当前位置:文档之家› 信令流程

信令流程

信令流程
信令流程

CSFB相关信令流程

目录

CSFB相关信令流程 (1)

1移动性管理 (2)

1.1联合附着流程 (2)

1.2分离流程 (3)

1.3UE发起的分离流程 (4)

1.4MME发起的分离流程 (5)

1.5HSS发起的分离流程 (6)

1.6联合TA/LA更新流程 (6)

1.7周期性TA/LA更新 (8)

2语音业务 (8)

2.1主叫语音业务 (8)

2.2被叫语音业务 (9)

2.3紧急呼叫业务 (11)

2.3.1带USIM卡紧急呼叫业务流程 (11)

2.3.2不带USIM卡紧急呼叫业务流程 (12)

3SGs短消息业务 (12)

3.1始发短消息业务流程 (12)

3.2终结短消息业务流程 (14)

4MTRF业务 (17)

4.1呼叫入局后触发被叫漫游前转 (17)

4.2预寻呼触发被叫漫游前转流程 (21)

移动性管理1移动性管理主要介绍用户附着、分离、位置更新相关业务流程。联合附着流程1.1CS Fallback语音主要是通过SGs接口实现的,用户在附着网络时,MME和MSC Server需要对该用户的SGs连接进行维护。在E-UTRAN开机驻留的UE,开机后发起联合的EPS/IMSI附着流程。联合附着流程如图 1所示,由MME通过SGs接口完成UE在UTRAN/GERAN核心网的位置更新流程,使得UTRAN/GERAN核心网感知到UE的位置。

图 1联合附着流程图

1. UE(User Equipment)发起网络附着请求,向MME发送Attach Request消息。其中参数Attach Type指示这是一个联合的EPS/IMSI附着流程,并且参数指示UE具备CS Fallback能力。

图 2 Attach Request消息结构图

如图 2所示,消息体指示为附着请求,类型是联合附着请求(combined-attach)。终端上报联合附着请求则表示支持CSFB。

2. MME发送SGsAP-LOCATION-UPDATE-REQUEST消息给VLR,消息中包括new LAI、IMSI、MME name和Location Update Type等参数,其中MME name是MME 的域名。

LOCATION-UPDATE-REQUEST消息结构如图 3所示。

图 3 LOCATION-UPDATE-REQUEST消息结构图

其中中eps-location-update-type信元指示为IMSI附着,并且携带新/旧LAI,其中MME name是MME的域名。

3. VLR存储MME信息,并创建与MME下此用户的SGs关联。

4. VLR根据用户信息和位置区信息,发起到HLR的位置更新流程。

5. VLR返回SGsAP-LOCATION-UPDATE-ACCEPT给MME,如果VLR支持TMSI重分配,消息中包括参数LAI和TMSI,否则消息中包括参数LAI和IMSI。

LOCATION-UPDATE-ACCEPT消息结构如图 4所示。

图 4 LOCATION-UPDATE-ACCEPT消息结构图

消息中信元携带LAI,以及CS新分配的TMSI。

6. 完成联合的EPS/IMSI附着。MME发送Attach Accept给UE,消息中包括参数LAI和VLR TMSI。UE接收到信元LAI和VLR TMSI则表示附着CS域和LTE网络成功。其中VLR TMSI信元会触发UE执行TMSI重分配流程。当MME收到UE

的Attach complete消息后,MME发送SGsAP-TMSI-REALLOCATION-COMPLETE消息给VLR,指示TMSI重分配完成。

图 5 Attach Accept消息结构图

该消息指示联合附着成功,同时周期位置更新定时器为1分钟。

7. 附着成功后,MME通过S1AP-INITIAL-CONTEXT-SETUP-REQ消息发起上下文建立请求,用于MME向eNodeB请求在无线侧建立资源,同时请求UE返回相关能力集。UE则通过S1AP-SPU-UE-CAPABILITY-INFO-INDICATION消息返回UE相关的能力。

如图 6所示,其中uERadioCapability信元指示UE是否具备PS Handover能力,具体可以参见24008 10.5.5.12a协议。

图 6 UE-CAPABILITY-INFO-INDICATION消息结构图

分离流程1.2分离流程可以分为由UE发起分离、MME发起的分离和HSS发起的分离。无论哪一方发起的分离流程,MSC的处理是相同的。UE可能被显式或隐式分离:

同时发起一方会主动通知另一方。显式分离:网络侧或UE主动请求分离,

不可达。。例如网络侧认为UE隐式分离:网络侧分离UE,并不通知UE

消发送IMSI Detach IndicationMSC Server MME需要通过SGs接口向附着的用户不再能分离后,EPSVLR删除该用户的SGs关联。IMSI息,指示 CS域业务。用

mobile reachable timer的分离或者因为操作维护需要发起对UE MME 的隐式分离。发起对该UE超时,MME

EPS/IMSI Detach MME发送如果mobile reachable timer超时,o MSC/VLR。Indication消息给

EPS Detach MME发送MME因为操作维护需要发起分离,如果o

。消息给MSC/VLRIndication

所示。 11和图 7、图 10分离流程如图

发起的分离流程1.3UE发起的分离流程图 7 UE图

EPS

可能是Detach Type发送向MMEDetach Request消息要求分离。1. UE。combined EPS DetachIMSI Detach或Detach、

消息结构图 8 Detach Request图

EPStype of detach指示为联合 8所示,指示为UE发起的分离。如图分离。

,Detach、combined EPS/IMSI 步可以指示是1EPS Detach、IMSI Detach2. 第的去附着请求。要处理UEMME

,Detach、combined EPS/IMSI IMSI 发起的3. 如果UEdetach type是Detach 消息给会发送SGsAP-IMSI-DETACH-INDICATIONMME以下两种情况,。MSC/VLR

UE发起的EPS和non-EPS业务的联合分离

UE发起的non-EPS显示分离

如果UE发起的detach type为EPS Detach时,MME发送

SGsAP-EPS-DETACH-INDICATION消息给MSC/VLR表明UE发起的EPS业务显示分离。如果MSC收到该消息后,发现没有该UE的SGs关联信息,将丢弃该消息。IMSI/EPS DETACH INDICATION消息结构如图 8所示。

图 9 IMSI/EPS DETACH INDICATION消息结构图

4. MSC/VLR删除与该UE相关的MME的SGs关联。

5. MME发送Detach Accept消息给UE。

6. 继续完成UE发起的分离流程。

发起的分离流程MME1.4图 10 MME发起的分离流程图

1. MME发起分离流程,去激活所有与UE相关的承载。

2. 当MME执行网络侧发起的分离流程且SGs的管理状态是非SGs-NULL,MME

发送SGsAP-EPS-DETACH-INDICATION消息给MSC/VLR表明网络侧发起的基于EPS 业务的IMSI分离。如果是mobile reachable timer超时,MME发起基于non EPS 业务的隐式IMSI分离。MME发送SGsAP-IMSI-DETACH-INDICATION消息给MSC/VLR。如果MME因为操作维护需要发起隐式分离,MME发送

SGsAP-EPS-DETACH-INDICATIO消息给MSC/VLR。如果MSC收到该消息后,发现没有该UE的SGs关联信息,将丢弃该消息。

移动可达定时器(mobile reachable timer)用于监测UE发起周期性TAU。在

用户的NAS信令连接释放时启动,在NAS信令连接建立时停止,超时后,如果UE还没有发起周期性TAU,则启动不可达用户隐式分离定时器。不可达用户隐式分离定时器启动期间,MME拒绝网络侧对UE的寻呼。如果用户在不可达用户隐

式分离定时器超时时仍未连上网络,则MME认为用户已经离开网络覆盖范围很长时间,从而隐式分离用户。

3. MSC/VLR删除与该UE相关的MME的SGs关联,即关联状态为SGs-NULL。

发起的分离流程1.5HSS所示。 11HSS发起的分离流程如图

发起的分离流程图 11 HSS图

承载上下文。中的在MMEMM和EPS1. HSS触发分离流程,删除UE

。2. MME发送SGsAP-EPS-DETACH-INDICATION消息给MSC/VLR

收到该消息后,的SGs关联。如果MSC相关的3. MSC/VLR删除与该UEMME关联信息,将丢弃该消息。发现没有该UE的SGs

更新流程TA/LA联合1.6 流程如图TA/LA更新流程,对驻留在E-UTRAN网络的UE,周期性发起联合的位置的同步更新。对UE核心网以及12所示,使得UTRAN/GERANMME

更新流程图联合TA/LA图 12

流程。测到触发条件满足,需要发起TAU1. UE

流程的触发条件如下:TAU

网络中。在EPS不在UE注册网络的TA List发现当前的 UETAI由一个或多个TA List中,位置管理的基本单位为TA List。,可以避免用户频繁TA listTA (Tracking Area)组成。通过。发起TAU

。周期性TAU

发生改变。、E-UTRAN)(的接入类型即RAT typeGSM、UTRAN UE

网络侧负载均衡触发TAU。

2. UE发送TAU Request消息给MME。Update Type指示这是一个联合的Tracking Area/Location Area Update请求,或是一个联合的Tracking

Area/伴随IMSI附着的Location Area Update请求(如果UE之前没有联合附着,只会发起“联合的TAU伴随IMSI附着”的TAU请求)。

LTE信令流程详解

L T E信令流程详解集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

LTE信令流程 目录

概述 本文通过对重要概念的阐述,为信令流程的解析做铺垫,随后讲解LTE中重要信令流程,让大家熟悉各个物理过程是如何实现的,其次通过异常信令的解读让大家增强对异常信令流程的判断,再次对系统消息的解析,让大家了解系统消息的特点和携带的内容。最后通过实测信令内容讲解,说明消息的重要信元字段。 第一章协议层与概念 1.1控制面与用户面 在无线通信系统中,负责传送和处理用户数据流工作的协议称为用户面;负责传送 和处理系统协调信令的协议称为控制面。用户面如同负责搬运的码头工人,控制面就相 当于指挥员,当两个层面不分离时,自己既负责搬运又负责指挥,这种情况不利于大货 物处理,因此分工独立后,办事效率可成倍提升,在LTE网络中,用户面和控制面已明 确分离开。 1.2接口与协议 接口是指不同网元之间的信息交互时的节点,每个接口含有不同的协议,同一接口 的网元之间使用相互明白的语言进行信息交互,称为接口协议,接口协议的架构称为协 议栈。在LTE中有空中接口和地面接口,相应也有对应的协议和协议栈。

信令流数据流 图1 子层、协议栈与流 图2 子层运行方式 LTE系统的数据处理过程被分解成不同的协议层。简单分为三层结构:物理层、数据链路层L2和网络层。图1阐述了LTE系统传输的总体协议架构以及用户面和控制面数据信息的路径和流向。用户数据流和信令流以IP包的形式进行传送,在空中接口传送之前,IP包将通过多个协议层实体进行处理,到达eNodeB后,经过协议层逆向处理,再通过S1/X2接口分别流向不同的EPS实体,路径中各协议子层特点和功能如下:

位置更新具体信令流程

第4章位置更新 4.1 概述 在GSM系统中有三个地方需要知道位置信息,即HLR、VLR和MS。当这个信息发生变化时,需要保持三 者的一致,由位置更新流程实现。位置更新流程是位 置管理中的主要流程,总是由MS发起。 位置更新流程是一个通用流程,在如下三类位置更新流程中要使用到:正常位置更新、周期性位置更 新、IMSI附着位置更新流程。 正常位置更新用于更新网络侧对于MS的位置区信息,LOCATION UPDATING REQUEST消息中包含位置更新 流程的类型信息。 在网络侧VLR判定MS为未知用户时,会启动正常位置更新流程,作为MM连接建立请求的响应。

为限制位置更新尝试次数,位置更新失败时要使用位置更新attempt counter 计数器。在MS开机或SIM卡刚插入时,该计数器清零。 MS中要保持一个"forbidden location areas for roaming"表和一个"forbidden location areas for regional provision of service"表。MS关机或SIM 卡拔出时,将这两个表删除。当MS收到位置更新拒绝消息,其原因值为"Roaming not allowed in this location area"或"Location Area not allowed"时,从BCCH上收到的LAI信息触发位置更新请求的LAI要加到相应的表中。这两个表的容量至少要有10个表项,当表项数目超过表的容量时,最早的表项内容删除。 成功的进行位置更新后,MS在SIM卡中置UPDATED 状态位(UPDATED状态表明最后一次位置更新请求成

华为常见行为的信令流程

1.1 位置更新流程 在GSM系统中有三个地方需要知道位置信息,即HLR、VLR和MS。当这个信息发生变化时,需要保持三者的一致,由位置更新流程实现。位置更新流程是位置管理中的主要流程,总是由MS发起。位置更新流程是一个通用流程,在如下三类位置更新流程中要使用到:正常位置更新、周期性位置更新、IMSI附着位置更新流程。 正常位置更新用于更新网络侧对于MS的位置区信息,LOCATION UPDATING REQUEST消息中包含位置更新流程的类型信息。在网络侧VLR判定MS为未知用户时,会启动正常位置更新流程,作为MM连接建立请求的响应。为限制位置更新尝试次数,位置更新失败时要使用位置更新attempt counter 计数器。在MS 开机或SIM卡刚插入时,该计数器清零。 MS中要保持一个"forbidden location areas for roaming"表和一个"forbidden location areas for regional provision of service"表。MS关机或SIM卡拔出时,将这两个表删除。当MS收到位置更新拒绝消息,其原因值为"Roaming not allowed in this location area"或"Location Area not allowed"时,从BCCH上收到的LAI信息触发位置更新请求的LAI要加到相应的表中。这两个表的容量至少要有10个表项,当表项数目超过表的容量时,最早的表项内容删除。成功的进行位置更新后,MS在SIM卡中置UPDATED状态位(UPDATED状态表明最后一次位置更新请求成功,同时此时LAI、TMSI,加密的密钥和加密序列号都应该保存在SIM卡中),并存储新的位置区信息。 正常位置更新、周期性位置更新和IMSI附着位置更新流程基本相同(不同之处在下面各小节中详细描述),流程如下图: 图1 位置更新流程 (1) MS在空中接口的接入信道上向BTS发送Channel Request(该消息内含接入原因值为位置更新); (2) BTS向BSC发送Channel Required消息;

移动主被叫及切换信令流程分析

1、主叫信令流程 移动用户做主叫时的信令过程从MS向BTS请求信道开始,到主叫用户TCH指配完成为止。一般来说,主叫经过几个大的阶段:接入阶段,鉴权加密阶段,TCH指配阶段,取被叫用户路由信息阶段。 接入阶段主要包括:信道请求,信道激活,信道激活响应,立即指配业务请求等几个步骤。经过这个阶段,手机和BTS BSC 建立了暂时固定的关系。 鉴权加密阶段主要包括:鉴权请求,鉴权响应,加密模式命令,加密模式完成,呼叫建立等几个步骤。经过这个阶段,主叫用户的身份已经得到了确认,网络认为主叫用户是一个合法用户允许继续处理该呼叫。 TCH指配阶段主要包括:指配命令,指配完成。经过这个阶段,主叫用户的话音信道已经确定,如果在后面被叫接续的过程中不能接通,主叫用户可以通过话音信道听到MSC的语音提示。 取被叫用户路由信息阶段主要包括:向HLR请求路由信息,HLR向VLR请求漫游号码,VLR回送被叫用户的漫游号码,HLR向MSC回送被叫用户的路由信息(MSRN)。MSC收到路由信息后,对被叫用户的路由信息进行分析,可以得到被叫用户的局向。然后进行话路接续。 主叫接入阶段、鉴权阶段主要信令: 当用户输入被叫号码完毕按下发射按纽后,手机(以下以MS代替)将进行一系列动作,首先MS将在随机接入信道(RACH )向BSS发送信道请求消息,以便申请一个专用信道(SDCCH ),BSC为其分配相应的信道成功后,在接入允许信道(AGCH)中通过立即分配消息通知MS为其分配的专用信道,随后MS将在为其分配的SDCCH上发送一个层三消息 ---CM业务请求消息,在该消息中CM业务类型为移动发起呼叫,该消息被BSS透明的传送至MSC,MSC收到CM业务请求消息后,通过处理接入请求消息通知VLR处理此次MS的接入业务请求,(同时,由于在BSC和MSC之间用到了SCCP有连接服务,为建立SCCP连接,MSC还将向BSC回连接确认消息),收到业务接入请求后,VLR将首先查看在数据库中该MS是否有鉴权三参组,如果有将直接向MSC下发鉴权命令,否则向相应的HLR/AUC请求鉴权参数,从HLR/AUC得到三参组,然后再向MSC下发鉴权命令。MSC收到VLR发送的鉴权命令后,通过BSS向MS下发鉴权请求,在该命令中含有鉴权参数,MS收到鉴权请求后,利

完整信令流程

1、IMS_SIP_INVITE->Request 2、LTE NAS-->Service request 3、LTE RRC-->RRC Connection Request SRB1+SRB2 SRB = Signal RB(终端与基站之间的信令承载) 4、LTE RRC-->RRC Connection Setup 5、LTE RRC-->RRC Connection Setup Complete 6、LTE RRC-->Security Mode Command 7、LTE RRC-->Security Mode Complete (鉴权加密) 8、LTE RRC-->RRC Connection Reconfiguration 9、LTE RRC-->RRC Connection Reconfiguration Complete 第1次重配置(2个AM DRB的QCI分别为QCI=5和QCI=8/9 DRB=3 discardTimer =Infinity 为CQI=5,DRB=4 discardTimer = ms300 为QCI=9 DRB = Data RB(终端与基站之间的数据承载) 按照协议,对于语音业务需要建立QCI=1承载,视频业务需要建立QCI=1和QCI=2的传输承载。根据延迟要求,无线侧用户面RLC选用UM模式传输,保证其实时性要求。走SIP信令流的QCI=5承载,无线侧控制面RLC采用AM模式,保障其准确性非确认模式UM和确认模式AM 10、LTE RRC-->RRC Connection Reconfiguration 第2次重配置(包含测量配置,移动性配置等信息) 11、LTE RRC-->RRC Connection Reconfiguration Complete 12、IMS_SIP_INVITE->Trying 100 IMS向主叫响应100Trying。 13、LTE RRC-->RRC Connection Reconfiguration 第3次重配置(DRB=5, discardTimer = ms100为QCI=1) 14、LTE RRC-->RRC Connection Reconfiguration Complete 15、LTE NAS-->Activate dedicated EPS bearer context request 16、LTE NAS-->Activate dedicated EPS bearer context accept 17、IMS_SIP_INVITE 183 18、IMS_SIP_PRACK 19、IMS_SIP_PRACK 200 20、IMS_SIP_UPDATE 21、IMS_SIP_UPDATE 200(资源预留建立过程) 22、IMS_SIP_INVITE->Ringing 180(振铃) 23、IMS_SIP_INVITE->OK 200 24、IMS_SIP_ACK 25、IMS_SIP_BYE->Request 26、IMS_SIP_BYE->OK 200 27、LTE RRC-->RRC Connection Reconfiguration 28、LTE RRC-->RRC Connection Reconfiguration Complete 29、LTE NAS-->Deactivate EPS bearer context request 30、LTE NAS-->Deactivate EPS bearer context accept 主要流程如下:

VoLTE信令详细流程

VoLTE信令流程

内容 VoLTE总体流程 1 VoLTE注册流程 2 VOLTE基本呼叫流程 3

总体流程—承载 ?VoLTE的信令IMS消息使用QCI为5的Non-GBR QoS、语音使用QCI为1的GBR、视频使用QCI为2的GBR QCI Resourc e Type Priority Packet Delay Budget Packet Error Loss Rate Example Services 1 GBR 2 100 ms 10-2Conversational Voice 2 4 150 ms 10-3Conversational Video (Live Streaming) 5 No-GBR 1 100 ms 10-6IMS Signalling 不支持VoLTE的 UE 支持VoLTE的UE 未进行VoLTE会话进行VoLTE语音通话进行VoLTE视频通话 QCI9 QCI5+QCI9 QCI1 + QCI5 + QCI9 QCI1 +QCI2+QCI5+QCI9 ?终端业务承载建立对应关系:

VOLTE总体流程

内容 VoLTE总体流程 1 VoLTE注册流程 2 VOLTE基本呼叫流程 3

VOLTE注册流程—EPS attach(1) ?VoLTE首先在EPS进行联合attach,与普通CSFB一致,再建立QCI5承载: Default bearer (GBR) QCI=8/9 Internet APN Default bearer (Non-GBR) QCI=5 IMS APN ?UE在attach Req中携带SRVCC能力及VOLTE能力: ?EPC在attach Acp中通知UE,网络侧具有VOLTE-IMS,决定UE紧接下来是否发起QCI5承载建立:

LTE信令流程图(端到端平台)

TDD-LTE 基本信令流程图

1 概述 本文主要针对TD-LTE端到端信令流程图进行分解,为端到端平台提供分析流程呈现依据。由于部分流程无S1口信令支撑,当前根据相关文档进行的绘制,后续具备条件后进行补充调整。

2 TDD-LTE网络结构概述 LTE的系统架构分成两部分,包括演进后的核心网EPC(MME/S-GW)和演进后的接入网E-UTRAN。演进后的系统仅存在分组交换域。 LTE接入网仅由演进后的节点B(evolved NodeB)组成,提供到UE的E-UTRA控制面与用户面的协议终止点。eNB之间通过X2接口进行连接,并且在需要通信的两个不同eNB之间总是会存在X2接口。LTE接入网与核心网之间通过S1接口进行连接,S1接口支持多—多联系方式。 与3G网络架构相比,接入网仅包括eNB一种逻辑节点,网络架构中节点数量减少,网络架构更加趋于扁平化。扁平化网络架构降低了呼叫建立时延以及用户数据的传输时延,也会降低OPEX与CAPEX。 由于eNB与MME/S-GW之间具有灵活的连接(S1-flex),UE在移动过程中仍然可以驻留在相同的MME/S-GW上,有助于减少接口信令交互数量以及MME/S-GW的处理负荷。当MME/S-GW与eNB之间的连接路径相当长或进行新的资源分配时,与UE连接的MME/S-GW 也可能会改变。 E-UTRAN

2.1 EPC 与E-UTRAN 功能划分 与3G 系统相比,由于重新定义了系统网络架构,核心网和接入网之间的功能划分也随之有所变化,需要重新明确以适应新的架构和LTE 的系统需求。针对LTE 的系统架构,网络功能划分如下图: eNodeB 功能: 1) 无线资源管理相关的功能,包括无线承载控制、接纳控制、连接移动 性管理、上/下行动态资源分配/调度等; 2) IP 头压缩与用户数据流加密; 3) UE 附着时的MME 选择; 4) 提供到S-GW 的用户面数据的路由; 5) 寻呼消息的调度与传输; 6) 系统广播信息的调度与传输; 7) 测量与测量报告的配置。 MME 功能: 1) 寻呼消息分发,MME 负责将寻呼消息按照一定的原则分发到相关的 eNB ; 2) 安全控制; E-UTRAN

GSM信令流程(超详细)

Issue 3.3 课程说明 课程介绍 GSM通信流程包括两方面的内容:呼叫基本流程,信令基本流程。其中,呼叫流程主要包含:移动主叫流程,移动被 叫流程,汇接呼叫流程。信令基本流程主要包含:鉴权流程,位置登记流程,呼叫重建流程,BSC内部切换流程,BSC 间切换流程,MSC间切换流程,移动始发短消息流程,移动终结短消息流程,定向重试流程。 这些流程从系统的角度描述了移动用户经常发生的行为,描述了GSM的几个组成部分在呼叫流程、信令流程中的相互 关系,对移动性特征做重点说明。 课程目标 本课程的重点是介绍GSM系统的协同工作过程,涉及内容包含:呼叫、位置更新、切换、短消息。对流程的介绍突出 了移动特征,具体的信令细节本课程不做描述,可以参考ETSI的GSM规范获得更加详细的内容。 通过学习本课程,可以基本掌握: ?移动用户做位置登记的信令过程; ?移动用户做主叫的信令过程; ?移动用户做被叫的信令过程; 1

Issue 3.3 ?MSC做汇接呼叫的信令过程; ?BSC内切换信令过程; ?BSC间切换的信令过程; ?MSC间切换的信令过程; ?呼叫重建的信令过程; ?定向重试的信令过程。 对这些信令流程学习之后,对GSM系统的原理会有更加深刻的了解,对每个功能实体(MS,BTS,BSC,MSC,VLR, HLR)的功能有更加深刻的体会。 相关资料 ETSI关于GSM的规范,主要是:GSM0408,GSM0808,GSM0902。 2

Issue 3.3 第一节呼叫过程的信令分析 对一次发生在移动用户间的呼叫来说,信令流程可以分为三个相对独立的部分: ?主叫移动用户部分 ?被叫移动用户部分 ?拆线部分 1.1 主叫信令流程 移动用户做主叫时的信令过程从MS向BTS请求信道开始,到主叫用户TCH指配完成为止。一般来说,主叫经过几个大 的阶段:接入阶段,鉴权加密阶段,TCH指配阶段,取被叫用户路由信息阶段。 ?接入阶段主要包括:信道请求,信道激活,信道激活响应,立即指配,业务请求等几个步骤。经过这个阶段,手机 和BTS(BSC)建立了暂时固定的关系。 ?鉴权加密阶段主要包括:鉴权请求,鉴权响应,加密模式命令,加密模式完成,呼叫建立等几个步骤。经过这个阶 段,主叫用户的身份已经得到了确认,网络认为主叫用户是一个合法用户,允许继续处理该呼叫。 ?TCH 指配阶段主要包括:指配命令,指配完成。经过这个阶段,主叫用户的话音信道已经确定,如果在后面被叫 接续的过程中不能接通,主叫用户可以通过话音信道听到MSC的语音提示。 3

TDLTE信令流程及信令解码详解

TD-LTE信令流程及信令解码 本文主要就PS业务建立流程和LTE系统内切换的信令及信令解码进行重点IE分析,并加以标注,所有信令为eNB侧跟踪的信令。 PS业务建立流程: 1.1RRC Connection Request UE上行发送一条RRC Connection Request消息给eNB,请求建立一条RRC连 接,该消息携带主要IE有: -ue-Identity :初始的UE标识。如果上层提供S-TMSI,侧该值为S-TMSI; 否则从0…240-1中抽取一个随机值,设置为ue-Identity。 -establishmentCause:建立原因。该原因值有emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, spare3, spare2, spare1。其中“mt”代表移动终端,“mo”代表移动始端。 信令解码如下: -RRC-MSG : |_msg : |_struUL-CCCH-Message : |_struUL-CCCH-Message : |_message : |_c1 : |_rrcConnectionRequest : |_criticalExtensions : |_rrcConnectionRequest-r8 : |_ue-Identity : |_establishmentCause : ---- highPriorityAccess(1) |_spare : ---- '0'B(00 ) 04 53 14 97 b7 8c 32 1.2RRC Connection Setup UE初始标识,此处因为上层没有提供S-TMSI,所以为随机值。 建立原因,此处 highPriorityAcces s指的是AC11~AC15

非常详细的LTE信令流程

LTE信令流程

目录 第一章协议层与概念 (5) 1.1控制面与用户面 (5) 1.2接口与协议 (5) 1.2.1NAS协议(非接入层协议) (7) 1.2.2RRC层(无线资源控制层) (7) 1.2.3PDCP层(分组数据汇聚协议层) (8) 1.2.4RLC层(无线链路控制层) (8) 1.2.5MAC层(媒体接入层) (9) 1.2.6PHY层(物理层) (10) 1.3空闲态和连接态 (12) 1.4网络标识 (13) 1.5承载概念 (14) 第二章主要信令流程 (16) 2.1 开机附着流程 (16) 2.2随机接入流程 (19) 2.3 UE发起的service request流程 (23) 2.4寻呼流程 (26) 2.5切换流程 (27) 2.5.1 切换的含义及目的 (27) 2.5.2 切换发生的过程 (28) 2.5.3 站内切换 (28) 2.5.4 X2切换流程 (30) 2.5.5 S1切换流程 (32) 2.5.6 异系统切换简介 (34) 2.6 CSFB流程 (35) 2.6.1 CSFB主叫流程 (36) 2.6.2 CSFB被叫流程 (37) 2.6.3 紧急呼叫流程 (39) 2.7 TAU流程 (40) 2.7.1 空闲态不设置“ACTIVE”的TAU流程 (41)

2.7.2 空闲态设置“ACTIVE”的TAU流程 (43) 2.7.3 连接态TAU流程 (45) 2.8专用承载流程 (46) 2.8.1 专用承载建立流程 (46) 2.8.2 专用承载修改流程 (48) 2.8.3 专用承载释放流程 (50) 2.9去附着流程 (52) 2.9.1 关机去附着流程 (52) 2.9.1 非关机去附着流程 (53) 2.10 小区搜索、选择和重选 (55) 2.10.1 小区搜索流程 (55) 2.10.1 小区选择流程 (56) 2.10.3 小区重选流程 (57) 第三章异常信令流程 (60) 3.1 附着异常流程 (61) 3.1.1 RRC连接失败 (61) 3.1.2 核心网拒绝 (62) 3.1.3 eNB未等到Initial context setup request消息 (63) 3.1.4 RRC重配消息丢失或eNB内部配置UE的安全参数失败 (64) 3.2 ServiceRequest异常流程 (65) 3.2.1 核心网拒绝 (65) 3.2.2 eNB建立承载失败 (66) 3.3 承载异常流程 (68) 3.3.1核心网拒绝 (68) 3.3.2 eNB本地建立失败(核心网主动发起的建立) (68) 3.3.3 eNB未等到RRC重配完成消息,回复失败 (69) 3.3.4 UE NAS层拒绝 (70) 3.3.5上行直传NAS消息丢失 (71) 第四章系统消息解析 (72) 4.1 系统消息 (73) 4.2 系统消息解析 (74) 4.2.1 MIB (Master Information Block)解析 (74) 4.2.2 SIB1 (System Information Block Type1)解析 (75) 4.2.3 SystemInformation消息 (77) 第五章信令案例解析 (83) 5.1实测案例流程 (84)

【流程管理)位置更新具体信令流程

(流程管理)位置更新具体信令流程

位置更新 4.1 概述 于GSM系统中有三个地方需要知道位置信息,即HLR、VLR和MS。当 这个信息发生变化时,需要保持三者的壹致,由位置更新流程实现。位置 更新流程是位置管理中的主要流程,总是由MS发起。 位置更新流程是壹个通用流程,于如下三类位置更新流程中要使用到:正 常位置更新、周期性位置更新、IMSI附着位置更新流程。 正常位置更新用于更新网络侧对于MS的位置区信息, LOCATIONUPDATINGREQUEST消息中包含位置更新流程的类型信息。 于网络侧VLR判定MS为未知用户时,会启动正常位置更新流程,作为 MM连接建立请求的响应。 为限制位置更新尝试次数,位置更新失败时要使用位置更新 attemptcounter计数器。于MS开机或SIM卡刚插入时,该计数器清零。 MS中要保持壹个"forbiddenlocationareasforroaming"表和壹个 "forbiddenlocationareasforregionalprovisionofservice"表。MS关机 或SIM卡拔出时,将这俩个表删除。当MS收到位置更新拒绝消息,其 原因值为"Roamingnotallowedinthislocationarea"或 "LocationAreanotallowed"时,从BCCH上收到的LAI信息触发位置更 新请求的LAI要加到相应的表中。这俩个表的容量至少要有10个表项, 当表项数目超过表的容量时,最早的表项内容删除。 成功的进行位置更新后,MS于SIM卡中置UPDATED状态位(UPDATED 状态表明最后壹次位置更新请求成功,同时此时LAI、TMSI,加密的密钥 和加密序列号均应该保存于SIM卡中),且存储新的位置区信息。 4.2 位置更新流程 正常位置更新、周期性位置更新和IMSI附着位置更新流程基本相同(不 同之处于下面各小节中详细描述),流程如下图: 图4-1位置更新流程 (1) MS于空中接口的接入信道上向BTS发送ChannelRequest(该消 息内含接入原因值为位置更新);

LTE信令流程之开机附着、去附着流程分析

LTE信令流程之开机附着、去附着流程分析 开机附着流程 开机附着流程说明: ?N0010处在RRC_IDLE态的UE进行Attach过程,发起随机接入过程,即MSG1消息; ?N0020eNB检测到MSG1消息后向UE发送随机接入响应消息,即MSG2消息;

?N0030UE收到随机接入响应后,根据MSG2的TA调整上行发送时机,向eNB发送RRCConnectionRequest消息申请建立RRC连接; ?N0040eNB向UE发送RRCConnectionSetup消息,包含建立S RB1信令承载信息和无线资源配置信息; ?N0050 UE完成SRB1信令承载和无线资源配置,向eNB发送RRC ConnectionSetupComplete消息,包含NAS层Attach request信息; ?N0060eNB选择MME,向MME发送INITIAL UE MESSAGE 消息,包含NAS层Attach request消息; ?N0070 MME向eNB发送INITIAL CONTEXT SETUP REQUES T消息,包含NAS层Attach Accept消息; ?N0080eNB接收到INITIAL CONTEXT SETUP REQUEST消息,如果不包含UE能力信息,则eNB向UE发送UECapabilityEnquiry消息,查询UE能力; ?N0090 UE向eNB发送UECapabilityInformation消息,报告UE能力信息; ?N0100 eNB向MME发送UE CAPABILITY INFO INDICATION消息,更新MME的UE能力信息; ?N0110 eNB根据INITIAL CONTEXT SETUP REQUEST消息中UE支持的安全信息,向UE发送SecurityModeCommand消息,进行安全激活; ?N0120 UE向eNB发送SecurityModeComplete消息,表示安全激活完成; ?N0130 eNB根据INITIAL CONTEXT SETUP REQUEST消息中的ERAB 建立信息,向UE发送RRCConnectionReconfiguration消息进行UE资源重配,包括重配SRB1信令承载信息和无线资源配置,建立SRB2、DRB(包括默认承载)等; ?N0140 UE向eNB发送RRCConnectionReconfigurationComplete消息,表示无线资源配置完成; ?N0150 eNB向MME发送INITIAL CONTEXT SETUP RESPONSE响应消息,表明UE上下文建立完成; ?N0160 UE向eNB发送ULInformationTransfer消息,包含NAS层Attach C omplete、Activate default EPS bearer context accept消息;

四、MAP常见信令流程

四、MAP常见信令流程 本部分内容包括 ?MAP协议概述 ?HLR/VLR的用户数据组织 ?MAP常见信令流程

(一)、MAP协议概述 MSC、HLR、VLR之间的接口采用了MAP协议。 MAP协议的层次结构如图所示。 本章第二部分中讲述MAP的常见功能流程。 1.SCCP ?MAP采用SCCP无连接0或1级的无连接服务。 ?SSN(子系统号码): 用户部分 比特 87654321 00000101 整个MAP(留待将来可能使用) 00000110 HLR 00000111 VLR 00001000 MSC 00001001 EIR 00001010 AC ?寻址 用DPC+SSN或GT寻址。 2.TCAP TCAP基于网络的无连接服务。 为了向所有应用业务提供统一的支持,TCAP将不同节点之间的信息交互抽象为一个关于’’操作’’的过程,即起始节点调用(Invoke)一个操作,远端(目的地)节点应请求执行执行该操作,并可能向始节点回送操作执行结果。为了完成某项业务过程,两个节点的对等实体之间可能涉及到许多操作,这些相关操作的执行通过顺序、嵌套等方式组合起来,就构成一个所谓’’对话’’(即’’事务’’,如MAP的业务流程等)。 正如对话语句是由以下基本单词组成一样,TCAP消息由基本构件――组元(Component)组成的。一个组元对应于一个操作请求或响应,一个消息(对话)可以包含多个组元。这样,由若干个组元就可以构成大量的消息。上述统一的消息结构和语法规则适用于任何类型的TC用户。因此,TCAP协议和具体应用无关,但是消息的语义,即每个组元中所包含的信息含义以及一个消息中各个组元的次序则取决于具体的应用,由TCAP用户定义。

信令流程与GT翻译对应关系详解

信令流程与GT翻译详解 MSC与HLR、MSC间进行通信,用到MTP、SCCP、TCAP、CAP各层协议栈,其中MTP层只识别各设备的信令点,SCCP层只识别MSC/VLR/GCR/SSP、HLR/AuC、SCP、SMSC等各个网元的设备识别码(俗称设备号),IMSI、MSISDN等。所以如果要实现MSC与HLR、MSC、SCP(智能网)等网元的通讯(信令流程传递的过程)。就要把SCCP层识别的MSC/VLR/GCR/SSP、HLR/AuC、SCP、SMSC设备识别码、IMSI、MSISDN翻译成相应网元信令点,实现个网元之间的通信和业务通信,即所谓的GT翻译(GT指向)。如下图所示即各个网元间的协议通信模型。 下面用位置更新流程中使用的IMSI,被叫分析流程中使用的MSISDN以及在各网元传递消息时使用的MSC/VLR/GCR/SSP、HLR/AuC、SCP、SMSC识别码,结合信令流程特点分析各网元间的GT翻译(即把各类转换成相应设备的信令点)是如何实现的。

图1:新用户开机位置更新与相关号码GT 翻译对应关系流程分析 1、新用户第一次开机,收到该小区的广播消息中携带的LAI+CGI 值,向网络侧发起位置更新请求消息,消息中携带IMSI 号码,LAI+CGI 信息。 2、MSC/VLR 根据手机上报的IMSI 号码,进行GT 翻译,找到该IMSI 所对应的归属HLR 信令点。并存储移动台的LAI (IMSI 号码对HLR 信令点的GT 翻 译) 、MSC 根据IMSI 翻译出的HLR 信令点向HLR 请求识别号,IMSI 、MSISDN 号码 4、HLR 记录该MSC/VLR 识别码,并建立该移动台IMSI 、MSISDN 号码与 MSC/VLR 识别码的对应关系。以便进行语音呼叫。(即移动台完成了HLR 里的位置登记) 图2 :跨局位置更与相关号码对应关系流程分析 1、移动台漫游到MSC/VLR (2)局,收到该小区BCCH 信道广播消息中携带的LAI+CGI 值,发现与本移动台存储的LAI 值不符,触发位置更新请求,向MSC/VLR (2)请求位置更新,消息中携带该移动台的IMSI 号码 2、MSC/VLR (2)根据移动台上报的IMSI 号码,进行GT 翻译,找到该IMSI 所对应的归属HLR 信令点。并存储移动台的LAI 、MSC (2)向HLR 请求该用户的用户MSC/VLR IMSI 、MSISDN 号码 4、HLR 记录该MSC/VLR (2 )识别码,并建立该移动台IMSI 、MSISDN 号码与(2)识别码的对应关系。以5、HLR 把该MSC/VLR (2)识别号码翻译成MSC/VLR (2)的信令点,找到该MSC/VLR (2),向MSC/VLR 插入该用户的用户数据。并在消息中携带该HLR 的识别号。 6、MSC/VLR (2)把HLR 识别号码翻译成HLR 信令点,向HLR 发送插入数据响应消息8、HLR 5、HLR 把该MSC/VLR 翻译成MSC/VLR 的信令点,找到该MSC/VLR ,向MSC/VLR 插入该用户的用户数据(HLR 中需要做的MSC/VLR 识别号与 MSC/VLR 信令点的GT 翻译) 7、HLR 根据记录的MSC/VLR (1)识别号,翻译成MSC/VLR (1)的信令点,向MSC(1)发送删除用户数据的消息。消息中携带HLR 识别号。

层3信令分析及详解

Layer 3信令分析及流程详解汇编

Layer 3信令是看网络运行情况的信息层,从第三层可以看到网络的各种动作:如:呼叫流程、拥塞、用户忙、位置更新等,并且可以对路测中的各种问题如掉话、切换失败等网络事件的原因进行准确的分析。 系统信息一般有8个类型,分别是1、2、3、4、5、6、7、8,Type 1~4只出现在待机状态下,Type 5~6只出现在通话状态下,明白这点,对以后的分析至关重要。其中2中含有:2、2bis、2ter,5中含有5、5bis、5ter,所以总共有12种系统信息,系统信息1仅用于跳频,所以称为选择项。其中1、2、3、4、2bis、2ter 、7、8都在BCCH上发送,由IDLE模式下的移动台接收。5、5bis、5ter、6在SACCH上发送,由ACTIVE模式下的移动台接收。一般来说所有系统信息在连续的8个51复帧中发送完,如下图示: 上图中的TC表示复帧序列号,可以看出,当TC=4、5时,发送的内容是可选的,其它是固定的。 TC=0固定发送跳频信息,当出现上图示的1(3)时,表示跳频时发类型1,不跳频时发类型3 当类型4中发送的关于小区重选信息不够完整时,由类型7、8补充。且在TC=7、3时发送(上图示) 对于类型5、6在下行的SACCH上发送,并没有复帧规范,除非切换完成后要立即发送类型5、6。 1、System Information Type1

说明:系统信息类型1 (频率信息) 此类型仅用于跳频时,发送内容为: 第一、小区信道描述。用于通知移动,小区采用的频带与可以供跳频用的频点。对于GSM900与GSM1800采用的格式是不同的。对于GSM900: 有一个BIT MAP 0(比特位图)用于描述两方面信息,分别为: CA-NO,取值分别为:0、1、2,代表,GSM900、GSM1800、GSM1900。 CA-ARFCN,采用的有效射频频点,当为GSM900,将有一个相应于124个频点的124位图,当某个频点被采用时,相应的比特位被置为1,否则将被置为0. 对于GSM1800情况点不同。由于频点太多,不用位图,而用别的编码方式,FORMAD-IND=?来描述编码方式,后面跟一串编码比特来表示。 第二、RACH控制参数,描述的两个数据为;ACC、EC,ACC称为接入控制等级,分为0-9与11-15,0-9表示普通级,所有移动台被定义为0-9,11-15为优先级,10表示EC,如果此位取0,表示所有移动台允许进行紧急呼叫,取1时,只有11-15优先级的移动台可以进行紧急呼叫。 CB——小区禁止标志,用一个比特表示。

常用信令流程汇总

位置管理的主要流程 位置管理的主要流程是位置更新。根据位置更新情况的不同,可分为如下几种:普通位置更新、周期性位置更新、IMSI附着、联合位置更新。 1.普通位置更新 普通位置更新指移动台在开机或移动过程中,收到的位置区标识与移动台中存储的位置区识别不一致时,移动台发起位置更新请求通知网络更新该移动台的位置区识别。 根据位置更新请求消息中位置区是否属于同一MSC Server/VLR的位置区,是否需要IMSI参与,位置更新流程分为:同一个MSC Server/VLR区域内部的位置更新、跨越不同MSC Server/VLR区域的使用IMSI发起的位置更新、跨越不同MSC Server/VLR区域的使用TMSI发起的位置更新。 (1)同一个MSC Server/VLR区域内部的位置更新(仅涉及VLR) 同一个MSC Server/VLR区域内部的位置更新(仅涉及VLR) ①MS发起位置更新请求LOCATION UPDATING REQUEST,消息中携带MS的TMSI/IMSI、LAI号且注明是普通位置更新类型。 ②MSC Server向VLR发送位置区更新UPDATE LOCATION AREA消息。 ③VLR发起鉴权、加密流程,该流程可选。 ④VLR进行位置更新处理,更新MS的位置消息,存储新的LAI号,并向MSC Server发送位

置更新确认消息UPDATE LOCATION AREA ACK。 ⑤MSC Server向MS发送位置更新接收消息LOCATION UPDATING ACCEPT,同时携带TMSI号码。 ⑥MSC Server释放信道资源,完成位置更新流程。 (2)跨越不同MSC Server/VLR区域的位置更新(不能从PVLR取得用户数据) MS从MSC Server-A的一个位置区(LAI-1)移动到MSC Server-B的一个位置区(LAI-2), 当MS进入新的VLR或MS首次登录,或相关网络数据丢失,此时MS使用IMSI发起位置更新。 跨越不同MSC Server/VLR区域的位置更新(IMSI更新) ①MS移动到MSC Server-B的位置区(LAI-2),监听BCCH信道的新位置区信息,发现和SIM卡上的MSC Server-A的位置区(LAI-1)信息不同。 ②MS向MSC Server-B发送带IMSI的位置更新请求消息LOCATION UPDATING REQUEST。 ③VLR-B发起D接口位置更新消息UPDATE LOCATION。 ④HLR向PVLR发删除位置消息CANCEL LOCATION,PVLR收到消息后删除该MS的所有消息,并向HLR回送删除位置确认消息。

信令流程(图+介绍)

GSM 信令流程(菜鸟多看看,不要到处跑) GSM 系统使用类似OSI 协议模型的简化协议,包括物理层(L1)、数据链路层(L2)和应用层(L3)。L1是协议模型最底层,提供物理媒介传输比特流所需的全部功能。L2保证正确传递消息及识别单个呼叫。在GSM 系统中,无线接口(Um )上的L1和L2分别是TDMA 帧和LAPDm 协议。在网络侧,Abis 接口和A 接口使用的L1均为E1传输方式,L2分别为LAPD 和MTP 协议。在Um 接口,MS 每次呼叫时都有一个L1和L2层的建立过程,在此基础上再与网络侧建立L3上的通信。在网络侧(A 和Abis 接口),其L1和L2(SCCP 除外)始终处于连接状态。L3层的通信消息按阶段和功能的不同,分为无线资源管理(RR )、 G C H ) C C H )H )

移动性管理(MM)和呼叫控制(CC)三部分。 1、建立RR连接 RR的功能包括物理信道管理和逻辑信道的数据链路层连接等。 在任何情况下,MS向系统发出的第一条消息都是CH-REQ(信道请求),要求系统提供一条通信信道,所提供的信道类型则由网络决定。CH-REQ有两个参数:建立原因和随机参考值(RAND)。建立原因是指MS发起这次请求的原因,本例的原因是MS发起呼叫,其它原因有紧急呼叫、呼叫重建和寻呼响应等。RAND是由MS确定的一个随机值,使网络能区别不同MS所发起的请求。RAND有5位,最多可同时区分32个MS,但不保证两个同时发起呼叫的MS的RAND值一定不同。要进一步区别同时发起请求的MS,还要根据Um接口上的应答消息。 CH-REQ消息在BSS内部进行处理。BSC收到这一请求后,根据对现有系统中无线资源的判断,分配一条信道供MS使用。该信道是否能正常使用,还需BTS作应答证实,Abis接口上的一对应答消息CHACT(信道激活)和CHACK(信道激活证实)完成这一功能。CHACT指明激活信道工作所需的全部属性,包括信道类型、工作模式、物理特性和时间提前量等。 网络准备好合适的信道后,就通知MS,由IMMASS(立即指配)消息完成这一功能。在IM-MASS中,除包含CHACT中的信道相关信息外,还包括随机参考值RA、缩减帧号T、时间提前量TA等。RA值等于BSS系统收到的某个MS发送的随机值。T是根据收到CH-REQ时的TD-MA帧号计算出的一个取值范围较小的帧号。RA和T值都与请求信道的MS直接相关,用于减少MS之间的请求冲突。TA是根据BTS收到RACH信道上的CH -REQ信息进行均衡时,计算出来的时间提前量。MS根据TA确定下一次发送消息的时间提前量。 IMMASS的目的是在Um接口建立MS与系统间的无线连接,即RR连接。MS收到IM -MASS后,如果RA值和T值都符合要求,就会在系统所指配的新信道上发送SABM帧,其中包含一个完整的L3消息(MP-L3-INF),这条消息在不同的接口有不同的作用。在Um接口,SABM帧是LAPDm层上请求建立一个多帧应答操作方式连接的消息。系统收到SANM帧后,回送一个UA帧,作为对SABM帧的应答,表明在MS与系统之间已建立了一条LAPDm通路;另外,此UA帧的消息域包含同样一条L3消息,MS收到该消息后,与自己发送的SABM帧中相应的内容比较,只有当完全一样时,才认为被系统接受。L3消息中包含MS的IMSI,IMSI对每个MS是唯一的,这可保证在该信道上只有一个MS可接入系统。在Abis接口,这条消息是ESTIND(建立指示),用来通知已建立LAPDm连接,作为对IMMASS消息的应答。 在SANM帧中,透明传输到MSC的L3消息是A接口的第1条L3消息。尽管A接口

信令流程详解

1 信令分析 在分析问题时,请参照正确的流程,逐步检查到底哪一条消息没有收到,并且分析上一条消息里面携带的内容,从而定位原因所在。 1.1 主被叫呼叫建立流程 1.1.1正常信令 在分析接入问题时,请参照上图所示正确的流程,逐步检查到底哪一条消息没有收到,且分析上一条消息里面携带的内容,从而定位原因所在 【注】Abis-BTS setup消息里面,携带了接入的小区、扇区、walsh码、频点。 关键点1:BSC向MSC发送CM Service Request后,是否收到Assignment Request。如果没有收到MSC发的Assignment Request,等到6s后定时器超时,基站会给手机发送release order.这种情况是A1接口失败。 关键点2:BTS是否向BSC发送Abis-BTS Setup Ack。Abis如有问题,如误码高、信令链路带宽不足等,将会体现为Abis无法建链成功,话统原因“指配资源失败” 关键点3:是否发送ECAM(扩展信道指配消息)消息。如Abis正常建链,但却没有发

送ECAM消息,在话统里面会体现为“指配资源失败”,可能原因是walsh、CE、power不足。 关键点4:是否在F-DSCH发送order message,如没有收到,说明捕获业务信道前导帧失败。 关键点5:是否发送Assignment complete。如发送表明呼叫建立成功。如没有收到,在话统里面体现为“信令交互失败”。 被叫流程与主叫几乎完全一致,被叫中的Paging Response相当于主叫的origination message。 1.1.2典型异常信令 1、A1接口失败。 2、传输误码率高导致指配资源失败

相关主题
文本预览
相关文档 最新文档