当前位置:文档之家› 4661万有引力定律在天体运动中的应用例题

4661万有引力定律在天体运动中的应用例题

4661万有引力定律在天体运动中的应用例题
4661万有引力定律在天体运动中的应用例题

万有引力定律在天文学上的应用·典型例题解析

【例1】在天体运动中,将两颗彼此距离较近的行星称为双星,由于两星间的引力等于向心力而使它们在运动中距离保持不变,已知两个行星的质量分别为M 1、M 2,相距为L ,求它们的角速度.

解析:如图44-2所示,设M 1的轨道半径为r 1,M 2的轨道半径为r 2,两个行星都绕O 点做匀速圆周运动的角速度为ω;由于两个行星之间的万有引力提供向心力,根据牛顿第二定律有

G

M M r M r G M M r M r r r L

121

2112

122222212==+=ωω 以上三式联立解得

ω=112L G M M L

()+ 点拨:双星之间的万有引力大小相等,方向相反,这两个行星之所以能在引力作用下不相互靠近而保持距离不变,是因为它们都绕着二者联线上的同一点(质心)做匀速圆周运动,并且它们的角速度相同.这就是双星的物理模型.

【例2】某星球可视为球体,其自转周期为T ,在它的两极处,用弹簧秤测得某物体重为P ,在它的赤道上,用弹簧秤测得同一物体重为0.9P ,星球的平均密度是多少?

解析:设被测物体的质量为m ,星球的质量为M ,半径为R ;在两

极处时物体的重力等于星球对物体的万有引力,即=在赤道上,P G Mm R 2

因星球自转物体做匀速圆周运动,星球对物体的万有引力和弹簧秤对物 体的拉力的合力提供向心力,根据牛顿第二定律有-=G

Mm R 0.9P mR 42π2

2T

由以上两式解得星球的质量为=根据数学知识可知星球的体积为=.M V R 340943

23

2

ππPR G P P T (.)- 根据密度的定义式可得星球的平均密度为

ρππ===M V P P P GT GT 3093022

(.)- 点拨:重力是由于地球对物体的吸引而产生的力,但是不能认为重力就是地球对物体的吸引力.严格地讲,只有在两极处,重力才等于地球对物体的万有引力;在地球的其他地方,重力都小于地球对物体的万有引力.由于重力与地球对物体的万有引力差别极小,所以通常近似视为重力等于地球对物体的万有引力.

【例3】宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离

为.若抛出时的初速增大到倍,则抛出点与落地点之间的距离为L 23 L .已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G .求该星球的质量M .

点拨:设抛出点的高度为h ,第一次平抛的水平射程为x ,则有x 2+h 2=L 2.由平抛运动规律得知,当初速增大到2倍,其水平射程也增

大到,则有+=.可得的值.设该星球上的重力加速

度为,由平抛运动的规律,有=得.由万有引力定律与牛顿第2x (2x)h (3L)h g h gt g 222212 二定律,有=.式中为小球的质量,联立以上各式,解得=.G

Mm R mg m M 22332

2

LR Gt

【例4】在地球某处海平面上测得物体自由下落高度h 所需的时间为t ,到某高山顶测得物体自由下落h 同样高度所需时间增加了Δt ,已知地球半径为R ,试求山的高度H . 点拨:在海平面,=,自由落体时间=,在高山顶,′=,自由落体时间:+Δ='得=.g t g t t H R GM R

h g GM R H h g t t 22

22()+?

天体运动习题及答案

1.若知道太阳的某一颗行星绕太阳运转的轨道半径为r ,周期为T ,引力常量为G ,则 可求得( B ) A .该行星的质量 B .太阳的质量 C .该行星的平均密度 D .太阳的平均密度 2.有一星球的密度与地球的密度相同,但它表面处的重力加速度是地面表面处重力加速 度的4倍,则该星球的质量将是地球质量的(D ) A .14 B .4倍 C .16倍 D .64倍 3.火星直径约为地球直径的一半,质量约为地球质量的十分之一,它绕太阳公转的轨道 半径约为地球绕太阳公转半径的1.5倍.根据以上数据,下列说法中正确的是(AB ) A .火星表面重力加速度的数值比地球表面小 B .火星公转的周期比地球的长 C .火星公转的线速度比地球的大 D .火星公转的向心加速度比地球的大 4.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T ,引力常量为G , 那么该行星的平均密度为(B ) A .GT 23π B .3πGT 2 C .GT 24π D .4πGT 2 5.为了对火星及其周围的空间环境进行监测,我国预计于2011年10月发射第一颗火星 探测器“萤火一号”.假设探测器在离火星表面高度分别为h 1和h 2的圆轨道上运动时, 周期分别为T 1和T 2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,引力常 量为G .仅利用以上数据,可以计算出( A ) A .火星的密度和火星表面的重力加速度 B .火星的质量和火星对“萤火一号”的引力 C .火星的半径和“萤火一号”的质量 D .火星表面的重力加速度和火星对“萤火一号”的引力 6.设地球半径为R ,a 为静止在地球赤道上的一个物体,b 为一颗近地绕地球做匀速圆 周运动的人造卫星,c 为地球的一颗同步卫星,其轨道半径为r.下列说法中正确的是( D ) A .a 与c 的线速度大小之比为r R B .a 与c 的线速度大小之比为R r C .b 与c 的周期之比为r R D .b 与c 的周期之比为R r R r 7.2008年9月27日“神舟七号”宇航员翟志刚顺利完成出舱活动任务,他的第一次太 空行走标志着中国航天事业全新时代的到来.“神舟七号”绕地球做近似匀速圆周运动, 其轨道半径为r ,若另有一颗卫星绕地球做匀速圆周运动的轨道半径为2r ,则可以确定

万有引力定律应用的12种典型案例

3232 万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确

3333 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少 解析:本题主要考察普通卫星的运动特点及其规律 由开普勒第三定律T 2 ∝r 3 知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 22==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v = ,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2M a G r = ,v = ω= 2T = ⑴所有运动学量量都是r 的函数。我们应该建立函数的思想。 ⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。 ⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。 ⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。 【案例3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上

最新高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)

最新高考物理万有引力与航天常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试万有引力与航天 1.宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个 星体的质量均为 m ,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为 G , 则: (1)直线三星系统中星体做囿周运动的周期为多少? (2)三角形三星系统中每颗星做囿周运动的角速度为多少? 【答案】(1)3 45L Gm 23 3Gm L 【解析】 【分析】 (1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期; (2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度; 【详解】 (1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则: 222 22 2()(2)Gm Gm m L L L T π+= 3 45L T Gm ∴=(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗 星,满足:2 222cos30()cos30L Gm m L ω?=? 解得:3 3Gm L ω 2.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。着陆器到达距火星表面高度800m 时速度为60m/s ,在着陆器底部的火箭助推器作用下开始做匀减速直线运动;当高度下降到距火星表面100m 时速度减为10m/s 。该过程探测器沿竖直方向运动,不计探测器质量的变化及火星表面的大气

天体运动经典例题含答案.docx

. 1.人造地球卫星做半径为r,线速度大小为v 的匀速圆周运动。当其角速度变为原来的 2 4 倍后,运动半径 为,线速度大小为。 【解析】由 G Mm m 2r 可知,角速度变为原来的 2 r 可知,角速度变为原 倍后,半径变为 2r ,由v r 24 222 来的 4 倍后,线速度大小为2 v。【答案】2r,2 v 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为 v0假设宇航员在该行星表面上用弹簧测力 计测量一质量为 m 的物体重力,物体静止时,弹簧测力计的示数为N0,已知引力常量为 G,则这颗行星的质量为 A. mv 2 B. mv 4 C. Nv 2 D. Nv 4 GN GN Gm Gm 【解析】卫星在行星表面附近做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有 G M m /m / v2,宇航员在行星表面用弹簧测力计测得质量为m 的物体的重为N ,则G M m N ,解 R 2R R 2 得 M= mv 4, B 项正确。【答案】B GN 3.如图所示,在火星与木星轨道之间有一小行星带。假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。下列说确的是 A.太阳对小行星的引力相同 B.各小行星绕太阳运动的周期小于一年 C.小行星带侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值 D.小行星带各小行星圆周运动的线速度值大于地球公转的线速度值 【答案】 C【解析】根据行星运行模型,离地越远,线速度越小,周期越大,角速度越小,向心加速度等于 万有引力加速度,越远越小,各小行星所受万有引力大小与其质量相关,所以只有 C 项对。 4.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间 t 小球落回原处 ;若他在某星球表面以相同的速 度竖直上抛同一小球 ,需经过时间 5t 小球落回原处 .(取地球表面重力加速度 2 g=10 m/s ,空气阻力不计 ) (1)求该星球表面附近的重力加速度g ′. (2)已知该星球的半径与地球半径之比为R 星∶ R 地 =1 ∶4,求该星球的质量与地球质量之比M 星∶M 地.

物理必修2《万有引力》典型例题

【1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律:r T 4m r Mm G 2 22π=……①得:23 2G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 球表面的物体,其重力近似等于地球对物体的引力 由2 R Mm G mg =得:G g R M 2= 可见B 正确 【2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大?哪颗卫星的线速度大?若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少? 解析:由开普勒第三定律T 2∝r 3知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 2 2==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v =,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2 M a G r =,v = ω= 2T π = 【3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上 D 、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。

万有引力定律典型例题解析

万有引力定律·典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值; GM R GM r g 22αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求 的值.α g 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力 G Mm r mg G Mm r m 2 2α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2 π 【例】月球质量是地球质量的 ,月球半径是地球半径的,在21811 38. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力

加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月 地地地 =.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表 面需用时间为==×=. 月月g 1.75m /s S gt t 4s 2 2 12 2214 175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为: [ ] A .Gm 1m 2/r 2 B .Gm 1m 2/r 12 C .Gm 1m 2/(r 1+r 2)2 D .Gm 1m 2/(r 1+r 2+r)2

最新高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)

最新高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试万有引力定律的应用 1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体. (1)求M 、N 间感应电动势的大小E ; (2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由; (3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ? 【解析】 【分析】 【详解】 (1)法拉第电磁感应定律 E=BLv 代入数据得 E =1.54V (2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有 2Mm G mg R = 匀速圆周运动 2 2 ()Mm v G m R h R h =++ 解得 2 2gR h R v =- 代入数据得 h ≈4×105m

【方法技巧】 本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面. 2.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性. (1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M,自转周期为T,引力常量为G.将地球视为半径为R、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F0.①若在北极上空高出地面h处称量,弹簧测力计读数为F1,求比值的表达式,并就 h=1.0%R的情形算出具体数值(计算结果保留两位有效数字); ②若在赤道表面称量,弹簧测力计读数为F2,求比值的表达式. (2)设想地球绕太阳公转的圆周轨道半径为r、太阳半径为R s和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长? 【答案】(1)①0.98,② 23 2 2 0 4 1 F R F GMT π =- (2)“设想地球”的1年与现实地球的1年时间相同 【解析】 试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值. 在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式 (2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断.解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是 ① ② 由公式①②可以得出: =0.98. ③

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析 一、高中物理精讲专题测试万有引力定律的应用 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

万有引力定律练习题

万有引力定律练习题 一.选择题(共8小题) 1.(2018?榆林一模)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示.关于航天飞机的运动,下列说法中不正确的有() A.在轨道Ⅱ上经过A的速度小于经过B的速度 B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能 C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度2.(2018?江西模拟)北斗卫星导航系统由一组轨道高低不同的人造地球卫星组成。高轨道卫星是地球同步卫星,其轨道半径约为地球半径的6.6倍。若某低轨道卫星的周期为12小时,则这颗低轨道卫星的轨道半径与地球半径之比约为() A.4.2 B.3.3 C.2.4 D.1.6 3.(2018?海南)土星与太阳的距离是火星与太阳距离的6倍多。由此信息可知() A.土星的质量比火星的小 B.土星运行的速率比火星的小 C.土星运行的周期比火星的小 D.土星运行的角速度大小比火星的大 4.(2018?高明区校级学业考试)如果把水星和金星绕太阳的运动视为匀速圆周运动,如图所示。从水星与金星在一条直线上开始计时,若天文学家测得在相同时间内水星转过的角度为θ1,金星转过的角度为θ2(θ1、θ2均为锐角),则由此条件可求得()

A.水星和金星绕太阳运动的周期之比 B.水星和金星的密度之比 C.水星和金星表面的重力加速度之比 D.水星和金星绕太阳运动的向心力大小之比 5.(2018?瓦房店市一模)如图所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t通过的弧长为l,该弧长对应的圆心角为θ弧度,已知万有引力常量为G,则月球的质量是() A.B.C.D. 6.(2018春?南岗区校级期中)如图,有关地球人造卫星轨道的正确说法有() A.a、b、c 均可能是卫星轨道B.卫星轨道只可能是a C.a、b 均可能是卫星轨道D.b 可能是同步卫星的轨道7.(2018春?武邑县校级月考)如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞船在距月球表面高度为3R的圆形轨道Ⅰ运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动。则()

高中天体运动必备知识及例题讲解

授课主题 万有引力与重力的关系 教学目的 理解万有引力与重力之间的关系及会运用知识解此类问题 授课日期及时段 2013.04.06 ;3课时 教学内容 一, 本周错题讲解 二, 知识归纳 .考点梳理 (1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供, 即: G r v m r Mm 2 2 ==mω2 r=m r T 2 2 4π (2).估算天体的质量和密度 由G 2 r Mm =m r T 2 2 4π得:M= 2 3 24Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出 中心天体的质量. 由ρ= V M ,V= 3 4πR3 得: ρ= 3 2 33R GT r π.R 为中心天体的星体半径 特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=2 3GT π(2003年高考),由此可以测量天体的密度. (3)行星表面重力加速度、轨道重力加速度问题

表面重力加速度g 0,由 02 G M m m g R = 得:0 2 G M g R = 轨道重力加速度g ,由 2 () G M m m g R h =+ 得:2 2 0( )()G M R g g R h R h ==++ (4)卫星的绕行速度、角速度、周期与半径的关系 (1)由Gr v m r Mm 2 2 =得:v= r GM . 即轨道半径越大,绕行速度越小 (2)由G 2 r Mm =mω2 r得:ω= 3 r GM 即轨道半径越大,绕行角速度越小 (3)由2 2 24M m G m r r T π=得:3 2r T G M π = 即轨道半径越大,绕行周期越大. (5)地球同步卫星 所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h .要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h . 由: G2 2 2 4()M m m R h T π=+(R+h) 得: 23 2 4h R GM T π = -=3.6×104 km=5.6R R表示地球半径 三.热身训练 1.把火星和地球绕太阳运行的轨道视为圆周。由火星和地球绕太阳运动的周期之比可求得 A .火星和地球的质量之比 B .火星和太阳的质量之比 C .火星和地球到太阳的距离之比 D .火星和地球绕太阳运动速度之比 2.宇航员在探测某星球时,发现该星球均匀带电,且电性为负,电荷量为Q .在一次实验时,宇航员将一带负电q (q <

高一物理 万有引力定律 典型例题解析

万有引力定律 典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GM R GM r g 2 2αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求的值.αg 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力G Mm r mg G Mm r m 22α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2π

【例】月球质量是地球质量的,月球半径是地球半径的,在2181138. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 2212 2214175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量

最新万有引力定律 经典例题

1.天体运动的分析方法 2.中心天体质量和密度的估算 (1)已知天体表面的重力加速度g和天体半径R G Mm R2=mg? ? ? ?天体质量:M=gR2G 天体密度:ρ= 3g 4πGR (2)已知卫星绕天体做圆周运动的周期T和轨道半径r ?? ? ??①G Mm r2=m 4π2 T2r?M= 4π2r3 GT2 ②ρ= M 4 3 πR3 = 3πr3 GT2R3 ③卫星在天体表面附近飞行时,r=R,则ρ= 3π GT2 1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行速度的大小始终相等 C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误. 答案:C 2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空

后,先在近地轨道上以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v ′在火星表面附近环绕飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g ′和g ,下列结论正确的是( ) A .g ′∶g =4∶1 B .g ′∶g =10∶7 C .v ′∶v = 528 D .v ′∶v = 514 解析:在天体表面附近,重力与万有引力近似相等,由G Mm R 2=mg ,M =ρ43 πR 3 ,解两式得g =4 3G πρR ,所以g ′∶g =5∶14,A 、B 项错;探测器在天体表面飞行时,万有引力 充当向心力,由G Mm R 2=m v 2R ,M =ρ4 3πR 3,解两式得v =2R G πρ 3 ,所以v ′∶v =528 ,C 项正确,D 项错. 答案:C 3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G ,月球绕地球做圆周运动的半径r 1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r 2、周期T 2,不计其他天体的影响,则根据题目条件可以( ) A .求出“嫦娥三号”探月卫星的质量 B .求出地球与月球之间的万有引力 C .求出地球的密度 D.r 13T 12=r 23T 2 2 解析:绕地球转动的月球受力为GMM ′r 12=M ′r 14π2 T 1 2得T 1= 4π2r 13 GM =4π2r 13 Gρ43πr 3.由于不知道地球半径r ,无法求出地球密度,C 错误;对“嫦娥三号”而言,GM ′m r 22 =mr 24π2 T 2 2,T 2=4π2r 23 GM ′ ,已知“嫦娥三号”的周期和半径,可求出月球质量M ′,但是所

高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)

高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试万有引力定律的应用 1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月; (2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v . 【答案】(1)22h g t =月 (2)2 2 2hR M Gt =;2hR v t = 【解析】 【分析】 (1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度; (2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】 (1)月球表面附近的物体做自由落体运动 h =1 2 g 月t 2 月球表面的自由落体加速度大小 g 月=2 2h t (2)若不考虑月球自转的影响 G 2 Mm R =mg 月 月球的质量 2 2 2hR M Gt = 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2 v R 月球的“第一宇宙速度”大小 2hR v g R t 月== 【点睛】 结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v . 2.在不久的将来,我国科学家乘坐“嫦娥N 号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v 0的初速度竖直上抛一物体,经过时间t 1,物体回到抛出点;在月球的“两极”处仍以大小为v 0的初速度竖直上抛同一物体,经过时间t 2,物体回到抛出点。已知月球的半径为R ,求: (1)月球的质量; (2)月球的自转周期。

高一物理天体运动方面练习题

物理测试 1、 两颗人造卫星A 、B 绕地球做圆周运动,周期之比为TA :TB=1:8;则轨道半径之比和运动速率之比分别为( ) A 、RA :RB=4:1 vA :vB=1:2 B、RA :RB=4:1 vA :vB=2:1 C、RA :RB=1:4 vA :vB=1:2 D、RA :RB=1:4 vA :vB=2:1 2、如图,在一个半径为R、质量为M的均匀球体中,紧贴着球的边缘挖去一个半径为R/2的球星空穴后,剩余的 阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大? 3、两个球形的行星A、B各有一个卫星a和b,卫星的圆轨迹接近各行星的表面。如果两行星质量之比为MA/MB=p,两个行星半径之比RA/RB=q,则两卫星周期之比TA/TB为______ 4、一颗人在地球卫星以初速度v发射后,可绕地球做匀速圆周运动,若使发射速度为2v,该卫星可能( ) A、绕地球做匀速圆周运动,周期变大 B、绕地球运动,轨道变为椭圆 C、不绕地球运动,轨道变为椭圆 D、挣脱太阳引力的束缚,飞到太阳系以外的宇宙 5、如图,有A、B两颗行星绕同一颗恒星做圆周运动,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则 (1)至少经过多长时间,两行星再次相距最近? (2)至少经过多长时间,两行星相距最远? 6、已知地球的质量为M,地球的半径为R,地球的自传周期为T,地球表面的重力加速度为g,无线电信号的传播 速度为C,如果你用卫星电话通过地球卫星中的转发器发的无线电信号与对方通话,则在你讲完话后要听到对 方的回话,所需要的最短时间为( ) A、322244πT gR c ? B 、322242πT gR c ? C 、)4(43222R T gR c -?π D 、)4(23222R T gR c -?π 7、在天体演变过程中,红色巨星发生爆炸后,可以形成中子星,中子星具有极高的密度。 (1)若已知某中子星的密度为ρ,该中子星的卫星绕它作圆周运动,试求该中子星运行的最小周期。

万有引力定律典型例题分析

“万有引力定律”的典型例题 例5 【例1】假如一个作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则 [ ] A.根据公式v=ωr,可知卫星运动的线速度将增大到原来的2倍 D.根据上述选答B和C中给出的公式,可知卫星运动的线速度将 【分析】人造地球卫星绕地球作匀速圆周运动时,由地球对它的引力作向心力,即 卫星运动的线速度

当卫星的轨道半径增大为原来的2倍时,由于角速度会发生变化, 错,D正确. 同理,当卫星的轨道半径增大为原来的2倍时,由于线速度的变化,卫星所需的向心力不是减为原来的1/2,而是减小到原来的1/4.B错,C正确. 【答】C、D. 【说明】物体作匀速圆周运动时,线速度、角速度、向心加速度、向心力和轨道半径间有一定的牵制关系.例如,只有当ω不变时,线速度才与半径成正比;同样,当线速度不变时,同一物体的向心力才与半径成反比.使用中不能脱离条件. 研究卫星的运动时,最根本的是抓住引力等于向心力这一关系. 【例2】估算天体的质量 【解】把卫星(或行星)绕中心天体的运动看成是匀速圆周运动,由中心天体对卫星(或行星)的引力作为它绕中心天体的向心力.根据 得 因此,只需测出卫星(或行星)的运动半径r和周期T,即可算出中心天体的质量M.

【例3】登月飞行器关闭发动机后在离月球表面112km的空中沿圆形轨道绕月球飞行,周期是120.5min.已知月球半径是1740km,根据这些数据计算月球的平均密度.(G=6.67×10-11Nm2/kg2) 【分析】要计算月球的平均密度,首先应求出质量M.飞行器绕月球做匀速圆周运动的向心力是由月球对它的万有引力提供的. 【解】根据牛顿第二定律有 从上式中消去飞行器质量m后可解得 根据密度公式有 【例4】如图1所示,在一个半径为R、质量为M的均匀球体中, 连线上、与球心相距d的质点m的引力是多大? 【分析】把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.

天体运动经典例题含答案

1.人造地球卫星做半径为r ,线速度大小为v 的匀速圆周运动。当其角速度变为原来的24倍后,运动半径为_________,线速度大小为_________。 【解析】由22Mm G m r r ω=可知,角速度变为原来的24倍后,半径变为2r ,由v r ω=可知,角速度变为原来的24倍后,线速度大小为22v 。【答案】2r ,22 v 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为0v 假设宇航员在该行星表面上用弹簧测力 计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为 0N ,已知引力常量为G,则这颗行星的 质量为 A .2GN mv B.4GN mv C .2Gm Nv D.4Gm Nv 【解析】卫星在行星表面附近做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有 R v m M G 2/2/R m =,宇航员在行星表面用弹簧测力计测得质量为m 的物体的重为N ,则 N M G =2R m ,解得M=GN 4 mv ,B 项正确。【答案】B 3.如图所示,在火星与木星轨道之间有一小行星带。假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。下列说法正确的是 A.太阳对小行星的引力相同 B.各小行星绕太阳运动的周期小于一年 C.小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值 D.小行星带内各小行星圆周运动的线速度值大于 地球公转的线速度值 【答案】C 【解析】根据行星运行模型,离地越远,线速度越小,周期越大,角速度越小,向心加速度等于万有引力加速度,越远越小,各小行星所受万有引力大小与其质量相关,所以只有C 项对。 4.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g=10 m/s 2,空气阻力不计) (1)求该星球表面附近的重力加速度g ′. (2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地.

高中物理高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案).docx

高中物理高考物理万有引力定律的应用常见题型及答题技巧及练习题( 含答案 ) 一、高中物理精讲专题测试万有引力定律的应用 1.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银 河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星 系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G) 【答案】 【解析】 设两颗恒星的质量分别为m 1 、m2,做圆周运动的半径分别为r1、 r2,角速度分别为 w ,w.根据题意有 12 w1=w2①(1 分) r +r =r ②( 1 分) 12 根据万有引力定律和牛顿定律,有 G③( 3分) G④( 3 分) 联立以上各式解得 ⑤(2分) 根据解速度与周期的关系知 ⑥(2分) 联立③⑤⑥式解得 (3 分) 本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相 同,由万有引力提供向心力列式求解 2.“天舟一号”货运飞船于2017 年 4 月 20 日在海南文昌航天发射中心成功发射升空,完成 了与天宫二号空间实验室交会对接。已知地球质量为M ,半径为R,万有引力常量为G。(1)求质量为m 的飞船在距地面高度为h 的圆轨道运行时的向心力和向心加速度大小。 (2)若飞船停泊于赤道上,考虑地球的自转因素,自转周期为 小物体所受重力大小G0。 T0,求飞船内质量为m0的 (3)发射同一卫星到地球同步轨道时,航天发射场一般选取低纬度还是高纬度发射基地更 为合理?原因是什么?

【答案】 (1)(2)(3)借助接近赤道的低纬度发射基地更 为合理,原因是低纬度地区相对于地心可以有较大线速度,有较大的初动能 【解析】 【详解】 (1)根据万有引力定律和牛顿第二定律有 解得 (2)根据万有引力定律及向心力公式,有及 解得 (3)借助接近赤道的低纬度发射基地更为合理,原因是低纬度地区相对于地心可以有较大 线速度,有较大的初动能。 3.经过逾 6 个月的飞行,质量为 40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日 03: 56 在火星安全着陆。着陆器到达距火星表面高度800m 时速度为60m/s ,在着陆器底部的火箭助推器作用下开始做匀减速直线运动;当高度下降到距火星表面100m时速度减为 10m/s 。该过程探测器沿竖直方向运动,不计探测器质量的变化及火星表面的大气 阻力,已知火星的质量和半径分别为地球的十分之一和二分之一,地球表面的重力加速度 为g = 10m/s2。求: (1)火星表面重力加速度的大小; (2)火箭助推器对洞察号作用力的大小. 【答案】 (1) 2 g火 =4m/s (2) F=260N 【解析】 【分析】 火星表面或地球表面的万有引力等于重力,列式可求解火星表面的重力加速度;根据运动公式求解下落的加速度,然后根据牛顿第二定律求解火箭助推器对洞察号作用力.【详解】 (1)设火星表面的重力加速度为g 火,则G M 火m=mg 火 r火2 G M 地 m =mg r地2 解得 g 火=0.4g=4m/s 2

相关主题
文本预览
相关文档 最新文档