亿美元的高价收购了Solexa,使GA得以商品化。GA最早期的版本一次运行可获得1Gb的数据,因此也有1Gb Analyzer的含义,而最新的Hiseq2000平台则能够在10天的运行中获得300Gb以上的数据,读取的碱基长度达到150bp左右。更有消息称,Illumina已完成了600Gb 的运行测试并在部分客户中开展了前期体验,Tb(1000Gb)级的测试Run也将于年内进行。据不完全统计,Illumina公司已售出超过600台/套GA IIx和Hiseq2000平台,2010年仅深圳华大基因研究院一家就购买了128台Hiseq2000,一举成为全球最大的基因组测序与分析中心,Illumina公司在测序领域的影响力由此可见一斑。

在Sanger测序时代,美国应用生物系统公司(ABI)一直是该行业的龙头老大,其垄断地位无人能撼,从早期的377到全自动化的3730xl,ABI的测序仪被广泛应用在基因组学研究的各个方面。然而在第二代测序技术迅猛发展之初,ABI起步较晚,显得有些漫不经心。直到2005

年454公司推出GS平台,ABI的领先地位受到威胁,这才开始发力,迅速收购了研发NGS的一家小公司Agencourt,并于2007年推出了它的SOLiD测序平台。此后SOLiD不断升级,目前已到SOLiD 5版本(SOLiD 5500xl)。SOLiD的全称是Sequencing by Oligo Ligation Detection,即寡聚物连接检测测序,其基本原理是通过荧光标记的8碱基单链DNA 探针与模板配对连接,发出不同的荧光信号,从而读取目标序列的碱基排列顺序。在该方法下,目标序列的所有碱基都被读取了两遍,因此SOLiD最大的优势就是它的高准确率。据悉,SOLiD 5平台的测序通量已达到30Gb/天,成本低于60美元/Gb,准确率高达99.99%。并且由于SOLiD系统采用的不是PCR反应进行DNA合成与测序,因此对于高GC含量的样本,SOLiD系统具有非常大的优势。

NGS之进阶篇

454的焦磷酸测序原理,简单来说就是利用DNA聚合酶、ATP硫酸化酶、荧光素酶和双磷酸酶的协同作用,将PCR反应每一个碱基(dNTP)的延伸与一次荧光信号的释放偶联起来,通过记录荧光信号的有无和强度,达到实时测定DNA序列的目的。在454测序仪中,A、T、G、C 四种碱基是分别存储在单独的试剂瓶中的,每步反应四种碱基依次加入反应池,当碱基配对结合,就会释放出一个焦磷酸(PPi),而这个焦磷酸在酶的作用下,将荧光素氧化成氧化荧光素,并发出光信号,从而读取出这一位置的碱基信息。

454测序仪的整个实验步骤可大致概括为:样品处理、文库制备、

emPCR、反应板准备、上机测序。样品处理主要是针对大片段的DNA 分子,如基因组DNA、Fosmid或BAC质粒等,利用超声或氮气打断将这些DNA分子片段化,然后采用琼脂糖凝胶电泳回收或磁珠纯化,选择500-800bp的DNA片段。对于非编码RNA或PCR产物,则不需要这一步骤。文库制备包括接头连接和磁珠纯化两步,454的文库接头分A、B两种,各44bp,由20bp的PCR引物、20bp的测序引物及4bp (TCAG)的“key”碱基构成,其中B接头的5’端带有生物素(Biotin)标记,用于磁珠纯化步骤。经过磁珠结合与DNA变性之后,只有A+目的片段+B形式的连接产物得以富集,另两种形式(AA、BB)的产物都被去除。emPCR是454测序的一个关键步骤,将富集到的文库与测序磁珠、各反应物混合,加入特定的矿物油和表面活性剂,再利用振荡器剧烈振荡,使反应体系形成油包水(water-in-oil)的稳定乳浊液。在理想条件下,每一个液滴,或称微反应器(microreactor)中将只包含一个磁珠和一条单链DNA,通过控制该步骤的条件,1mL乳液中可以形成至少10的6次方个理想的微反应器。经过PCR扩增后,每一个磁珠上将形成密集的DNA簇,这些DNA序列完全相同,即可用于后续的步骤。454测序的反应板称为PTP(Pico Titer Plate),含有350万个由光纤组成的小孔,每个孔的直径为29μm,而测序磁珠的直径为20μm,因此每个孔中仅能容纳一个磁珠。将磁珠与测序试剂加入PTP中,使之可用于上机测序。测序步骤如前所述,四种碱基在泵的控制下依次加入反应板,反应完成后再洗去,每延伸一个或若干个碱基,就会发出一次光信号,通过记录信号的有无和强度,即可测定DNA序列。

454测序准确度较高,当读长超过400bp时,其准确性仍能达到99%以上,主要的错误来自于同聚物,即相同碱基的连续延伸,如ATTTG 这样一段序列,A和G的读取没有问题,但T只记录了一次光信号,仅信号强度与ATG序列的T有所不同,因此同聚物越长,可能产生的误差就越大。目前,由于454测序仪在读长上的明显优势,它在大基因组从头测序(de novo)、转录组分析、基因组结构分析等领域有着广泛的应用。

以下图片:1. 454 GS FLX测序仪外观;2. 3(4)种连接产物的磁珠纯化;3. PTP板与测序磁珠;4. 454 GS测序峰图;5. 上机准备实拍图。

NGS之进阶篇二:Solexa

Illumina Solexa高通量测序平台可以说是目前“测序界”应用最广泛的NGS平台,它在兼容性、操作性和成本方面有着较大的优势,第一个亚洲人基因组“炎黄一号”、第一个非洲人基因组、熊猫基因组、家蚕

基因组甲基化图谱等等,都是在该平台的支持下完成的。从最初的GA 到GA IIx,又更新换代为现在的Hiseq2000,Solexa测序平台的通量由1Gb/run一路提升至300Gb/run,预计在年内还将实现1Tb/run的升级,测序读长也从几十bp提高到150bp。当年的人类基因组计划用了10年时间完成了一个基因组的精细图,而现在使用Hiseq2000测序仪只需10天左右的时间,即可完成至少3个人类全基因组的测序工作,NGS 测序能力的飞速发展甚至超过了IT届的摩尔定律。

与454一样,Solexa测序平台所采用的也是SBS (Sequencing-by-Synthesis,边合成边测序)的方式,并且也利用光信号收集信息。有所不同的是,Solexa并没有采用间接反应(焦磷酸氧化荧光素)的形式激发光信号,而是直接在dNTP上连接荧光基团和阻断基团,通过“去阻断—延伸—激发荧光—切割荧光基团—去阻断”这样一个循环的方法来依次读取目的DNA上的碱基排列顺序。如下图所示,该原理在基础篇的Solexa宣传视频中亦有提及。由于采用了可逆阻断技术(即在dNTP上连接可剪切的阻断基团),Solexa测序的每一步只延伸一个碱基,不会出现类似于454测序的同聚物影响准确性的问题,因此其单碱基准确性较高,但随着读长的增加,荧光信号会有所衰弱,所以越“靠后”的碱基准确性会逐渐降低,这也是Solexa测序读长受限的一个主要因素。

Solexa平台的应用范围极广,几乎囊括了目前基因组学研究的所有方面,例如基因组从头测序(de novo)、重测序(re-sequencing)、基因组结构分析、转录组测序、表达谱分析、小RNA及非编码RNA测序、表观遗传学研究等等。然而,应用该平台的核心过程是大致相同的,这也为它的兼容性提供了很大的便利。Solexa测序的实验流程主要包括:样品处理、文库制备、芯片准备及上级测序。根据实验目的和样品来源的不同,Solexa测序的样品处理也有所不同,基因组DNA需进行打断及片段选择,total RNA需富集mRNA或小RNA,mRNA也要进行片段化处理,ChIP(染色质免疫共沉淀)、甲基化及PCR产物等都有各自的处理方式,需要实验人员根据情况进行选择。以基因组DNA测序为例,在获得样本后,首先需要对DNA进行检测,保证样本的浓度和完整性符合实验要求,然后使用超声或氮气打断,将这些DNA分子片段化,这步与454的样品处理类似,但不需要收集特定范围的DNA片段即可用于下一步实验。文库制备过程可分为末端修复、3’端腺苷化、接头连接、片段选择、PCR扩增以及文库纯化六个步骤。末端修复是将片段化的DNA分子在几种酶的作用下,补齐随机打断造成的黏性末端而成为

平末端。3’腺苷化目的是在DNA双链的3’端加上dATP,以便于下一步的接头连接。Solexa文库制备所用的接头(adapter)是一个一端互补,另一端开叉Y字形DNA片段,互补的部分5’端有一个T,可与3’腺苷化的DNA进行T-A连接,开叉的部分则是为了通过PCR扩增引入测序引物P5和P7的互补序列。接头连接完成后,再采用采用琼脂糖凝胶电泳回收或磁珠纯化获得特定大小的片段(通常为目的片段大小+120bp),如构建200bp文库,则回收320±20bp的DNA。之后再进行PCR扩增和纯化,即得到可用与上机测序的文库。此时的文库DNA由待测序列、测序接头、引物互补序列及index标签序列(如非index文库则无),如下图所示。

芯片准备与上机测序主要由机器完成,在此不做赘述,若想做进一步了解,可访问Illumina官方网站的技术支持:https://www.doczj.com/doc/ff14062427.html,/technology/sequencing_technology.ilmn。

同样,最后献上几张图片:1. cBot芯片制备仪与Hiseq2000测序仪;2. Solexa GAII测

序芯片;3. Solexa测序光信号采集直观图;4. Solexa测序流程与原理示意图。

新一代测序技术的发展及应用前景

2010年第10期杨晓玲等:新一代测序技术的发展及应用前景 等交叉学科的迅猛发展。 1.1第二代测序——高通量低成本齐头并进以高通量低成本为主要特征的第二代测序,不再需要大肠杆菌进行体内扩增,而是直接通过聚合酶或者连接酶进行体外合成测序¨】。根据其原理又可分为两类:聚合酶合成测序和连接酶合成测序。1.1.1聚合酶合成测序法Roche公司推出的454技术开辟了高通量测序的先河。该技术通量可达Sangcr测序的几百倍,而成本却只有几十分之一,因此一经推出,便受到了国际上基因组学专家的广泛关注。454采用焦磷酸合成测序法HJ,避免了传统测序进行荧光标记以及跑胶等繁琐步骤,同时利用乳胶系统对DNA分子进行扩增,实现了大规模并行测序。截止到2010年4月,已有700多篇文献是采用了454测序技术(http://454.com/publications.and—resources/publications.asp),对该技术是一个极大的肯定。 Illumina公司推出的Solexa遗传分析仪是合成技术的进一步发展与延伸。该技术借助高密度的DNA单分子阵列,使得测序成本和效率均有了较大改善。同时Solexa公司提出的可逆终止子”1也是该技术获得认可的原因之一。与454相比。Solexa拥有更高的通量,更低的成本。虽然片段长度较短仍是主要的技术瓶颈,但是对于已有基因组的物种来说,Solexa理所当然成为第二代测序技术的首选。2008年以来,利用该技术开展的研究大幅度上升,报道文献达400多篇(http://www.illumina.com/systems/genome—analyzer_iix.ilmn)o 1.1.2连接酶合成测序法2007年ABI公司在Church小组拍1研究成果的基础上推出了SOLID测序仪。该技术的创新之处在于双碱基编码…的应用,即每个碱基被阅读两次,因此大大减少了测序带来的错误率,同时可以方便的区分SNP和测序错误。在测序过程中,仪器自动加入4种荧光标记的寡核苷酸探针,探针与引物发生连接反应,通过激发末端的荧光标记识别结合上的碱基类型。目前SOLID3.0测序通量可达20G,而测序片段仅有35—50bp,这使得该技术与Solexa相比,应用范围还不够广泛。ABI公司正加快研发进度,争取在片段长度方面做出重大突破。 DanaherMotion公司推出Polonator¨1测序仪同样也是基于Church小组的研究成果,但是该设备的成本要低很多,同时用户在使用时可以根据自己的研究目的设置不同的测序条件。而CompleteGe—nomics公司推出的DNA纳米阵列与组合探针锚定连接测序法"1则具有更高的容错能力,试剂的消耗也进一步减少,目前已顺利完成3个个体基因组的测序工作。 1.2第三代测序——单分子长片段有望实现第二代测序技术虽然在各方面都有了较大的突破,但是仍然建立在PCR扩增的基础上。为了避免PCR扩增带来的偏差,科学家目前正在研制对DNA单个分子直接测序的第三代测序仪。最具代表性的包括Heliscope单分子测序仪,单分子实时合成测序法,纳米孔测序技术等。 Helicos技术仍然是基于合成测序原理¨…,它采用了一种新的荧光类似物和灵敏的监测系统,能够直接记录到单个碱基的荧光,从而克服了其他方法须同时测数千个相同基因片段以增加信号亮度的缺陷。PacificBioscienees公司研发的单分子实时合成测序法充分利用了DNA聚合酶的特性,可以形象的描述为通过显微镜实时观测DNA聚合酶,并记录DNA合成的整个过程。纳米孔测序技术[11’121则是利用不同碱基在通过纳米小孔时引起的静电感应稍有不同,或者不同碱基通过小孔的能力各有差异,来加以区分不同的碱基信号。 2应用与实践 Kahvejian在2008年的一篇综述中提到¨“:“如果你可以随心所欲地测序,你会开展哪些研究?”。人类基因组计划的完成和近年来高通量测序的兴起,使越来越多的科研工作者认识到,我们对于生物界的认识才刚刚起步。基因图谱的绘制并不意味着所有遗传密码的破解,癌症基因组的开展也没有解决所有的医学难题。DNA变异的模式和进化机制,基因调控网络的结构和相互作用方式,复杂性状及疾病的分子遗传基础等,仍是困扰生物学家和医学家的难题,而高通量测序的广泛应用,也许可以让我们知道的更多。 2.1DNA水平的应用 2.1.1全基因组测序新一代测序技术极大地推

高通量测序常用名词科普

高通量测序常用名词汇总 一代测序技术:即传统的Sanger 测序法,Sanger 法是根据核苷酸在待定序列模板上的引物点开始,随机在某一个特定的碱基处终止,并且在每个碱基后面进行荧光标记,产生以 A、T、C、G结束的四组不同长度的一系列核苷酸,每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧 核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-0H基团,使延长的寡聚核苷酸选择性地在G A、T或C处终止,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,通过检测得到DNA碱基序列。 二代测序技术:n ext gen eration seque ncing ( NGS又称为高通量测序技术,与传统测序相比,二代测序技术可以一次对几十万到几百万条核酸分子同时进行序列测定,从而使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序 (Deep sequencing )。NGS主要的平台有Roche(454 &454+), lllumina ( HiSeq 2000/2500、GAIIx、MiSeq),ABI S0LiD 等。 基因:Gene是遗传的物质基础,是DNA或RNA分子上具有遗传信息的特定核苷酸序列。基因通过复制把遗传信息传递给下一代,使后代出现与亲代相似的性状。 DNA:Deoxyribonucleic acid ,脱氧核糖核酸,一个脱氧核苷酸分子由三部分组成:含氮碱基、脱氧核糖、磷酸。脱氧核糖核酸通过3',5'- 磷酸二酯键按一定的顺序彼此相连构成长链,即DNA 链,DNA链上特定的核苷酸序列包含有生物的遗传信息,是绝大部分生物遗传信息的载体。RNA:Ribonucleic Acid ,,核糖核酸,一个核糖核苷酸分子由碱基,核糖和磷酸构成。核 糖核苷酸经磷酯键缩合而成长链状分子称之为RNA链。RNA是存在于生物细胞以及部分病 毒、类病毒中的遗传信息载体。不同种类的RNA链长不同,行使各式各样的生物功能,如

新一代测序法简介

新一代测序法简介 新一代测序方法是一种直接测序法,它既可以分析基因和DNA的组成(定性分析),也可以测定同一类型基因在表达过程中产生的数量(定量分析),以及不同类型基因或DNA 之间的差别所在(交叉对比分析)。自2004年,454测序技术发展以来,已经出现的测序产品超过六种之多。这些产品的技术特点见下表: 产家名称产品技术特点优缺点 化学反应测序方法误读率样品准备高通量程度 Roche (454 Life Science) 焦磷酸标记的链 反应 焦磷酸基 标记 <1% 较复杂,需PCR 中等 Illumina(Solexa)四色可逆终止码合成法1%—3% 较复杂,需PCR 中—高ABI(SOLID) 双色可逆终止码合成法1%—5% 较复杂,需PCR 中—高Helicos Bioscience 单色可逆终止码合成法2%—8% 简单,无需PCR 高—超高Intelligent Biosystm 四色可逆终止码合成法1%—5% 较复杂,需PCR 中—高 Pacific Bioscience 四色焦磷酸基标 记焦磷酸基 标记 3%—8% 简单,无需PCR 高 VisiGen 焦磷酸基标记 FRET 焦磷酸基 标记 3%—8% 简单,无需PCR 高 在这些技术中,从所分析的样本在测序前是否需要扩增,大致可以分为两类,即克隆扩增型和单分子测序型。两种类型在测序技术上区别并不大,但对结果的影响却有不小的差别。主要体现在两个方面:(1)单分子测序更能反应细胞或组织内分子的真实情况,尤其是在需要定量分析的情况下。而克隆扩增型中的PCR反应使得样品中DNA分子的扩增机会并不完全均等,这会对基因表达的定量分析造成影响;(2)单分子测序具有通量更高的优势。克隆扩增使得同一类型的分子数目急剧上升,在提高同类型分在在固相表面出现的几率同时,也降低了不同类型分子出现的机会。 面重点介绍Pacific Biosciences公司推出的Single Molecule Real Time (SMRT?) DNA Sequencing(单分子实时DNA测序)。 首先,在这一测序技术中有主要有两个关键的技术: 一、荧光标记的脱氧核苷酸避免了碱基的空间位阻效应。显微镜现在也无法实现实时看到“单分子”,但是它可以实时记录荧光的强度变化。当荧光标记的脱氧核苷酸被掺入DNA 链的时候,它的荧光就同时能在DNA链上探测到。当它与DNA链形成化学键的时候,它的荧光基团就被DNA聚合酶切除,荧光消失。这种荧光标记的脱氧核苷酸不会影响DNA聚合酶的活性,并且在荧光被切除之后,合成的DNA链和天然的DNA链完全一样; 二、纳米微孔(Zero-mode waveguide (ZMW))。因为在显微镜实时记录DNA链上的荧光的时候,DNA链周围的众多的荧光标记的脱氧核苷酸形成了非常强大的荧光背景,这种强大的荧光背景使单分子的荧光探测成为不可能。Pacific Biosciences公司发明了一种直径只有10nm的纳米孔,单分子的DNA聚合酶被固定在这个孔内。在这么小的孔内,DNA链周围的荧光标记的脱氧核苷酸有限,而且由于A,T,C,G这四种荧光标记的脱氧核苷酸非常快速地从外面进入到孔内又出去,它们形成了非常稳定的背景荧光信号。而当某一种荧光标记的脱氧核苷酸被掺入到DNA链时,这种特定颜色的荧光会持续一小段时间,直到新的化学

纳米孔测序是极具前景的下一代测序技术

纳米孔测序是极具前景的下一代测序技术 Nanopore Sequencing 2019 - Patent Landscape Analysis 随着各种技术的新产品推出,哪些公司将在知识产权方面引领纳米孔测序? 纳米孔测序是极具前景的下一代测序技术 据麦姆斯咨询介绍,纳米孔测序是新一代测序(NGS)技术之一,被认为能够彻底革新DNA分析。随着时间地推移,目前已经开发出了不同形式的纳米孔测序技术,包括蛋白质纳米孔、固态纳米孔和复合纳米孔。该技术可以高速生成超长读数,减少样品制备时间以及将读数重组成原始序列所需要的数据处理时间。 这项新技术可以开发一个需要遗传指纹来快速识别癌症类型和病原体的全新客户群。根据DataBridge的数据,全球下一代测序市场将快速增长,市场规模预计将从2017年的48.3亿美元增长到2024年的163.5亿美元,2018~2024年期间的复合年增长率(CAGR)预计为19.2%。 目前,Oxford Nanopore Technologies是唯一一家将基于纳米孔的测序仪推向市场的公司。不过,还有其它几家公司正在开发自己的相关技术,Oxford Nanopore Technologies公司可能很快将不再是纳米孔测序仪的唯一供应商。例如,Two Pore Guys公司宣布将在2019年春季发布其产品套件。 随着新产品在未来的相继推出,了解纳米孔测序市场相关参与者的知识产权(IP)状况和策略,同时发现专利新申请人及其所带来的威胁至关重要。为此,著名市场研究机构Yole 子公司Knowmade深入调研了基于纳米孔的测序技术(蛋白质、固态和复合)及其应用(肿瘤学、植物遗传学等)中涉及的知识产权主要参与者。本报告可以帮助读者发现业务风险和机遇,预测新兴应用,支持战略决策以加强市场地位。 纳米孔测序全球专利申请趋势 对专利申请趋势的分析表明,从2008年到2013年,纳米孔测序相关的专利申请获得了重要增长。这一增长源自于学术研究团队(哈佛大学和加州大学)对纳米孔测序概念的验证。

新一代DNA测序技术总览

作者:尹银亮、陈会平、毛良伟译来源:生物谷 原文刊登于《分析化学》综述Analytical Chemistry 原文标题:Landscape of Next-Generation Sequencing Technologies 索引信息:https://www.doczj.com/doc/ff14062427.html,/10.1021/ac2010857 | Anal. Chem. 2011, 83, 4327–4341 原文作者:Thomas P. Niedringhaus, Denitsa Milanova, Matthew B. Kerby, Michael P. Snyder,and Annelise E. Barro 译者资料: 尹银亮,香港华大基因研发中心有限公司email:stevenyinbio@https://www.doczj.com/doc/ff14062427.html, 陈会平,毛良伟,武汉华大基因科技有限公司 【内容】 第二代测序 第二代测序成本 第三代测序技术 单分子测序法 边连接边测序法 边合成边测序法 纳米孔测序技术 蛋白质纳米孔测序法 固态纳米孔测序法 长距离阅读DNA的扩展方法 总结性评论 DNA测序正处在技术上天翻地覆剧变的阵痛之中,其突出特点是,测序通量(测序数据量)的大幅增长,原始数据中每个碱基的测序成本急剧下跌,并伴随着以巨资购买仪器以引进新技术的需求。以前看似高不可攀的奢侈性研究活动(如个人基因组测序,宏基因组学研究,以及对大量重要物种的测序),在短短几年之间,正以急速的步伐而变得越来越切实可行了。本篇综述将集中讨论在第三,第四代测序方法背后的故事:它们所面临的挑战;各种方法的局限性;以及它们带给我们的充满诱惑的前景。 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 在1977年,桑格测定了第一个基因组序列,是噬菌 体X174的,全长5375个碱基。其测序方法和历史过程以前已做过详细回顾。 后来的四色荧光桑格测序法(每一种荧光代表四种碱基中的一种)被用在自动毛细管电泳测序系统中,此系统由应用生物系统有限公司(Applied Biosystems Inc.)推上市场,后来该公司被整合入生命技术公司(Life Technologies)和贝克曼.考尔特公司(Beckman Coulter inc.)(见表1)。发表于2001年的第一个人类基因组

下一代测序技术

下一代测序技术 摘要:DNA测序技术对生物学的发展有着最根本的意义。Sanger法测序经过了30年的应用和发展,而在过去三年中,以454, solexa, SOLiD为代表的高通量测序平台已经大幅度降低了测序成本,提高了测序速度,成为基因组测序市场的主流。在此基础上,各种下一代测序技术正在快速研发,将使基因组测序和重测序的通量和成本更加平民化,为基因组学、遗传学、生物医学和健康科学等领域的发展创造更加广阔的前景。本文将对所有新的测序技术的原理、优势和应用进行总结和展望。 1977年Maxim、Gilbert发明的化学降解法测序技术和Sanger发明的双脱氧末端终止法测序技术不仅为他们赢得了诺贝尔奖,也使得从DNA序列层面研究分子遗传学成为可能。特别是后者,从最开始的凝胶电泳到越来越高通量的毛细管电泳,从开始的手工操作到越来越多自动测序仪的出现,各种改进的Sanger 测序技术统治了DNA测序领域三十年,至今仍在长片段测序,大片段文库测序方面有广泛的应用。人类基因组计划(HGP)的完成就是靠Sanger测序法。 在耗费了庞大成本的人类基因组计划宣布完成之后,越来越多的物种基因组测序工作对测序成本和通量提出了更高的要求,新一代测序技术(也被称为第二代测序技术)开始登上历史舞台。2005年454 life science公司率先推出了焦磷酸测序技术,使测序成本较Sanger法降低了100倍,速度快了(提高)100倍,人类基因组测序逐步进入了100,000美元时代。如今,454 FLX测序仪(Roche Applied Science)、基于“边合成边测序”的Solexa测序仪(Illumina Inc.)和使用“边连接边测序”的SOLiD测序仪(Applied Biosystems)已经成为基因组测序市场的主流机型。除此之外,2008年一年内又有HeliScope单分子测序仪(Helicos)和Polonator(Dover/Harvard)两种测序机型商品化。 在NHGRI(美国人类基因组研究中心)的支持和推动下,未来几年内测序成本将在目前基础上再下降100倍,最终使个人基因组测序成本降至1000美元,人类将革命性的进入个人基因组时代。高通量和低成本的测序技术将进入到普通实验室,基因组测序的简单化将使分子生物学飞跃发展,个人基因组测序产业化也将对健康医学等领域产生革命性的影响。本文将首先对目前已经商品化的新一代测序技术(454、Solexa、SOLiD、HeliScope)做一介绍和比较,再对正在研发中的各种下一代测序方法(第三代测序技术)的原理和应用做一详细的介绍和展望。 1. Roche 454测序技术 2005年454生命科学公司在《自然》杂志发表论文,介绍了一种区别于传统Sanger法的全新高通量测序方法,将测序成本降低了100倍以上,开创了第二代测序技术的先河,454测序仪也成为最先商品化的第二代测序仪。正是在此基础上,其它如Solexa、SOLiD等第二代测序仪才相继问世。454测序技术的原理在于首先使用乳液PCR(emulsion PCR)技术(图一a)扩增已经连接上接头的基因组文库片段,扩增子结合在28 μm的磁珠表面,将乳液破坏后用变性剂处理磁珠,再将含有扩增子的磁珠富集到芯片表面,用测序引物进行测序。在测序过程中,454使用了一种“焦磷酸测序技术”(Pyrosequencing),即在合成DNA 互补链的过程中,每加入一种单核苷酸(dNTP),如与模板链配对结合,就会释放出一个焦磷酸,与底物腺苷-5’-磷酸硫酸(APS)在A TP硫酸化酶作用下合成A TP,与荧光素(Luciferin)一起在荧光素酶(Luciferase)的作用下,会发出一个光信号,由芯片背后连接的电荷耦合装置(CCD,Charge Coupled Device)捕捉。454测序技术合成DNA链使用的是普通单核苷酸,没有任何标记,合成中也没有切割基团等生化反应,因此读长可以达到300-400bp。但没有阻断(block)和去阻断(de-block)过程也意味着对连续重复单核苷酸的阅读只能根据信号强度来判断,容易对其中插入和缺失碱基阅读错误。454测序技术相比较其他第二代测序技术如Solexa和SOLiD, 在读长上有着巨大的优势,但是目前成本要略高。总体而言,高读长使得454技术比较利于De Novo拼接和测序。

高通量测序技术

高通量测序技术(High-throughput sequencing)又称“下一代”测序技术 ("Next-generation" sequencing technology),以能一次并行对几十万到几百万条DNA分子进行序列测定和一般读长较短等为标志。 根据发展历史、影响力、测序原理和技术不同等,主要有以下几种:大规模平行签名测序(Massively Parallel Signature Sequencing, MPSS)、聚合酶克隆(Polony Sequencing)、454焦磷酸测序(454 pyrosequencing)、Illumina (Solexa) sequencing、ABI SOLiD sequencing、离子半导体测序(Ion semiconductor sequencing)、DNA 纳米球测序(DNA nanoball sequencing)等。 高通量测序技术是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,因此在有些文献中称其为下一代测序技术(next generation sequencing)足见其划时代的改变,同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(deep sequencing)。 实验过程 1.样本准备(sample fragmentation) 2.文库构建(library preparation) 3.测序反应(sequencing reaction) 4.数据分析(data analysis) 测序平台 自从2005年454 Life Sciences公司(2007年该公司被Roche正式收购)推出了454 FLX焦磷酸测序平台(454 FLX pyrosequencing platform)以来,因为他们的拳头产品毛细管阵列电泳测序仪系列(series capillary array electrophoresis sequencing machines)遇到了两个强有力的竞争对手,曾推出过3730xl DNA测序仪(3730xl DNA Analyzer)的Applied BioSystem(ABI)这家一直占据着测序市场最大份额的公司的领先地位就开始动摇了,一个就是罗氏公司(Roche)的454 测序仪(Roch GS FLX sequencer),,另一个就是2006年美国Illumina公司推出的Solexa基因组分析平台(Genome Analyzer platform),为此,2007年ABI公司推出了自主研发的SOLiD 测序仪(ABI SOLiD sequencer)。这三个测序平台即为目前高通量测序平台的代表。(见表一) 公司名称技术原理技术开发者 Apply Biosystems(ABI) 基于磁珠的大规模并行克隆连接 DNA测序法 美国Agencourt私人基因组学公司(APG) Illumina 合成测序法英国Solexa公司首席科学家David Bentley Roche 大规模并行焦磷酸合成测序法 美国454 Life Sciences公司的创始人Jonathan Rothberg Helicos 大规模并行单分子合成测序法美国斯坦福大学生物工程学家Stephen Quake Complete Genomics DNA纳米阵列与组合探针锚定连接 测序法 美国Complete Genomics公司首席科学家radoje drmanac 表一:主流测序平台一览 Roche 454焦磷酸测序 (pyrophosphate sequencing) Illumina Solexa 合成测序 (sequence by synthesize) Illumina Genome AnalyzerIIx测序原理 Illumina公司的新一代测序仪Hiseq 2000和Hiseq 2500具有高准确性,高通量,高灵敏度,和低运行成本等突出优势,可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究。Hiseq是一种基于单分子簇的边合成边测序技术,基于专有的可逆终止化学反应原理。测序时将基因组DNA的随机片段附着到光学透明

新一代高通量测序技术SOLiD简介

新一代高通量测序技术SOLiD简介 目前市场上有四种高通量测序仪,分别是Solexa,454 (GS-FLX),SOLiD和Polonator。根据测序原理,它们可以被分为两大类:使用合成法测序(Sequencing by Synthesis)的Solexa和454,及使用连接法测序(Sequencing by Ligation)的Polonator和SOLiD。这些高通量测序仪的共同点是不需要大肠杆菌系统进行DNA模板扩增,且测序所得序列较短:其中的454序列最长,为200~300个碱基,其余三种序列都只有几十个碱基。测序原理及序列长度的差异决定了各种高通量测序仪具有不同的应用领域。这就要求我们在熟悉各种高通量测序仪内在技术特点的基础上进行选择。 基因组所引进的SOLiD (Sequencing by Oligonucleotide Ligation and Detection)是ABI(Applied Biosystems)公司生产的高通量测序仪。目前这台SOLiD运行稳定,SOLiD实验及数据分析小组也可以为大家提供专业的技术服务。所以接下来的关键是如何把SOLiD测序仪应用到符合其技术特点的科研项目中。本短文将简单介绍SOLiD测序流程,双碱基编码原理及数据分析原理,以帮助大家了解SOLiD测序仪的技术特点和应用范围。 1.SOLiD关键技术及其原理 SOLiD使用连接法测序获得基于“双碱基编码原理”的SOLiD颜色编码序列,随后的数据分析比较原始颜色序列与转换成颜色编码的reference序列,把SOLiD颜色序列定位到reference上,同时校正测序错误,并可结合原始颜色序列的质量信息发现潜在SNP位点。 1.1. SOLiD文库构建 使用SOLiD测序时,可根据实际需要,制备片段文库(fragment library)或末端配对文库(mate-paired library)。简单地说,制备片段文库就是在短DNA片段(60~110 bp)两端加上SOLiD 接头(P1、P2 adapter)。而制备末端配对文库,先通过DNA环化、Ecop15I酶切等步骤截取长DNA片段(600bp到10kb)两末端各25 bp进行连接,然后在该连接产物两端加上SOLiD接头。两种文库的最终产物都是两端分别带有P1、P2 adapter的DNA双链,插入片段及测序接头总长为120~180 bp。 1.2:油包水PCR 我们知道,文库制备得到大量末端带P1、P2 adapter但内部插入序列不同的DNA双链模板。和普通PCR一样,油包水PCR也是在水溶液进行反应,该水相含PCR所需试剂,DNA模板及可分别与P1、P2 adapter结合的P1、P2 PCR引物。但与普通PCR不同的是,P1引物固定在P1磁珠球形表面(SOLiD将这种表面固定着大量P1引物的磁珠称为P1磁珠)。PCR反应过程中磁珠表面的P1引物可以和变性模板的P1 adapter负链结合,引导模板合成,这样一来,P1引物引导合成的DNA链也就被固定到P1磁珠表面了。 油包水PCR最大的特点是可以形成数目庞大的独立反应空间以进行DNA扩增。其关键技术是“注水到油”,基本过程是在PCR反应前,将包含PCR所有反应成分的水溶液注入到高速旋转的矿物油表面,水溶液瞬间形成无数个被矿物油包裹的小水滴。这些小水滴就构成了独立的PCR 反应空间。理想状态下,每个小水滴只含一个DNA模板和一个P1磁珠,由于水相中的P2引物和磁珠表面的P1引物所介导的PCR反应,这个DNA模板的拷贝数量呈指数级增加,PCR反应结束后,P1磁珠表面就固定有拷贝数目巨大的同来源DNA模板扩增产物。A BI公司提供的SOLiD 实验手册已经把小水滴体积及水相中DNA模板和磁珠的个数比等重要参数进行了技术优化和流程固定,尽可能提高“优质小水滴”(水滴中只含一个DNA模板一个P1磁珠)的数量,为后续SOLiD 测序提供只含有一种DNA模板扩增产物的高质量P1磁珠。

高通量测序:第二代测序技术详细介绍

高通量测序:第二代测序技 术详细介绍 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

在过去几年里,新一代DNA 测序技术平台在那些大型测序实验室中迅猛发展,各种新技术犹如雨后春笋般涌现。之所以将它们称之为新一代测序技术(next-generation sequencing),是相对于传统Sanger 测序而言的。Sanger 测序法一直以来因可靠、准确,可以产生长的读长而被广泛应用,但是它的致命缺陷是相当慢。十三年,一个人类基因组,这显然不是理想的速度,我们需要更高通量的测序平台。此时,新一代测序技术应运而生,它们利用大量并行处理的能力读取多个短DNA 片段,然后拼接成一幅完整的图画。 Sanger 测序大家都比较了解,是先将基因组DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。对于每个测序反应,挑出单克隆,并纯化质粒DNA。每个循环测序反应产生以ddNTP 终止的,荧光标记的产物梯度,在测序仪的96 或384 毛细管中进行高分辨率的电泳分离。当不同分子量的荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。 在新一代测序技术中,片断化的基因组DNA 两侧连上接头,随后运用不同的步骤来产生几百万个空间固定的PCR 克隆阵列(polony)。每个克隆由单个文库片段的多个拷贝组成。之后进行引物杂交和酶延伸反应。由于所有的克隆都是系在同一平面上,这些反应就能够大规模平行进行。同样地,每个延伸所掺入的荧光标记的成像检测也能同时进行,来获取测序数据。酶拷问和成像的持续反复构成了相邻的测序阅读片段。

Solexa 高通量测序原理 --采用大规模并行合成测序法(SBS, Sequencing-By-Synthesis)和可逆性末端终结技术(Reversible Terminator Chemistry) --可减少因二级结构造成的一段区域的缺失。 --具有高精确度、高通量、高灵敏度和低成本等突出优势 --可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究 ----将接头连接到片段上,经 PCR 扩增后制成 Library 。 ----随后在含有接头(单链引物)的芯片( flow cell )上将已加入接头的 DNA 片段变成单链后通过与单链引物互补配对绑定在芯片上,另一端和附近的另外一个引物互补也被固定,形成“桥” ----经30伦扩增反应,形成单克隆DNA簇 ----边合成边测序(Sequencing By Synthesis)的原理,加入改造过的DNA 聚合酶和带有4 种荧光标记的dNTP。这些dNTP是“可逆终止子”,其3’羟基末端带有可化学切割的基团,使得每个循环只能掺入单个碱基。此时,用激光扫描反应板表面,读取每条模板序列第一轮反应所聚合上去的核苷酸种类。之后,将这些基团化学切割,恢复3'端粘性,继续聚合第二个核苷酸。如此继续下去,直到每条模板序列都完全被聚合为双链。这样,统计每轮收集到的荧光信号结果,就可以得知每个模板DNA 片段的序列。目前的配对末端读长可达到2×50 bp,更长的读长也能实现,但错误率会增高。读长会受到多个引起信号衰减的因素所影响,如荧光标记的不完全切割。 Roche 454 测序技术 “一个片段 = 一个磁珠 = 一条读长(One fragment =One bead = One read)”

三代基因组测序技术原理(简介)

三代基因组测序技术原理简介 【写在前面的话】:首先,这一篇博文中的内容并非原创,而是对多篇文献中内容的直接摘录,有些图片和资料还来自身边的同事(在此深表谢意!),再夹杂自己的零星想法,写在这里分享与大家,同时也是为了方便自己日后若有需要能够方便获得,文章比较长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1: 测序技 术的发 展历程 生命体 遗传信 息的快 速获得 对于生 命科学 的研究 有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。

高通量测序:第二代测序技术详细介绍

在过去几年里,新一代DNA测序技术平台在那些大型测序实验室中迅猛发展,各种新技术犹如雨后春笋般涌现。之所以将它们称之为新一代测序技术(next-generation sequencing),是相对于传统Sanger测 序而言的。Sanger测序法一直以来因可靠、准确,可以产生长的读长而被广泛应用,但是它的致命缺陷 是相当慢。十三年,一个人类基因组,这显然不是理想的速度,我们需要更高通量的测序平台。此时,新 一代测序技术应运而生,它们利用大量并行处理的能力读取多个短DNA片段,然后拼接成一幅完整的图 画。 Sanger测序大家都比较了解,是先将基因组DNA片断化,然后克隆到质粒载体上,再转化大肠杆菌。对 于每个测序反应,挑出单克隆,并纯化质粒DNA每个循环测序反应产生以ddNTP终止的,荧光标记的产 物梯度,在测序仪的96或384毛细管中进行高分辨率的电泳分离。当不同分子量的荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。 在新一代测序技术中,片断化的基因组DNA两侧连上接头,随后运用不同的步骤来产生几百万个空间固定的PCR克隆阵列(polony )。每个克隆由单个文库片段的多个拷贝组成。之后进行引物杂交和酶延伸反应。由于所有的克隆都是系在同一平面上,这些反应就能够大规模平行进行。同样地,每个延伸所掺入的 荧光标记的成像检测也能同时进行,来获取测序数据。酶拷问和成像的持续反复构成了相邻的测序阅读片 段。 DNA hnginetilntion DNA fraqmentnlion fn vivo cloning and amplification Cycle sequencing 3'-... GACTAGATACGAGCGTGA.. .-5* (template) 彳-…CTGAT O 曲爭i .CTGATC^A ...CTGATCT"*^ …CTG町CTA先 _________ > .,,CTGATCTAT ..CTGATCTATC ,.CTGATCTATGC ..CTGATCTATGCT ...CTGATCTATGCTC ..CTGATCTATGCTCG — Electro pho rsesis (1 read/cnpU(ary) Cyclic array sequencing Cycle 1 (>10? reads/array) Cycle 2 Cyde 3 B- A A A Is O 0 O? What IS Ibas# 1 ? Whar is bast 卍 in vitro ndaptor ligation Generf^tiorii ol ipolony array Polymerase dNTPs Lat>0led ddNTPs

下一代DNA测序技术研究进展综述

深度DNA测序技术在基因组测序中的研究策略和进展 摘要:回顾了经典DNA测序技术原理,重点阐述了深度测序技术在基因组测序中的研究策略,并结合目前比较常见的二代测序仪来分析比较相互之间的特点和优势,最后,对即将到来的三代测序法的研究进展给予了简单的介绍。 关键词:深度DNA测序基因组测序仪 DNA测序技术的发展过程漫长而艰辛,然而,我们现在获取的大部分DNA序列信息还是依靠基于Sanger在1977年建立的“DNA双脱氧链末端终止测序法”的DNA测序技术获得的。另外就是Maxam和Gilbert建立的“化学降解测序法”。在过去的七年当中,DNA测序技术的发展至少受到来自四个方面的影响:首先是人类基因组计划的出现,这项计划的实施过程中,科学家们面临了巨大的经费问题,因为传统的Sanger测序法无论怎么优化,都无法大幅度降低测序的成本,这很大程度促进了人们对在测序过程中如何降低成本的技术方面的研究。第二,人类以及其他主要模式生物参考序列数据库的建立使得短片段阅读(short-read)成为可能,这极大的促进了短片段测序技术的发展。第三,新型分子生物学技术的不断涌现导致了越来越多的诸如RNA表达染色体构象等生物现象的出现,这就需要有高通量DNA测序手段去解释这些问题,这也极大的促进了新型测序技术的发展。第四,其他学科领域的技术的发展,例如计算机技术,数据存储及分析技术,聚合酶工程技术等,极大地支持了DNA测序技术的应用。本文主要是对目前新一代DNA测序(也叫深度测序)技术(Next-generation DNA sequencing technologies)的研究策略及目前国际DNA测序最新进展做一简要的综述。 1.Sanger测序法 先来回顾一下经典的DNA测序法,从上世纪九十年代早期开始,几乎所有的DNA测序都是利用半自动化的毛细管电泳Sanger测序技术完成的(图1-a)。后来出现了高通量测序法,这种方法首先要对DNA预处理,获取大量的待测序模板即质粒或PCR产物。然后在测序一种发生测序生化反应,这个过程会产生大量长短不一(因为终止位点不一样),末端被荧光标记的延伸产物。再用分辨率高的毛细管凝胶电泳分离这些延伸产物,通过对延伸产物末端四种不同荧光颜色的区分,利用计算机软件自动“读

一代测序、高通量测序等各种测序相关概念介绍

什么是高通量测序? 高通量测序技术(High-throughput sequencing,HTS)是对传统Sanger测序(称为一代测序技术)革命性的改变, 一次对几十万到几百万条核酸分子进行序列测定, 因此在有些文献中称其为下一代测序技术(next generation sequencing,NGS )足见其划时代的改变, 同时高通量测序使得对一个物种的转录组和基因组进行 细致全貌的分析成为可能, 所以又被称为深度测序(Deep sequencing)。 什么是Sanger法测序(一代测序) Sanger法测序利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或非同位素标记进行检测。 什么是基因组重测序(Genome Re-sequencing) 全基因组重测序是对基因组序列已知的个体进行基因组测序,并在个体或群体水平上进行差异性分析的方法。随着基因组测序成本的不断降低,人类疾病的致病突变研究由外显子区域扩大到全基因组范围。通过构建不同长度的插入片段文库和短序列、双末端测序相结合的策略进行高通量测序,实现在全基因组水平上检测疾病关联的常见、低频、甚至是罕见的突变位点,以及结构变异等,具有重大的科研和产业价值。 什么是de novo测序 de novo测序也称为从头测序:其不需要任何现有的序列资料就可以对某个物种进行测序,利用生物信息学分析手段对序列进行拼接,组装,从而获得该物种的基因组图谱。获得一个物种的全基因组序列是加快对此物种了解的重要捷径。随着新一代测序技术的飞速发展,基因组测序所需的成本和时间较传统技术都大大降低,大规模基因组测序渐入佳境,基因组学研究也迎来新的发展契机和革命性突破。利用新一代高通量、高效率测序技术以及强大的生物信息分析能力,可以高效、低成本地测定并分析所有生物的基因组序列。 什么是外显子测序(whole exon sequencing) 外显子组测序是指利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序的基因组分析方法。外显子测序相对于基因组重测序成本较低,对研究已知基因的SNP、Indel等具有较大的优势,但无法研究基因组结构变异如染色体断裂重组等。

一、二、三代测序技术

一代、二代、三代测序技术 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa

technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA 聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开始前将结合的核苷酸剪切并分解。(4)数据分析 第三代测序技术-高通量、单分子测序 被称为第三代的测序的He-licos单分子测序仪,PacificBioscience的SMRT技术和 Oxford Nanopore Technologies 公司正在研究的纳米孔单分子测序技术正向着高通量低成本长读取长度的方向发展。不同于第二代测序依赖于DNA模板

相关主题
文本预览
相关文档 最新文档