当前位置:文档之家› 曲线梁桥设计思路

曲线梁桥设计思路

曲线梁桥设计思路
曲线梁桥设计思路

城市桥梁中小半径曲线梁桥设计分析

摘要:混凝土曲线梁桥始终处于弯扭耦合作用的状况下,扭矩过大时会使曲线箱梁桥产生内侧支座脱空、梁体外移、翻转、裂缝和崩脱等病害,严重影响曲线箱梁桥的正常运行。通过调节支座布置型式,可以使曲线梁中的扭矩分布合理,具有一定的现实意义。

关键词:桥梁;箱梁;曲线梁桥;偏心支座

1.概述

目前曲线箱梁桥在现代化的公路及城市道路立交中的数量逐年增加,应用已非常普遍。尤其在互通式立交的匝道桥设计中应用更为广泛。因预应力混凝土曲线箱梁具有较大的抗扭刚度、较好的适应地形地物、线条平顺流畅等优点,在公路立交及城市高架桥的曲线桥上得到了广泛的应用。但曲线箱梁作为一种空间结构,在荷载、预应力、温度徐变中等产生的弯矩、扭矩、剪力、轴力及二次矩等作用下受力十分复杂,很难直接计算,若设计考虑不周,会发生支座脱空、移位、崩脱等事故,导致在工程施工结束后不久就需要进行加固维修,造成不良的社会影响。据有关报道,深圳市40座立交桥中,有19座立交桥存在大小不同的问题,产生问题的原因是多方面的,有的在连续梁曲线内侧端支座脱空;有的曲线梁体向曲线外侧径向整体侧移;有的墩梁固结处在立柱顶部(与梁底衔接处)产生水平环形裂缝等危及桥梁正常使用的现象。但总的来说属于在探索和设计过程中认识不足和尚未认识的失误。因此针对小半径曲线梁桥进行设计分析,对工程设计和施工都具有很大的意义。

2.曲线梁桥结构受力特点

2.1预应力混凝土曲线箱梁中的扭矩

众所周知,曲线梁与直线梁的主要区别在于曲线梁具有如下特征:1)外缘弯曲应力大于内缘弯曲应力;2)外缘挠度大于内缘挠度,且随着曲率半径的减小,挠度差不断增大;3)无论采用何种支座布置方案,曲线梁内总存在扭矩;4)各主梁恒载内力不均匀,因此,曲线梁总是处于弯、扭耦合的受力状态下。

对于非预应力曲线箱梁,恒载产生的扭矩主要由内外缘自重差异引起;对于预应力曲线箱梁,除了内外缘自重差异产生扭矩外,预应力钢束在空间方向的分布对于剪心(即扭转中心)会产生很大的力矩,且为主要扭矩。钢束在箱梁的腹板中有若干个上弯曲和下弯曲,同时在水平方向还有一个大弯曲。底板内的钢束主要为水平面内的弯曲。考虑到中腹板内钢束向上的竖直分力与剪心的力矩基本平衡,而向弯曲中心方向的分力对梁体有一个逆时针方向的扭矩,底板钢束产生逆时针方向的扭矩,腹板中钢束水平分力产生了顺时针方向的扭矩,因此在支座附近由钢束产生的扭矩要远小于跨中部分的扭矩。

2.2梁体的弯扭耦合作用

曲线梁桥在外荷载的作用下会同时产生弯矩和扭矩,并且互相影响,使梁截面处于弯扭耦合作用的状态,其截面主拉应力往往比相应的直梁桥大得多,这是曲线梁桥独有的受力特点。弯梁桥由于受到强大的扭矩作用,产生扭转变形,其曲线外侧的竖向挠度大于同跨径的直桥;由于弯扭耦合作用,在梁端可能出现翘

曲;当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势。

2.3内梁和外梁受力不均

在曲线梁桥中,由于存在较大的扭矩,因而通常会使外梁超载、内梁卸载,尤其在宽桥情况下内、外梁的差异更大。由于内、外梁的支点反力有时相差很大,当活载偏置时,内梁甚至可能产生负反力,这时如果支座不能承受拉力,就会出现梁体与支座的脱离,即“支座脱空”现象。

2.4墩台受力复杂

由于内外侧支座反力相差较大,使各墩柱所受垂直力出现较大差异。弯桥下部结构墩顶水平力,除了与直桥一样有制动力、温度变化引起的内力、地震力等外,还存在离心力和预应力张拉产生的径向力。故在曲线梁桥结构设计中,应对其进行全面的整体的空间受力计算分析,只采用横向分布等简化计算方法,不能满足设计要求。必须对其在承受纵向弯曲、扭转和翘曲作用下,结合自重、预应力和汽车活载等荷载进行详细的受力分析,充分考虑其结构的空间受力特点才能得到安全可靠的结构设计。

3.曲线梁桥的结构设计

曲线箱梁桥设计较多的是匝道桥,其桥面宽度比较窄,一般在6~12m左右。由于匝道是用来实现道路的转向功能的,在城市中立交往往受到占地面积的限制,所以匝道桥多为小半径的曲线梁桥,而且设置较大超高值。另外,匝道桥往往设置较大纵坡,匝道不仅跨越下面的非机动车道,有时还需跨越主干道和匝道,这就增大了匝道桥的长度。因此曲线梁桥处于“弯、剪、扭”的复合受力状态,上、下部结构必须构成有利于抵抗“弯、剪、扭”的措施,这给桥梁的线型设计和构造处理带来很大困难。

3.1弯梁桥的弯扭刚度比对结构的受力状态和变形状态有着直接的关系:弯扭刚度比越大,由曲率因素而导致的扭转弯形越大,因此,对于弯梁桥而言在满足竖向变形的前提下,应尽可能减小抗弯刚度、增大抗扭刚度。所以在曲线梁桥中,宜选用低高度梁和抗扭惯矩较大的箱形截面。小半径曲线梁桥的梁高大于跨径的1/18时,是比较经济的。在特殊情况下也不应小于跨径的1/22。

3.2在曲线梁桥截面设计时,要在桥跨范围内设置一些横隔板,以加强横桥向刚度并保持全桥稳定性。在截面发生较大变化的位置,要设渐变段过渡,减小应力集中效应。

3.3在进行配筋设计时要充分考虑扭矩效应,弯梁应在腹板侧面布置较多受力钢筋,其截面上下缘钢筋也比同等跨径的直桥多,且应配置较多的抗扭箍筋。在预应力混凝土曲线梁桥中,应设置防崩钢筋。

3.4城市立交桥中的曲线箱梁桥中墩多布置成独柱支承构造。在独柱式点铰支承弯连续梁中,上部结构在外荷载作用下产生的扭矩不能通过中间支承传至基础,而只能通过曲梁两端抗扭支承来传递,从而易造成曲梁产生过大扭矩。为减小弯梁桥梁体受扭对上、下部结构产生的不利影响,可采用以下方法进行结构受力平衡的调整:

(1)为减小此项扭矩的影响,比较有效的办法是通过调整独柱支承偏心值来改善主梁受力。

(2)通过预应力筋的径向偏心距来消除曲梁内某些截面过大的扭矩,改善主

梁的受力状态也是一种行之有效的办法。预应力曲线梁往往产生向外偏转的情况,这是由其结构特点造成的。预应力产生的扭矩分布和自重、恒载作用下的扭矩分布规律有着较大的区别,为调整扭矩分布,可在曲线梁轴线两侧采用不同的预应力钢束及锚下控制应力,构成预应力束应力的偏心,形成内扭矩来调整曲线梁扭矩分布。由于混凝土的收缩、徐变涉及的因素较多,每个工程中混凝土的材料、级配不尽相同,要很精确的计算出混凝土收缩、徐变对小半径曲线梁桥的作用较难。故在设计小半径曲线梁桥,最好采用普通钢筋混凝土结构。对于预应力混凝土曲线梁桥,纵向预应力筋采用高强度低松弛钢绞线。

3.5下部支承方式的确定。曲线梁桥的不同支承方式,对其上、下部结构内力影响非常大。对于弯梁桥,中间支承一般分为两种类型:抗扭型支承(多支点或墩梁固结)和单支点铰支承。在曲线梁桥选择支承方式时,可遵循以下原则:(1)对于较宽的桥(桥宽B>12m)和曲线半径较大(一般R>100m)的曲线梁桥,由于主梁扭转作用较小,桥体宽要求主梁增加横向稳定性,故在中墩宜采用具有抗扭较强的多柱或多支座的支承方式,亦可采用墩柱与梁固结的支承形式。

(2)对于较窄的桥(桥宽B≤12m)和曲线半径较小(一般约R≤100m)的曲线梁桥,由于主梁扭转作用的增加,尤其在预应力钢束径向力的作用下,主梁横向扭矩和扭转变形很大。由于桥窄因此宜采用独柱墩,但在选用支承结构形式时应视墩柱高度不同而确定。较高的中墩可采用墩柱与梁固结的结构支承形式。较低的中墩可采用具有较弱抗扭能力的单点支承的方式。这样可有效降低墩柱的弯短和减小主梁的横向扭转变形。但这两种交承方式都需对横向支座偏心进行调整。

(3)墩柱截面的合理选用。当采用墩柱与梁固结的支承形式时就必须注意墩柱的弯矩变化。在主梁的扭转变形过大同时墩柱弯矩也很大(一般墩柱较矮)的情况下,宜采用矩形截面墩柱。因为矩形截面沿主梁纵向抗弯刚度较小,而沿主梁横向抗弯刚度较大,这样既减小了墩柱的配筋又降低了主梁的横向扭转变形,更适合其受力特点。

4.曲线梁桥支座布置型式

曲线箱梁桥支座的布置型式通常采用全部采用抗扭支承、两端设置抗扭支承,中间设单支点铰支承、两端设置抗扭支承,中间既有单支点铰支承,又有抗扭支承的混合式支承,下部墩柱应与之相匹配。

在曲线箱梁桥中,两端为抗扭支座(双支座),联内安置几个铰支座的布置已不多见,即使对小跨径小半径的非预应力曲线梁,一般也采用设内、外偏心支座方案。通常预应力钢束引起的扭矩随弯曲半径的减小而加大,总的扭矩随跨长而增大,因此跨中的偏心支座,在与偏心距的设置上要分别考虑以下几方面的影响:(a)横向恒载不均匀的影响,可通过设置中墩偏心距e来解决;对于弯曲半径大于130m的曲线梁,这个偏心距不大,一般在0.1m~0.2m左右;

(b)预应力束形成扭矩的影响这部分扭矩的影响相当大,有时在半径为130m、联跨长140m的四跨曲线箱梁中可达20000KN?m以上,若用增加跨中支座偏心距的办法,则跨中支座的总偏心距为,式中,为抵抗预应力所产生的扭矩;若跨中支座按设内、外偏心支座的方案布置,偏心距的加大可使端部抗扭的双支座中的反力大致相等(或外侧支座反力稍大些);

(c)曲线梁从施工完成到使用后的相当一段时间内均受到徐变、温度以及

不均匀扭矩的影响,支座总有滑移,因此每联曲线梁必须设有一个固定支座,固定支座一般设在跨中,有时也可特意在跨中设固结墩;

(d)若梁的线刚度较低,则在内侧边缘行驶车辆的活载作用下会使内侧受拉区产生较大的应力及挠度(或转角),此时可采用设内、外偏心支座的布置方案;

(e)对于设内、外偏心支座的支座布置,梁内的扭距使梁产生扭转转动,与直线箱梁不同,曲线梁中这种扭转属于约束扭转,因此梁体内既有剪力滞效应,又有翘曲与畸变应力,当半径R足够大时这种影响不明显,从而使扭转有些类似于自由扭转,截面内只有剪力流;

(f)对曲率半径R大于130m、跨径小于30m、顶板宽9m的匝道桥,可采取设内、外偏心支座的布置方案,但跨径大于35m时若仍用此方案时,应在联中采用一个固结墩,或者在全部跨中支座采用偏置双支座方案;

(g)对曲线箱梁而言,在曲线箱梁中布设一抗扭支座(可以是双支座,也可以是固结墩)的方案是既合理又保险的方案,但这样的桥墩会发生由于外支座反力过大导致墩顶横梁开裂的事故,为防止这类事故的发生,可通过在墩顶横梁内布设预应力钢束或者加大墩顶的布筋密度来避免。

对于多跨小半径曲线连续梁桥,全部为抗扭支承与中间为点铰支承的,两者在荷载作用下的弯矩和剪力值差别甚小,而且曲率的变化对弯矩值的影响也只有1%~2%,但对扭矩的影响,则随曲率的增大而加大。当各跨圆心角大于30°时,中间设单支点铰支承的扭矩控制值比全部为抗扭支承的扭矩控制值要大15%左右。在中间设独柱式单支点的曲线连续梁内,上部结构的扭矩不能通过中间单支点支承传至基础,而只能由曲线桥两端设置的抗扭支承来传递。在此情况下连续梁的全长成为受扭跨度(扭矩的传递作用),必然造成曲线桥两端抗扭支承处产生过大的扭矩,造成曲线梁端部内侧支座脱空,所以在必要时,,须对多跨桥梁中间墩设置两支点的抗扭支承。如果在中间墩点支承向曲线外侧方向预设一定偏心值,就可以调整曲线梁桥的梁体恒载扭矩分布,有效地降低两端抗扭支承的恒载扭矩值。但这一措施对减少活载扭矩的影响较小,这是由于活载引起的扭矩中车辆偏载占了很大一部分。必要时可在墩顶设置限位挡块或采用墩梁固结的办法来限制曲线梁桥的梁体径向位移。

5.曲线箱梁桥设计实例分析

某城市预应力钢筋混凝土曲线梁桥,单箱双室截面,顶板宽9.2m,底板宽4.4m,跨径组合为20m+18m+18m,桥梁平面位于直线段和R=34米的平曲线上,汽车荷载采用城市桥梁设计荷载标准:城市-A级。

本桥设计时,直线段按照普通直线桥设计即可,曲线段较特殊,须考虑支座设置问题及各箱梁截面抗扭性能。在设计时,采用Midas/civil软件进行全桥计

算分析,整个桥梁离散为梁单元模型,47个节点,40个单元。计算中以控制截面弯、扭组合受力最小及支座不出现拉力为目标,计算得出各支座预设偏心情况如图3所示。

计算结果表明,在城市-A级车辆荷载作用于箱梁内外侧两种情况,支座均未出现脱空现象,支座1出现最小反力为23KN,支座4出现最小反力为9KN。汽车作用在外侧时,支座最大反力5293KN,出现在3号支座;汽车作用在内侧时,支座作大反力5179KN,出现在3号支座。全桥最大弯矩产生在第三跨跨中处,而扭矩出现在梁端双支座处。扭矩在支座3处出现反号现象,主要是由于汽车作用内外侧时,在曲线曲率减小处产生体系内力重分配引起的。

通过上述结果分析,可以得出城市曲线箱梁桥(匝道桥),在设计时只要经过合理的计算分析,采用抗扭刚度大的截面并加强横格梁的强度,合理设置支座偏心,可以达到我们预期的结果,设计出理想的桥梁,确保桥梁运营阶段整体受力均衡,应力储备充足。

5.曲线梁桥设计中需要注意的其它问题

(1)所有中墩支座,尽可能横桥向位移固定,可采用盆式或普通板式橡胶支座

(2)当桥长较大(如大于100m),梁端支座应能顺桥向自由滑动、横桥向位移固定,可采用盆式橡胶支座,或附加了横桥向位移固定装置的四氟板橡胶支座;此外,梁端间隙和伸缩缝构造,应保证在最大升温条件下,梁能够不受阻碍地自由伸缩变形;当桥长较小时,梁端支座可以采用普通板式橡胶支座。梁端设普通板式橡胶支座、所有中墩设横桥向自由滑动的盆式支座,对曲线梁桥是危险的,应绝对避免。

(3)当曲线梁桥比较宽、各墩也较宽时,应注意温度变化时由于曲线梁水平弯曲变形在墩顶产生的横桥向水平作用力可能会比较大,尤其是当所有中墩支座均为横桥向位移固定时。

6.结语

曲线箱梁桥由于其结构受力的特殊性,较同等跨径的直梁桥要复杂得多,因此在进行弯桥设计和计算时应引起足够的重视。特别是箱梁支座的布设,会直接影响到梁的内力分布;同时,支座的布置应使其能充分适应曲梁的纵、横向自由转动和移动的可能性,通常宜采用球面支座,且为多向活动支座;此外,曲线箱梁中间常设单支点支座,仅在一联梁的端部(或桥台上)设置双支座,以承受扭矩,有意将曲梁支点向曲线外侧偏离,可调整曲梁的扭矩分布。

当桥梁位于坡道上时,固定支座应设在较低一端,以使梁体在竖向荷载沿坡度方向分力的作用下受压,以便能抵消一部分竖向荷载产生的梁下缘拉力,当桥梁位于平坡上时,固定支座宜设在主要行车方向的前端。

通过以上分析,我们可以得出以下结论:

(1)曲线箱梁桥始终处于弯扭耦合的作用下,受力十分复杂,要认真分析;

(2)恒载及预应力钢束都会对曲线箱梁产生扭矩;

(3)曲线梁桥曲率半径越小、每一联越长,其扭矩越大;

(4)为避免支座滑移,每联必须设一固定支座,一般设在跨中;

(5)通过调整曲线箱梁桥的支座型式,可以调整曲线箱梁内的扭矩分布;

(6)针对其不同于直线梁的受力特点,在设计中采用相应的有效措施,是可以设计出较为可靠且经济适用的曲线桥梁的。

参考文献:

【1】邵容光.混凝土弯梁桥[M].北京:人民交通出版社,1996.

【2】孙广华.曲线梁桥计算[M].北京:人民交通出版社,1997.

【3】刘效尧,赵立成.梁桥(下册)[M].北京:人民交通出版社,2000.

【4】丁雪松,刘旭锴.预应力曲线箱梁和异形箱梁的研究[J],城市道桥与防洪,2001.1

教科书上的内容:

影响弯桥受力的因素除了跨长、刚度之外,还有如下因素:

1 圆心角

有试验数据表明,当圆形角度小于等于50°时,弯梁的纵向弯矩可以足够精确地用跨径等于:曲率半径乘以圆心角的直线梁来计算。

2 桥梁宽度与曲率半径之比

加拿大安大略省公路桥梁设计规范QHBDC中采用:弧长的平反除以桥梁半宽除以曲率半径(桥轴线处),当桥宽较大,曲率半径较小时,还应注意到曲线梁内外弧长相差较大,因此外侧恒载比内侧恒载大得多,即使是对称截面,恒载也会产生向曲线外侧翻转的均不力矩。

3 弯扭刚度比

对于弯梁桥,在抗弯刚度满足要求的前提下应尽量增大截面抗扭刚度,以减小扭矩引起的变形,采用抗扭惯性矩比较大的箱型截面。

4 扇性惯矩形

严格来说,曲线梁除了圆形和正方行的截面外,变形后均不能保持为平面,结构分析中应考虑薄壁效应,但对砼结构薄壁效应并不是很明显,且一般箱型截

面的形状接近于正方形,如果L(GI

d /EI

w

)≥30,横截面的翘曲变形不大,可以不

考虑薄壁效应。

简支T型梁桥课程设计

桥梁工程课程设计 土木工程专业本科(四年制)适用 指导教师: 李小山 班 级: 10土木一班 学生姓名: 董帅 设计时间: 浙江理工大学建筑工程学院土木系 土木工程专业 桥梁工程课程设计任务书 浙江理工大学建筑工程学院土木系 2013年4月 一、设计题目:钢筋混凝土简支T 型梁桥设计 二、设计资料: 1. 桥面宽度:净m m m 25.025.127?+?+ 2. 设计荷载:公路-I 级 3. 桥面铺装:4cm 厚沥青混凝土(3/23m KN ),6cm 厚水泥混凝土(3/24m KN ), 主梁混凝土为3/24m KN 4. 主梁跨径及全长:标准跨径:m l b 00.25=,计算跨径m l 96.24=,净跨m l 60.240= 5. 结构尺寸图,根据钢筋混凝土简支T 型梁桥的构造要求设计,也可参照下图选用: 桥梁横断面布置图

[1] JTGD60-2004 公路桥涵设计通用规范[S] [2] JTGD62-2004 公路钢筋混凝土及预应力混凝土桥涵设计规范[S] [3] 邵旭东.桥梁工程[M].第二版.北京:人民交通出版社,2007 四、设计内容: 主梁、横隔梁和行车道板的内力计算 五、设计成果要求: 设计计算书。 设计计算说明书制作成Word 文档或手写。整个说明书应满足计算过程完整、 计算步骤清楚、文字简明、符号规范的要求。 封面、任务书和计算说明书用A4纸张打印,按封面、任务书、计算说明书的顺序一起装订成册,交指导老师评阅。 六、提交时间: 第14周周五前提交,过期不候。 设计计算书 基本设计资料 1. 桥面宽度:净m m m 25.025.127?+?+ 2. 设计荷载:公路-I 级 3. 桥面铺装:4cm 厚沥青混凝土(3/k 23m N ),6cm 厚水泥混凝土(3/k 24m N ), 主梁混凝土为3k 24m N 4. 主梁跨径及全长:标准跨径:m l b 00.25=,计算跨径m l 96.24=,净跨 m l 60.240= 5. 主梁截面尺寸: 拟定采用的梁高为,腹板宽18cm 。 主梁间距:,主梁肋宽度:18cm 。 结构尺寸如图 行车道板计算 结构自重及其内力 每延米板上的结构自重

曲线梁桥的受力施工特点及设计方法分析_百度文库

曲线梁桥的受力施工特点及设计方法分析 中华硕博网核心提示:摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。:曲线梁桥,结构,施工近年来,随着公路建设事业 摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。 :曲线梁桥,结构,施工 近年来,随着公路建设事业的快速发展,涉及到曲线梁的桥梁设计已经越来越多了,以往设计者希望通过调整路线方案,尽量避开这种结构形式,或由于曲线半径较大,采用以“直”代“曲”的形式,在桥梁上部(如翼缘、护栏等进行曲线调整,以期达到与路线线形一致。这些严格意义上说都不是曲线桥。由于受原有地物或地形的限制,一些城市的立交桥梁和交叉工程的桥梁曲线半径比较小,桥墩基本上要设在指定位置,这种情况下只能考虑设计曲线梁桥。 1、曲线梁桥的力学特性 1。1曲线梁的受力情况 曲线梁桥能很好地克服地形、地物的限制,可以让设计者较自由地发挥自己的想象,通过平顺、流畅的线条给人以美的享受。但是曲线梁桥的受力比较复杂。与直线梁相比,曲线梁的受力性能有如下特点: (1轴向变形与平面内弯曲的耦合; (2竖向挠曲与扭转的耦合; (3它们与截面畸变的耦合。其中最主要的是挠曲变形和扭转变形的耦合。曲梁在竖向荷载和扭距作用下,都会同时产生弯距和扭距,并相互影响。同时弯道内外侧支座反力不等,内外侧反力差引起较大的扭距,使梁截面处于“弯-扭”耦合作用状态,其截面主拉应力比相应的直梁桥大得多。故在曲线梁桥中,应选用抗扭刚度较大的

箱型截面形式。在曲梁中,由于存在较大的扭矩,通常会出现“外梁超载,内梁卸载”的现象,这种现象在小半径的宽桥中特别明显。另外,由于曲梁内外侧支座反力有时相差很大,当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,通常称为“支座脱空”。 1。2下部桥梁墩台的受力情况 由于内外侧支座反力不相等,使各墩柱所受垂直力出现较大差距。当扭矩很大时,如果设置了拉压支座,有些墩柱甚至会出现拉力。曲线梁桥下部结构墩顶水平力,除了与直桥一样,有制动力、温度力、地震力等以外,还因为弯梁曲率的存在,多了离心力和预应力张拉时产 生的径向力。墩顶水平力的分配非常复杂。在求温度零点时,曲线梁桥不能象直桥一样,只考虑一个方向力的平衡,而必须考虑两个方向的平衡;各墩顶处支座的类型和位置不一致,部分支座可能已处于临界滑移状态,其余支座还未达到临界状态;各支座的约束方向以及各墩柱不在同一平面内,使得水平力求解非常困难。 2、曲线梁桥的结构分析 2。1上部结构分析 2。1。1结构力学方法 这种方法沿用杆系系统的结构力学方法。首先将弯梁视为一根曲杆,把抗扭支座以赘余扭矩代替,然后根据变形协调条件求解未知力。这种方法较简单,比较适用于分析简支弯梁和等截面且跨内为圆弧的窄桥。 2。1。2梁格法 梁格法是目前最常用的分析弯梁桥的方法。梁格法实质是用一个等效的梁格来代替桥梁上部结构,是一种以梁为基本单元的有限元法。这种方法概念明确,容易理解和使用,也比较容易操作,计算速度也比较快。现有的计算曲线梁梁桥软件,如同济大学开发的“桥梁博士”和广州阿安毕公司开发的“3DBSA”,都采用了梁格法。

探讨曲线梁桥设计

探讨曲线梁桥设计 [摘要]:本文着重论述了连续桥设计中的几个技术问题,如:中横梁刚度对荷载分配的影响、支座偏心距对扭矩分配的影响、剪力滞后对翼缘板有效宽度影响等,并结合工程实践提出了解决问题的相应办法。 关键词:曲线梁桥;支座偏心距;有效宽度 [abstract] : this paper focuses on the continuous bridge design of several technical problems, such as: the bar to the influence of the distribution stiffness load eccentricity, problems of torque distribution, effects of shear lag of flange plate effective width influence to wait, and combined with engineering practice, this paper proposes the corresponding measures to solve the problems. keywords: curve beam bridge; bearing eccentricity; effective width 中图分类号: u448 文献标识码: a 文章编号: 1前言 曲线梁桥是现代交通工程中一种重要桥型。在公路及城市道路的立体交叉工程中,曲线梁桥是实现各方面交通联结的必要手段。早期修建的曲线梁桥,由于受设计方法和施工工艺的限制,多建成钢筋混凝土简支梁,其上部结构略显笨重,且易开裂,给后期养护带来较大困难。随着道路交通的迅猛发展,以及人们对审美观念的

小半径曲线梁桥的设计选型与结构分析

小半径曲线梁桥的设计选型与结构分析 随着社会经济的发展和人们对景观的要求不断提升,城市中大量涌现出具有景观要求的桥梁。但在受到城市交通功能和地形条件的限制时,时常会出现小半径的曲线桥梁。这种小半径的曲线桥梁具有斜、弯、异形等特点,给桥梁设计和构造处理造成很大困难。文章结合中山小榄镇某小区内车辆专用桥的设计,对小半径曲线梁桥的设计选型及结构分析进行探讨。 标签:Midas/Civil;小半径曲线梁桥;设计选型;结构分析 1 工程概述 本工程位于中山市小榄镇一新建小区内,供小区车辆进出车库专用,沿线跨越三条河涌。由于前期建设方已委托进行景观专业设计,按照景观设计要求,进行桥梁结构设计。同时根据现场地形条件、施工技术拟定桥梁方案。桥梁全长219m,跨径多处于20m左右,全桥4联(21.088+18.521)+(17.994+17.225)+(环岛:16.062+7.172+9.671+9.335+12.379)+(20.387+19.980)m。共桥梁全宽8.5m,其中环岛处最小曲线半径R=15.7m。桥梁上部结构采用现浇钢筋混凝土,下部采用桩柱式桥墩、埋置式桥台、钻孔灌注桩基础。全桥平面图如下所示。 上部结构箱梁横断面采用单箱双室,梁高140cm,箱梁顶宽830cm,两端悬臂各设10cm后浇段同护栏一起浇筑,底宽730cm,翼缘板悬臂长度100cm。顶板等厚20cm。底板厚度为40cm~20cm,腹板厚度60~40cm,横断面如下图所示: 2 计算参数 2.1 设计标准 设计荷载:城-B级; 温度荷载:结构体系温差±25度,梯度温度按照规范沥青铺装指标加载。 桥面净宽:7.5m。 设计车速:40km/h 2.2 主要材料及计算参数 3 结构选型与计算分析 运用Midas/Civil软件,对结构各联均建立模型进行分析,尤其是第3联环岛,最小半径仅有17.5m,常规做法很难满足抗扭承载力要求,必须通过计算通

简支T形桥梁工程课程设计报告

桥梁工程课程设计(本科) 专业道路桥梁与渡河工程班级15春 姓名炜灵 学号9

理工大学网络教育学院 2016年12月 一、课程设计目的 本课程的任务和目的:学生通过本课程的设计练习,使学生掌握钢筋混凝土简支T梁设计计算的步骤和法,学会对T梁进行结构自重力计算、汽车荷载和人群荷载力计算、作用效应组合;在汽车和人群荷载力计算时,学会用偏心受压法和杆杠原理法求解荷载横向分布系数。 二、课程设计题目 装配式钢筋混凝土简支T形梁桥设计 三、课程设计任务与指导书(附后) 四、课程设计成果要求 设计文本要求文图整洁,设计图表装订成册,所有图表格式应符合一般工程设计文件的格式要求。 五、课程设计成绩评定 课程设计文本质量及平时成绩,采用五级制评定:优、良、中、及、不及。

装配式钢筋混凝土简支T形梁桥 课程设计任务与指导书 一、设计容 根据结构图所示的一标准跨径为L b=25m的T形梁的截面尺寸,要求对作用效应组合后的最不利的主梁(一根)进行下列设计与计算: 1、行车道板的力计算; 2、主梁力计算; 二、设计资料 1、桥面净宽:净-7(车行道)+2×1.0(人行道)+2×0.25(栏杆)。 2、设计荷载:公路-II级,人群3.5kN/m2。 4、结构尺寸图: 主梁:标准跨径Lb=25m(墩中心距离)。 计算跨径L=24.50m(支座中心距离)。 预制长度L’=24.95m(主梁预制长度)。 横隔梁5根,肋宽15cm。

桥梁纵向布置图(单位:cm) 桥梁横断面图(单位:cm) T型梁尺寸图(单位:cm) 三、知识点(计算容提示) 1、行车道板计算 1)采用铰接板计算恒载、活载在T梁悬臂根部每延米最大力(M和Q)。 2)确定行车道板正截面设计控制力。 2、主梁肋设计计算 1)结构重力引起力计算(跨中弯矩和支点剪力),剪力按直线变化,弯矩按二次抛物线变化。

曲线梁桥平面位移机理分析

总第222期交 通 科 技Ser ial No.222 2007年第3期T r anspor tation Science&T echno log y N o.3June.2007 收稿日期:2007 01 23曲线梁桥平面位移机理分析 刘柱国 (河北省交通厅公路管理局 石家庄 050051) 摘 要 分析了曲线梁桥平面位移的机理,探讨了影响平面位移的主要因素,并结合工程实例对影响因素进行了验证。 关键词 曲线梁桥 平面位移 温度效应 收缩 徐变 连续曲线梁桥在使用过程中,由于预加力、温度效应、车辆行驶或一些其他影响因素的作用,会产生侧向的变位。由于曲线梁桥的结构特点、支承形式等原因,当外荷载等影响因素消失后,弯梁发生的侧向变位并不能够完全恢复,会产生部分不可恢复的残余位移,在长期反复作用下,侧向的残余位移就会累积,产生较大的位移,即曲线梁桥的侧向位移(或称 爬移)。曲线梁桥的侧向位移问题轻则导致梁段伸缩缝的剪切破坏,影响其使用寿命;严重的则会出现支承结构破坏,梁体滑移和翻转。桥梁在使用过程中出现该类问题,不仅影响交通,而且加固起来非常困难,造成巨大的经济损失。 1 影响曲线梁桥平面位移的因素 1.1 支承方式 支承方式是影响曲线梁桥平面位移的内在因素,支承方式直接影响全桥的内力分布,合理的支承方式可以承受自重和活载、偏载等因素所产生的组合扭矩作用,限制结构的平面位移。 曲线梁桥可以采用多种支承布置形式。理论上讲,连续曲线梁桥的所有支承均可采用点铰支承,但在荷载作用下梁端将产生扭转变形,从而在梁端与桥台背墙间产生上下相对变形,这会导致伸缩缝破坏。一般在两端的桥台设置能抵抗外扭矩的抗扭支座,中间支承可以采用抗扭支承,或点铰支承,或者交替使用两种支承形式,从而限制梁端的扭转变形,以保证伸缩缝正常工作[1 2]。 主梁在各种荷载作用下,除了梁端扭转变形外,在支座位置处还会产生纵桥向与横桥向的变位,为了保证结构的正常工作,总希望沿着 切线方向移动。为此,除了在桥台处设置抗扭支座外,还必须采取一些 限制措施,一般可以在活动端的定向切线支座上安置 限制位移方向的措施,以保证桥头的位移能符合 切线方向的运动要求,但在设计计算时,必须计及这个 强制力的影响。根据具体桥型,充分考虑各种因素,设置合理的支承方式,就可以使曲线梁桥的平面变形顺着目标方向进行,阻止非正常变位的发生。 1.2 温度和混凝土收缩的影响 温度变化和混凝土收缩引起在平面内的位移 属于弧段膨胀或收缩性质的位移[1],涉及到弧段的半径变化但圆心角不变,即r0!r,而 0= (见图1)。 图1 曲线梁桥平面内变形 在此情况下: r=r0(1- ), =?!t+ cs ?3=2(r0-r)sin 0 2 式中: cs为混凝土的收缩应变。 因此温度变化和混凝土收缩时,曲线梁桥会发生两个方向的位移分量:#沿桥轴线方向的纵向分量;?沿桥轴线垂直方向的分量(见图2)。 温度变化和收缩在各种活动支座处将引起纵桥向与横桥向的变形,横桥向的变形不仅给伸缩缝的活动带来困难,而且产生了曲线梁桥的支座受力、布置以及一些侧向问题。

浅谈曲线梁桥设计中应注意的几个问题

浅谈曲线梁桥设计中应注意的几个问题 论文导读:近年来,随着我们交通事业和城市建设事业的蓬勃发展,由于受地形、地物的限制等诸多原因,城市立交和公路交叉工程等结构出现弯、坡、斜、异型等特点,曲线梁桥便应运而生。本文将对曲线梁桥设计中应注意的几个问题进行简要的探讨。在进行曲线桥梁总体布置时,应考虑到两方面问题:(1)结构受力方面,要注意调整梁内的扭矩分布,控制扭矩峰值,使梁截面以及支座受力较均匀。关键词:曲线梁桥,设计,问题 近年来,随着我们交通事业和城市建设事业的蓬勃发展,由于受地形、地物的限制等诸多原因,城市立交和公路交叉工程等结构出现弯、坡、斜、异型等特点,曲线梁桥便应运而生。相比于直线梁桥,曲线梁桥对地形地貌的适应性较强。本文将对曲线梁桥设计中应注意的几个问题进行简要的探讨。 1.总体布置在进行曲线桥梁总体布置时,应考虑到两方面问题:(1)结构受力方面,要注意调整梁内的扭矩分布,控制扭矩峰值,使梁截面以及支座受力较均匀;(2)结构变形方面,要注意控制梁端纵横向变位及翘曲变形。使之符合规范要求。要得到这些结果,主要是靠调整跨径划分和处理边界条件。 1.1分孔问题因曲线梁桥其特殊的结构构造,其梁内侧支座反力较小甚至可能出现负值,为了避免可能出现梁端内侧支座“脱空”现象,可使内侧支座处于受压状态,并考虑给予一定的压力储备。达到此目的比较有效的方法是控制边跨跨径,使边跨跨径与中跨比较接近。当受实际条件限制,边跨跨径与中跨差距较大时,也可考虑采取其他一些措施,如调整边跨与中跨的自重等。 1.2支承方式(边界条件)曲线梁桥的支承方式一般分为两种类型:抗扭支承和独柱点铰支承。其中抗扭支承具有较强的抗扭能力,而独柱点铰支承具有墩位布设灵活的特点。一般在曲线梁桥的两端常用抗扭支承,此支承方式可有效地提高主梁截面的横向抗扭性能,保证桥梁横向稳定性;此外,在梁桥的中间支承处仅设置一个支座即为独柱点铰支承,这两种支承方式应用均较普遍。对于桥面宽度较宽或曲线半径较大的曲线梁桥,主梁截面的抗扭刚度降低,故设抗扭支承较采用点铰支承合理。对于桥面宽度较窄或曲线半径较小的曲线梁桥,由于上部结构常采用具有较大抗扭刚度的箱梁结构,一般将中间墩布置成独柱点铰支承。为了增大相邻两跨间的矢度,对于曲线半径较大的曲线梁桥,也可采用铰支承交替布置在桥轴线两侧的形式,能大大提高全桥抗侧倾能力。 2.上部结构曲线梁桥各截面处于“弯、剪、扭”的复合受力状态,其应力分布比直线梁桥复杂得多。因此,在截面设计时,要选择抗扭刚度大的截面形式,如箱形截面、空心板截面等;同时,要在桥跨范围内设置适量的横隔板,以加强截面横向刚度;在截面发生较大变化处,要设渐变段过渡,以减小应力集中效应。在进行配筋设计时,应充分考虑扭矩效应。与直线梁桥不同,曲线梁桥应在腹板侧面布置较多的受力钢筋,其截面上下缘钢筋也比同等跨径的直线梁桥数量多;另外,曲线梁桥除了要布设抗剪钢筋外,还要配置较多的抗扭箍筋。3.下部结构 曲线梁桥墩顶水平力分配比较复杂,且桥墩所受的外力方向常发生变化,因此,墩柱要尽量采用圆形截面;曲线梁桥墩柱受到纵、横向水平力作用,墩身最大弯矩应是两个方向的力矢量合成值;同一座桥墩各墩柱的轴力也可能有差异,因此要调整墩柱位置,使墩柱受力均匀,避免出现墩柱受拉的情况;在计算桩柱配筋量时,要分别验算各墩柱的内力,根据最不利组合进行配筋。在确

桥梁工程中小半径曲线梁桥设计要点

桥梁工程中小半径曲线梁桥的设计要点摘要:随着我国城市交通压力的不断增加,大量的高架桥和立交桥被兴建,但是由于城市交通功能的要求和地形环境的诸多限制,这些桥梁多采用的是曲线型构造。曲线型结构的桥梁受力比较复杂,其中以小半径梁桥最为特别,除了一般的受力外,还要承受扭矩和翘曲双力矩的共同作用,所以小半径曲线梁桥出现的问题较多。本文就小半径曲线梁桥出现的问题做了相应的说明,并就这些问题进行了深入的探讨并着重说明了设计中要注意的要点。 关键词:桥梁工程;小半径曲线梁桥;设计要点 中图分类号:[tu997]文献标识码:a 文章编号: abstract: along with the urban traffic increase of pressure, a lot of viaduct and flyovers be built, but because the city traffic function requirements and terrain environment many of the limitations of the bridges take the form of a curve type structure. the structure of the bridge type curve stress is more complex, among them with small radius of the most special bridge, in addition to the stress of the general, but also bear torque and warp the joint action of double moment, so small radius of the problem of the curved girder bridges is more. this paper is small radius of the problem of the curved girder bridges related instructions, and these problems thoroughly discussed and the focus on the design to

弯梁桥设计体会总结

1.1.2混凝土箱梁温度作用效应 由于混凝土箱梁的温度作用产生的应力称为混凝土箱梁的温度应力。因混凝土箱梁的内、外约 束而产生的温度应力又分别称为温度内约束应力和温度外约束应力。温度内约束应力是指由于温度 在混凝土箱梁结构的非线性分布而使构件各部分因温度的收缩不均匀而产生的约束应力,由于这种 应力在箱梁截面上是自平衡的,也称为温度自约束应力,简称温度自应力。对于属于超静定结构的 桥梁而言,赘余约束会阻止结构由于温度而产生的变形,由此产生的应力称为温度外约束应力,也 称为温度次应力,相应的内力称为温度次内力。 事实上,对悬拼或悬浇的方法施工的混凝土连续梁的一个节段而言,若其任意时刻t的温度场 可表达联)t,则任意时刻t的实际竖向温差分布应表示为D双)t一双0)t,其中命为该节段施工完毕的 时刻,D联)t表示t时刻的竖向温差分布。但对于绝大多数的桥梁而言D 双0)t都是未知的,因此在无 法忽略D双0)t的条件下是不可能准确求出温度应力的。然而随着时间的推移,徐变的发展可以基本 消除D联肠)引起的初始温度应力,运营阶段的t时刻的温度应力只要通过D双)t就可以计算#[]。因此

本文中所指的竖向温差分布如无特别注明,均指D双)t,而不是D联)t一联0)t。 (一)外形:由顶板、底板、肋板及梗腋组成 1、顶板: 除承受结构正负弯矩外,还承受车辆荷载的直接作用。在以负弯矩为主的悬壁梁及T形刚构桥中,顶板中布置了数量众多的预应力钢束,要求顶板面积心须满足布置钢束的需要,厚度一般取18—25cm。 2、底板 主要承受正负弯矩。当采用悬臂施工法时,梁下缘承受很大的压应力,特别是靠近桥墩的截面,要求提供的承压面积更大;同时在施工时还承受挂篮底模板的吊点反力。在T形刚构桥和连续梁桥中,底板厚度随梁的负弯矩塔大而逐渐加厚。底板最小厚度15cm。 3、肋板 承受截面剪应力及主位应力,并承受局部荷载产生的横向弯矩,其厚度还须满足布置预应力筋及浇筑混凝土的要求,以及锚固锚头的需要,一般厚度为20-35cm,大跨径桥梁可采用变厚度。 4、梗腋 顶板与肋板交接处设使梗液,其作用是;(1)提高截面抗扭刚度,减少畸变应力;(2)使桥面板支点加厚,减少桥面板跨中弯矩;(3)使力线过渡平缓,避免应力集中;(4)提供布置纵向预应力钢束的面积。 底板与助板交接处的梗腋,其作用不如上梗腋显著,尺寸可较小,有的国外桥梁甚至不设。 尺寸:以提高截面的抗扭刚度为目的设置,其斜度可按1:1,也可1:2或2:1设计。 注意:在大跨径箱形梁桥中,结构自重占总荷载的比例较大(可达80%以上),为减轻自重,宜采用宽箱薄壁截面。

连续曲线梁桥设计探析

连续曲线梁桥设计探析 文章论述了曲线桥梁的受力性,并且阐述了设计时要注意的要素。 标签:曲线梁桥;受力特点;结构设计 1 概述 曲线桥是当前的道桥项目中非常关键的一个组成部分,尤其是在最近几年它得到了非常广泛的应用。对于那些互通型的立交匝道来讲,它的使用更是非常的明显。在设计匝道的时候会受到很多要素的干扰,比如地形以及所在区域的规模等,这些要素的存在使得该项设计有如下的一些特征。第一,此类桥的宽度不是很宽,通常匝道的尺寸在六米到十米之间。第二,匝道本身是为了辅助道路转向的,在立交工程中会受到土地规模的影响,因此这类桥大多数是小尺寸的曲线桥。第三,匝道桥的纵向坡度非常大,有时会横跨下方的车道,此时就使得桥的长度变长。因为这种桥本身弯斜,形状特别,所以它的设计工作无法正常的开展。 2 曲线梁桥的平面及纵、横断面布置 最近几年高速路在设计的时候更加的关注线形方面的内容,规定设计要合乎线形要求。因此在布局桥梁平面的时候,要遵照总的线形布局规定,其纵坡也要和路线的纵坡保持一致。通常为了应对截面的扭矩以及弯矩,在设计的时候常使用箱形的截面。由于桥面超高的需要及梁体受扭时外边梁受力较大的需要,所以可以在其水平方向上把主梁设置成不一样的高度。为了便于构造,方便建设,也可以将其设置成一样高度的,其超高横坡由墩台顶面形成。 3 曲线梁桥结构受力特点 3.1 梁体的弯扭耦合作用 一般来说,当受到外在力影响的时候,曲梁会出现一定的弯矩以及扭矩,两者会彼此影响,进而导致截面处在一种耦合的状态中,截面的拉力要较之于直梁大,这个特征是这种梁所特有的。因为这种桥会承受较高的扭矩力,所以会发生变形现象,它的外侧的挠度要比相同尺寸的直桥大一些。因为存在耦合作用,所以在桥上方会存在翘曲现象。 3.2 内外梁无法均匀受力 对于曲梁桥来讲,因为其扭矩较大,所以会导致外梁发生超载而内梁出现卸载的情况,特别是当桥梁较宽的时候这种现象更加的明显。因为两个梁的支点反力差别非常大,如果活载发生了偏移的话,内梁就会生成一种反向力,此时假如内梁无法承受这种力的话,就会使得梁体和支座分离。

小半径曲线梁桥设计体会

小半径曲线梁桥设计体会 但由于它是曲线梁桥,其结构受力的特点不同,在构造处理上也相应有其较多特点。 1、由于曲线梁桥比直线梁桥的受力复杂,对结构的抗弯、抗扭性能要求高于同跨径的直线梁桥,故采用整体性好、抗扭刚度大就地浇注的连续箱形梁桥比较好。 2、小半径曲线梁桥的梁高大于跨径的1/18时,是比较经济的。在特殊情况下也不应小于跨径的1/22。 3、由于混凝土的收缩、徐变涉及的因素较多,个工程中混凝土的材料、级配不尽相同,要很精确的计算出混凝土收缩、徐变对小半径曲线梁桥的作用较难。故在设计小半径曲线梁桥,最好采用普通钢筋混凝土结构。对于预应力混凝土曲线梁桥,纵向预应力筋采用高强度低松弛钢绞线,但钢束一般不大于12-7ф5,压应力应小于12MPa,拉应力小于1MPa,为预应力A类构件即可。 4、与一般的直线桥相比,曲线箱梁桥顶板、底板和腹板中的纵向受力钢筋、横向钢筋、箍筋、水平分布钢筋都要考虑到全桥计算和构造上的需要,并适当加强。 5、在预应力混凝土曲线梁桥中设置防崩钢筋。 6、在支承形式上,小半径曲线梁桥通常三种布置形式:①全部采用抗扭支承。②两端设置抗扭支承,中间设单支点铰支承。③两端设置抗扭支承,中间既有单支点铰支承,又有抗扭支承的混合式支承,下部墩柱

当与之相匹配。 对于多跨小半径曲线连续梁桥,全部为抗扭支承与中间为点铰支承的,两者在荷载作用下的弯矩和剪力值差别甚小,而且曲率的变化对弯矩值的影响也只有1%~2%;,但对扭矩的影响,则随曲率的增大而加大。当各跨圆心角大于30度时,中间设单支点铰支承的扭矩控制值比全部为抗扭支承的扭矩控制值要大15%左右。在中间设独柱式单支点曲线连续梁内,上部结构的扭矩不能通过中间单支点支承传至基础,而只能由曲线桥两端设置的抗扭支承来传递。在此情况下连续梁的全长成为受扭跨度,这也是我们常常所说的扭矩的传递作用。必然造成曲线桥两端抗扭支承处产生过大的扭矩,造成曲线梁端部内侧支座脱空,所以在必要时,须对多跨桥梁中间墩设置两支点的抗扭支承。 如果在中间墩点支承向曲线外侧方向预设一定偏心值,就可以调整曲线梁桥的梁体恒载扭矩分布,有效地降低两端抗扭支承的恒载扭矩值。但这一措施对减少活载扭矩的影响较小,这是由于活载引起的扭矩中车辆偏载占了很大一部分。 7、必要时可在墩顶设置限挡块或采用墩梁固接的办法来限制曲线梁桥的梁体径向移。

桥梁工程课程设计(完整版)

桥梁工程课程设计报告书 一、设计资料 1 桥面净宽净-7 +2×1.5m人行道 2 主梁跨径及全长 标准跨径 l=21.70m(墩中心距离) 计算跨径l=21.20m(支座中心距离) 主梁全长l =21.66m(主梁预制长度) 全 3 设计荷载 公路—I级;人群荷载3.02 kN/ m 4 设计安全等级 二级 5 桥面铺装 沥青表面处厚5cm(重力密度为233 kN/),混凝土垫层厚6cm(重力密度为 m 243 m m kN/ kN/),T梁的重力密度为253 6 T梁简图如下图

主梁横截面图 二、 设计步骤与方法 Ⅰ. 行车道板的力计算和组合 (一)恒载及其力(以纵向 1m 宽的板条进行计算) 1)每延米板上的恒载 g 沥青表面 1g : 0.05×1.0×23 1.15kN m / 混凝土垫层 2g : 0.06×1.0 ×24 1.44kN m / T 梁翼板自重3g :30.080.14g 1.025 2.752+= ??=kN m / 合计:g=g 5.34i =∑kN m / 2)每米宽板条的恒载力 悬臂板长 ()0160180.712l m -= = 弯矩 2211 5.34(0.71) 1.3522 Ag M gl =-=-??=-·kN m 剪力 0 5.340.71 3.79Ag Q gl ==?=kN (二)汽车车辆荷载产生的力

60 50 1)将车辆荷载后轮作用于铰缝轴线上,后轴作用力为 140kN ,轮压分布宽度如图 5 所示,车辆荷载后轮着地长度为 a 2 0.20m ,宽度 b 2 0.60m , 则得: a 1 a 2 2H 0.2 2×0.11 0.42m b 1 b 2 2H 0.6 2× 0.11 0.82m 荷载对于悬臂梁根部的有效分布宽度: 12l 0.421.420.71 3.24m o a a d =++=++?= 2)计算冲击系数μ 结构跨中截面的惯矩c I : 翼板的换算平均高度:()1814112 h =?+=cm 主梁截面重心位置:()()11130 1601811130182241.18160181113018 a -??+??==-?+?cm 则得主梁抗弯惯矩: ()()22 326411111301601811160181141.2181813041.2 6.6310122122c I m ????=?-?+-??-+??130+??-=? ? ????? 结构跨中处单位长度质量c m : 3 315.4510 1.577109.8 c G m g ?===? 22/Ns m 混凝土弹性模量E :

曲线梁桥的受力施工特点及设计方法分析

曲线梁桥的受力施工特点及设计方法分析 摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。 关键词:曲线梁桥,结构,施工 近年来,随着公路建设事业的快速发展,涉及到曲线梁的桥梁设计已经越来越多了,以往设计者希望通过调整路线方案,尽量避开这种结构形式,或由于曲线半径较大,采用以“直”代“曲”的形式,在桥梁上部(如翼缘、护栏等)进行曲线调整,以期达到与路线线形一致。这些严格意义上说都不是曲线桥。由于受原有地物或地形的限制,一些城市的立交桥梁和交叉工程的桥梁曲线半径比较小,桥墩基本上要设在指定位置,这种情况下只能考虑设计曲线梁桥。 1曲线梁桥的力学特性 1.1曲线梁的受力情况 曲线梁桥能很好地克服地形、地物的限制,可以让设计者较自由地发挥自己的想象,通过平顺、流畅的线条给人以美的享受。但是曲线梁桥的受力比较复杂。与直线梁相比,曲线梁的受力性能有如下特点: (1)轴向变形与平面内弯曲的耦合; (2)竖向挠曲与扭转的耦合; (3)它们与截面畸变的耦合。其中最主要的是挠曲变形和扭转变形的耦合。曲梁在竖向荷载和扭距作用下,都会同时产生弯距和扭距,并相互影响。同时弯道内外侧支座反力不等,内外侧反力差引起较大的扭距,使梁截面处于“弯-扭”耦合作用状态,其截面主拉应力比相应的直梁桥大得多。故在曲线梁桥中,应选用抗扭刚度较大的箱型截面形式。在曲梁中,由于存在较大的扭矩,通常会出现“外梁超载,内梁卸载”的现象,这种现象在小半径的宽桥中特别明显。另外,由于曲梁内外侧支座反力有时相差很大,当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,通常称为“支座脱空”。 1.2下部桥梁墩台的受力情况 由于内外侧支座反力不相等,使各墩柱所受垂直力出现较大差距。当扭矩很大时,如果设置了拉压支座,有些墩柱甚至会出现拉力。曲线梁桥下部结构墩顶水平力,除了与直桥一样,有制动力、温度力、地震力等以外,还因为弯梁曲率的存在,多了离心力和预应力张拉时产生的径向力。墩顶水平力的分配非常复杂。在求温度零点时,曲线梁桥不能象直桥一样,只考虑一个方向力的平衡,而必须考虑两个方向的平衡;各墩顶处支座的类型和位置不一致,部分支座可能已处于临界滑移状态,其余支座还未达到临界状态;各支座的约束方向以及各墩柱不在同一平面内,使得水平力求解非常困难。 2曲线梁桥的结构分析 2.1上部结构分析 2.1.1结构力学方法

浅谈小半径曲线桥梁的设计要点

浅谈小半径曲线桥梁的设计要点 摘要:与直线桥不同的是,由于弯扭耦合作用,所以曲线桥在竖向荷载作用下 引起弯曲的同时会产生扭转变形,导致内外侧支座反力大小不同,甚至可能出现 负反力。本文首先分析了曲线梁桥的力学特性,然后详细阐述了小半径曲线桥梁 的设计方法,最后说明了小半径曲线桥梁设计中应注意的问题。 关键词:小半径;曲线桥梁;截面;支座;抗扭支承 一、曲线梁桥的力学特性 (一)梁内外侧受力不均由于扭矩的作用会造成外梁超载、内梁卸载等问题,致使弯梁桥外边缘弯曲应力大于内边缘,外边缘挠度大于内边缘,内梁和外梁受 力不均,反应到箱梁上则是内外腹板受力不均。当活载偏置时,内梁支点甚至可 能产生负反力,甚至会出现梁体与支座脱离的问题发生。 (二)挠曲变形曲线箱梁桥的挠曲变形一般要比相同跨径的直线桥大,弯桥 的挠曲变形是弯曲和扭转的迭加。 (三)横向水平力汽车在曲线梁桥上行驶时会对桥梁产生水平方向的离心力。预应力、混凝土收缩徐变及温度变化等不仅对桥梁会产生纵向水平力,也会产生 横向水平力。外荷载对桥梁产生的横向水平力会增大梁体截面扭矩和桥墩弯矩, 并有可能造成横向的位移或者是桥梁在平面的转动。 (四)翘曲与畸变对于弯箱桥梁,由于在弯扭耦合的作用下会出现综合截面 应力相对直线桥梁而言较大的问题,特别是在截面扭转以及畸变作用下,这一问 题更突出。但其数值往往只占基本弯曲应力和纯扭转剪应力的5%~10%,经过初 步的估算,在设计过程中可以采取增设横隔板的设计处理方式,尽可能的控制截 面畸变变形。 二、小半径曲线桥梁的设计要点 (一)箱梁的设计 1、箱梁跨径的选择弯梁桥的弯扭刚度比对结构的受力状态和变形状态有着 直接的关系:弯扭刚度比越大,由曲率因素而导致的扭转弯形越大,因此,对于 弯梁桥而言在满足竖向变形的前提下,应尽可能减小抗弯刚度、增大抗扭刚度。 所以在曲线梁桥中,宜选用低高度梁和抗扭惯矩较大的箱形截面。小半径曲线梁 桥的梁高大于跨径的1/18 时,是比较经济的。在特殊情况下也不应小于跨径的 1/22。 2、截面设计在曲线梁桥截面设计时,要在桥跨范围内设置一些横隔板,以 加强横桥向刚度并保持全桥稳定性。在截面发生较大变化的位置,要设渐变段过渡,减小应力集中效应。 3、配筋设计在进行配筋设计时要充分考虑扭矩效应,弯梁应在腹板侧面布 置较多受力钢筋,其截面上下缘钢筋也比同等跨径的直桥多,且应配置较多的抗 扭箍筋。在预应力混凝土曲线梁桥中,应设置防崩钢筋。 4、混凝土结构由于混凝土的收缩、徐变涉及的因素较多,每个工程中混凝 土的材料、级配不尽相同,要很精确的计算出混凝土收缩、徐变对小半径曲线梁 桥的作用较难。故在设计小半径曲线梁桥,最好采用普通钢筋混凝土结构。对于 预应力混凝土曲线梁桥,纵向预应力筋采用高强度低松弛钢绞线,但钢束一般不 大于12-7ф5,压应力应小于12MPa,拉应力小于1MPa,为预应力A 类构件即可。 (二)支承方式的选择在曲线桥中,不同的支承方式对上、下部结构内力影 响较大,一般支承分为两种类型:抗扭支承和点铰支承。

曲线连续梁桥的结构设计

曲线连续梁桥的结构设计 曲线梁桥是高速公路和城市立交中普遍应用的一种桥型。文章根据曲线梁桥的结构受力特点,论述了曲线梁桥在施工及成桥运营阶段出现病害的原因,论述了曲线梁桥在设计中应注意的问题,并提出了该类型桥梁设计中的一些经验做法和解决方案。 标签:曲线梁桥;结构设计;受力特点 1 概述 目前在高等级公路及城市立交中曲线梁桥的应用得到了普遍的认可,尤其在城市立交匝道设计中最为广泛。曲线梁桥的设计中常采用箱型截面,因其具有材料用量少、结构自重小、抗扭刚度大、整体稳定性好、截面应力分配合理等优点,而在曲线梁桥中应用非常普遍。 现阶段曲线梁桥的设计和理论研究已经取得了很多成果,但由于曲线梁桥结构受力复杂、施工过程中标高不能准确的控制,由于设计的原因导致在项目的施工或使用过程中已多次发生过事故。常见问题主要为:曲梁内侧支座脱空;主梁横向侧移量过大;横向刚度不足引起扭曲变形;固结墩墩身开裂;梁体的外移和翻转进一步导致支座、伸缩缝的剪切破坏和平曲线超高的丧失等。故在曲线梁桥的设计与施工过程中应充分考虑结构的弯、剪、扭受力特性,对结构内力进行准确分析及合理优化,消除设计带来的不安全隐患。 2 曲线梁桥受力特点 2.1 “弯-扭”耦合作用 曲梁由于自身及外荷载的作用下会同时产生弯矩和扭矩,并且相互作用。表现为曲梁内外侧尺寸不同、支座反力不等、外荷载偏心及预应力径向作用共同引起较大的扭矩,使梁截面处于“弯-扭”耦合作用的状态,其截面主拉应力比相应的直梁桥大得多,这是曲梁所独有的受力特点。 在变形方面,强大的扭矩作用致使曲线梁桥产生扭转变形;曲线外侧的竖向挠度要大于同等跨径的直桥;由于“弯-扭”耦合作用,在梁端可能出现“翘曲”;当梁端处横桥向约束较弱时,梁体有向曲线外侧“爬移”的趋势。 在受力方面,由于存在较大的扭矩,通常会使外梁超载、内梁卸载,尤其当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,即“支座脱空”现象,这种现象在小半径的宽桥中特别明显。 2.2 下部墩台受力复杂

箱型曲线梁桥结构理论发展现状论文

浅析箱型曲线梁桥结构理论研究发展现状摘要:国内外许多学者致力于曲线桥结构受力的相关研究,提出了各种精确的或者是近似的分析方法。本文主要对曲线梁桥结构研究与分析的现状进行阐述和分析,希望能够在之后的分析之中提供相关的研究依据。 关键字:箱型曲线梁桥;理论;研究进展;发展方向 abstract: many scholars at home and abroad to curve bridge structure stress related research, puts forward all kinds of precise or is an approximate analysis method. this paper focuses on the research and analysis of the structure of the curved girder bridges on the current situation of explained and analyzed, and hope to be able to provide relevant analysis of after the research basis. key word: box girder bridge type curve; theory; research progress; development direction 中图分类号:u443文献标识码:a 文章编号: 一、绪论 随着我国高等公路建设的修建进程的加快,各种曲线桥结构在我国已经被广泛使用。曲线梁桥具有独特的流线型结构,其线条十分明快并且流畅,能够给人们以美的感受。并且曲线梁桥的设置可以让交通路线的规划很好地适应当地的地形特点,从而使得交通线

弯梁桥设计体会总结

以上文献主鏗见诸于国内近30年來Ifi 科技期刊巧仑文集,此外*还有不少研究生 的学S 论文以混嶽土桥樂咒候温度效应为研究主额】*''?丁可:廉为r 贾隊 刘开元、李 全林、郭河、徐钢、谢青华、帯源等在他们的领士学位论艾中大务以实麻拼梁工程为 背疑,根据有fsfe^无方法对混凝上ffi 梁的n 照ffl 度场进行tts 让算.进而对最不利温度 分布卜箱袈弁内外约束卜的产牛前ffl 度应力进行计算?值得一提的是,刘开元社ft 线 箱荣左不同支祇方式.不同圆心甬、不同褊莘梯歴荷《作用下的支S 力y 及位移和应 力变化规i#进行『参数研究.刘华液、王毅、江剑、彭友松等人的醇上学蛍论丈人多 战科研课題或S 金拘依托,系统地W 究了混凝上桥架气候温?效应.王毅和汪甸还都 参与f 对人却混凝土连续樂或连续刚构温度场少则戲月、多则数年的长期观测.他们 提出传感器存箱梁截向中的优优布昔、梯便温苣取值的?率分析尊问题并提出 了解决问題的办注。 1.1.2混凝土箱梁温度作用效应 由于混凝土箱梁的温度作用产生的应力称为混凝土箱梁的温度应力。 约 束而产生的温度应力又分别称为温度内约束应力和温度外约束应力。 于温度 在混凝土箱梁结构的非线性分布而使构件各部分因温度的收缩不均匀而产生的约束应力, 于这种 应力在箱梁截面上是自平衡的, 也称为温度自约束应力, 简称温度自应力。对于属于超静定 结构的 桥梁而言,赘余约束会阻止结构由于温度而产生的变形, 由此产生的应力称为温度外约束应 力,也 称为温度次应力,相应的内力称为温度次内力。 事实上,对悬拼或悬浇的方法施工的混凝土连续梁的一个节段而言,若其任意时刻 场 可表达联)t ,则任意时刻t 的实际竖向温差分布应表示为 D 双)t 一双0)t ,其中命为该节段施 工完毕的 时刻,D 联)t 表示t 时刻的竖向温差分布。 但对于绝大多数的桥梁而言 D 双0)t 都是未知的, 因此在无 法忽略D 双0)t 的条件下是不可能准确求出温度应力的。 然而随着时间的推移, 徐变的发展 可以基本 消除D 联肠)引起的初始温度应力,运营阶段的 算#[]。因此 本文中所指的竖向温差分布如无特别注明,均指 (一)外形:由顶板、底板、肋板及梗腋组成 1、 顶板: 除承受结构正负弯矩外,还承受车辆荷载的直接作用。在以负弯矩为主的悬壁梁及 T 形刚 构桥中,顶板中布置了数量众多的预应力钢束, 要求顶板面积心须满足布置钢束的需要, 厚 度一般取18— 25cm 。 2、 底板 因混凝土箱梁的内、外 温度内约束应力是指由 t 的温度 t 时刻的温度应力只要通过 D 双)t 就可以计 D 双)t ,而不是D 联)t 一联0) t 。

桥梁工程课程设计

广东工业大学课程设计任务书 一、课程设计的内容 1、教学目的: 学生通过桥梁工程设计的训练,可以进一步掌握在桥梁工程课本中所学到理论知识,并经过亲自做桥梁工程设计来熟悉设计方法、计算理论、计算公式,熟悉在桥梁设计中如何运用桥梁规范,为今后的毕业设计及走上工作岗位打下一个良好的专业基础。 2、设计基本资料: 说明:学生共分为四个小组,每个小组基本资料不同,简支梁主梁高H 分别取为:130CM、133CM、135CM、139CM,见图1。 1)桥面净宽:净7+2×0.75M 2)设计荷载:汽车“公路—Ⅰ级,人群荷载:3KN/M2 3)材料:主筋:Ⅱ级,构造筋:Ⅰ级 混凝土:桥面铺装:C25,主梁:C30 4)结构尺寸:详见图1、图2 主梁:计算跨径:L=1950cm 全长:L=1996cm 人行道、栏杆每延米(两侧)重2.0KN/m(为每片主梁分到的值)。 沥青混凝土厚2cm

3、设计计算内容: 1)计算行车道板内力,并据此计算和配置翼板主筋。 行车道板按铰接板计算; 汽车荷载:按车辆荷载计算。 2)主梁设计计算: ①、计算主梁1#、2#、3#在汽车、人群荷载作用下的横向分布系数。 支点用杠杆法,跨中用G —M 法。 ②、桥梁沿跨长纵向按IL(影响线)布载求活载内力。 ③、计算活载跨中弯矩时,不考虑横向分布系数沿桥长方向的变化,计 算支点活载剪力时,要计入横向分布系数沿跨长方向的变化的影响。 ④、主梁控制截面:M 中 、M 1/4 、Q 支点 ⑤、主梁跨中截面受拉主筋计算(其余钢筋不算)。 ⑥、计算活载挠度及预拱度。参见教材第172页公式。 3)横隔梁内力计算,并据此计算配置主筋(按T 形截面配置下缘受拉主筋)。 说明:①、横隔梁内力计算采用“偏心法”,取中横隔梁计算。 ②、控制截面:M 3、M 2-3、Q 1右、Q 1-2右 4、绘图内容: 1)上部构造纵、横剖面图(纵断面只画主梁,参见教材第152页,图2-5-55,但尺寸要改变)。 2)主梁配筋图(参考教材第81页,图2-4-15绘制,但主筋按自己计算值配制,梁高按各组的H 值计)。 二、课程设计的要求与数据 1、 必须严格执行各桥梁设计规范,每一设计步骤都必须按规范的要求进行,要训练会查规范、会用规范。 2、 设计中多参阅有关资料,特别是对于没有设计经验的初学者来讲, 更应多借鉴前人的设计经验和实例。 3、 绘制桥梁设计图时必须按桥梁设计图纸的规定进行绘制,从线形、 布置、到标注方式都力求准确无误,不得自行、随意设定图中的各项参 图 2

相关主题
文本预览
相关文档 最新文档