当前位置:文档之家› 某皮卡车型操纵稳定性的多体动力学建模仿真

某皮卡车型操纵稳定性的多体动力学建模仿真

某皮卡车型操纵稳定性的多体动力学建模仿真
某皮卡车型操纵稳定性的多体动力学建模仿真

某皮卡车型操纵稳定性的多体动力学建模仿真

作者:北汽福田工程研究院张曦

摘要: 本论文主要介绍了某皮卡车型的操纵稳定性能的仿真分析,同时作为操稳的基础,引入了悬架K&C 分析,并分别与试验数据进行了对比。得出了仿真数据与试验数据高度一致的结论。如此,既对分析车型的K&C、操稳性能有了定性的结论,也验证了分析模型的准确性,保证后续分析工作的精准。

关键词: 操稳CAE Adams

1. 引言

所谓汽车的操纵稳定性性,是衡量汽车行驶安全的重要因素,是指汽车受到外界干扰后,能自行恢复正常行驶的方向,而不发生倒滑、倾覆、失控等现象。在操纵稳定性的研究中,由于悬架系统、传动系统等对于车辆的重要性,所以又引出了操纵稳定性和这些系统的关系,比如汽车的侧倾中心、汽车悬架的角刚度、轮胎侧倾角和外倾角对于转向特性的影响等等,由此引入K&C 的领域。

本文就某一皮卡车型使用MSC.ADAMS CAR 软件进行分析,由K&C 入手,分析悬架相关的主要性能参数,而后展开到操稳性能的分析,并分别与试验进行对比,确定模型分析的准确。其中操稳部分与Carsim软件进行了分析对比,得出简单结论。

2. 悬架K&C 分析

2.1 K&C 浅论

悬架是底盘的灵魂,所以对汽车悬架K&C 特性的研究和分析尤为重要,它对汽车的操纵稳定性及其相关品质的提升起着至关重要的作用和指导意义。

悬架的K&C,也叫SP(Suspension Parameters),其主要目的就是反映出悬架的特性参数:

悬架的K(Kinematic)就是指悬架的运动学特性,表征的是悬架的运动学规律(在ADAMS

悬架仿真中,就是把各个零部件都用理想铰约束时,悬架的运动规律)。汽车悬架最本质的运动,就是K 特性所描绘的车轮上下跳动与转向过程中体现出来的特性。

C(Compliance)是指悬架的柔性特性,由于各连接衬套在受到外力变形后,由于各个不同衬套间的刚度匹配影响悬架机构的构型(车轮的运动姿态),从而影响整车操稳性能。和K 特性的区别之处,C 特性是指在某固定轮跳下(对应于悬架的某种载荷状态)的,加各种力时的悬架参数的变化特性。

在全世界范围内的试验设备,有比较著名的两家公司,一家是大名鼎鼎的试验设备供应商MTS(试验设备叫K&C),另一家是ABD 公司(试验设备叫SPMM-Suspension Parameters Measuring Machine),K&C 的两个名字也由此而来。而在国内的设备供应能力,有孔辉科技研发的K&C 试验台,现也已经投产代销了。

2.2 K&C 仿真分析

使用ADAMS 进行悬架K&C 分析与试验数据进行对比,有多方面的作用。可以使用试验数据对仿真模型进行模型基础数据的校验;可以使用仿真数据对试验数据的误差进行检查;以上分析都要求分析工程师具有丰富的经验。

由于K&C 分析内容庞大,以下只举例K 分析的平行轮跳仿真与试验数据的对标。其中红色实线为计算值,其他虚线为左、右侧试验值。

由上分析图表可以看出,除前束的试验数据左右不对称,左侧与仿真有一定误差外,其余数据均一致性较高。分析结果见表2-1。

表2-1 前悬架运动学分析结果表

3. 操纵稳定性分析

操纵稳定性是指人员对车辆驾驶过程的一个整体描述。它包括驾驶者在驾驶车辆时,对方向盘、刹车、油门的感受,还有车辆在加速减速过程中的反应,以及底盘悬挂在弯道、直行以及颠簸路面等各种特殊环境下,车辆本身做出的反应,等等都属于汽车的操控性。

本小节主要介绍操稳的仿真与试验的对标分析结果。另外,本车型在使用Adams 进行操稳仿真分析的同时也进行了Carsim仿真分析,本部分也简单进行结果比较。

3.1 Adams 与Carsim建模比较

K&C 建模比较:Adams 建模相对复杂,但使用Adams 进行K&C 的对标分析,可以检验试验数据的误差,帮助设计人员进行硬点发布与衬套力提取等零部件试验的支持;Carsim 不需进行悬架建模,需要完全依靠试验数据的支持,优点是便捷准确,缺点就是该悬架部分只能为整车分析提供基础数据,但不能进行零部件验证,对Carsim提供的Suspension design 模块使用较少。

整车建模的比较:同样,Adams 较Carsim建模复杂,但从下图也可看出,使用Adams 建模,可以直观可视的观察悬架姿态;Carsim模型更加美观但不直观。

图3-1 皮卡车型整车Adams 模型

图3-2 皮卡车型整车Carsim模型

3.2 稳态回转性能分析

稳态回转试验是为了测定汽车对方向盘转角输入达到稳定行驶状态时汽车的稳态横摆响应。仿真采用定方向盘转角连续加速法。汽车先以最低稳定车速,在初始半径为15m 的圆周上行驶,待稳定后再加速,直至侧向加速度达到0.65g 或受发动机功率限制达到最大侧向加速度为止。

从图表中可以看出,前后侧偏角差的试验数据和仿真数据曲线在侧向加速度小于0.4g(轮胎线性区域)范围内的一致性较好。在0.5g 以上相差较大,主要与轮胎没有进行修正所导致。

表3-1 稳态回转试验评价参数对比

下图是Carsim分析的图,其中前后侧倾角差为局部放大图,可以看出,Carsim分析结果与试验数据也一致性较好,但是但看仿真数值,数据波动较大,连续性差。

3.3 方向盘角脉冲分析

方向盘角脉冲输入试验是以汽车横摆角速度频率特性来表征汽车的动特性。仿真时汽车先以

恒定车速行驶,稳定后给方向盘一个角脉冲输入,并迅速将方向盘转回原处不动,直到汽车回复到直线行驶。

从幅频图上可知,试验的稳态增益大于仿真的稳态增益,试验的共振峰值也大于仿真的共振峰值。但是仿真与试验的共振峰值与仿真的稳态增益数值都在合理范围内,试验的共振增益增幅偏大。从相频图上可知,0.1Hz 的仿真相位滞后角小于试验值,但在0.325s 之后则是仿真相位滞后角大于试验值(仿真输入频率为0.385Hz)。但都在合理范围内。

表3-2角脉冲分析_幅频相频特性对比表

下图是Carsim分析的图,同样的,Carsim分析结果与试验数据也一致性较好,但是但看仿真数值,数据波动较大,连续性差。以下不再做对比。

3.4 蛇行穿桩性能分析

蛇行试验是考察汽车在特定行驶路径下的抗侧翻能力。仿真时以30m 为间距设置标桩,汽车先以一恒定车速直线行驶,稳定后蛇行通过试验路段,逐渐增加车速,达到顺利通过的极限车速为止(最高车速一般不超过80km/h)。

上图为车速为55km/h 的侧向加速度、车身侧倾角、横摆角速度、方向盘转角曲线。从图中

可以看出,除侧向加速度数据外,车身侧倾角与横摆角速度的对比数据一致性较高。

表3-3 蛇形穿桩性能分析数据统计表

4. 结论

本文由悬架K&C 和整车操稳的浅论引入,展开介绍了某皮卡车型的K&C 对标分析和整车操稳对标分析。由仿真和试验数据可以得出该皮卡车型操纵性能较好,各数据均在常规范围内的结论。同时由试验和仿真结果的一致性好的结论(不考虑试验采集数据的波动、车速与方向盘转角的输入不稳定造成的影响),也验证了分析模型的准确性,保证后续分析工作的精准。

5. 参考文献

[1] 余志生.汽车理论.北京:机械工业出版社,2006

[2] 张洪欣. 汽车设计[M], 北京:机械工业出版社,2002

刚柔耦合动力学的建模方法

第42卷第11期 2008年11月 上海交通大学学报 JOU RN AL O F SH AN G HA I JIA OT O N G U N IV ERSIT Y Vol.42No.11 Nov.2008 收稿日期:2007 10 08 基金项目:国家自然科学基金资助项目(10772113);高等学校博士学科点专项科研基金资助项目(20040248013) 作者简介:洪嘉振(1944 ),男,浙江宁波市人,教授,博士生导师,研究方向:多体系统动力学与控制.电话(T el.):021 ********; E mail:jzhong@s https://www.doczj.com/doc/fc13605330.html,. 文章编号:1006 2467(2008)11 1922 05 刚柔耦合动力学的建模方法 洪嘉振, 刘铸永 (上海交通大学工程力学系,上海200240) 摘 要:对柔性多体系统动力学研究的若干阶段和研究现状进行回顾,对已有的刚柔耦合动力学建模方法进行总结.为了对已有的建模方法进行评价,提出了5项指标:科学性、通用性、识别性、兼容性和高效性,指出现有的建模方法尚无法满足工程实际应用的需要,应研究满足全部评价指标的刚柔耦合动力学建模方法.文中对今后柔性多体系统刚柔耦合动力学的几个研究方向进行展望,包括理论建模、计算方法和试验研究等方面. 关键词:刚柔耦合系统;动力学;建模方法;评价指标中图分类号:O 313 文献标识码:A Modeling Methods of Rigid Flexible Coupling Dynamics H ON G J ia z hen, L I U Zhu y ong (Department of Engineering M echanics,Shanghai Jiaotong Univ er sity,Shanghai 200240,China)Abstract:A brief review about several phases and present status o f flexible multi bo dy dynamics w as given and the ex isting m odeling m ethods o f r ig id flex ible coupling dynam ics w ere sum marized.Five indexes,in cluding scientific index,g eneral index,identifiable index,compatible index and efficient index ,w ere pro posed to evaluate the ex isted mo deling methods.It show s that the ex isted m odeling metho ds can no t satis fy the actual needs of eng ineer ing application and new modeling m ethod w hich satisfies all the evaluating index es should be inv estig ated.T he r esearch tar gets including modeling theor y,com putational methods and exper im ents w er e sugg ested for the rigid flexible co upling dynamics o f the flex ible multi body sys tems. Key words:rigid flex ible coupling sy stem s;dy nam ics;mo deling methods;evaluating index 柔性多体系统是指由多个刚体或柔性体通过一定方式相互连接构成的复杂系统,是多刚体系统动力学的自然延伸.考虑刚柔耦合效应的柔性多体系统动力学称之为刚柔耦合系统动力学,主要研究柔性体的变形与其大范围空间运动之间的相互作用或相互耦合,以及这种耦合所导致的动力学效应.这种耦合的相互作用是柔性多体系统动力学的本质特 征,使其动力学模型不仅区别于多刚体系统动力学,也区别于结构动力学.因此,柔性多体系统动力学是 与经典动力学、连续介质力学、现代控制理论及计算机技术紧密相联的一门新兴交叉学科[1 3],它对高技术、工业现代化和国防技术的发展具有重要的应用价值. 根据力学的基本原理,基于不同的建模方法,得

系统动力学模型部分集

第10章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1节系统动力学概述 1.1 概念 系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算

机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下: 1)人才培养

基于RecurDyn的多体动力学仿真

图1 经简化的一对空链节模型 二、仿真分析 1.运动状态与干涉校验 首先必须考虑到链条柔度对运动的干涉影响,即考虑到在设计的平面柔度和扭转柔度范围内,长链条和最图2 链式输送机构的仿真模型图3 链式输送机构的运动仿真图4 链节的空间位移曲线 CAD/CAM与制造业信息化?www.icad.com.cn

图5 冲击动载荷分析 3.运动平稳性分析 由于链式输送模型中含有多种非线性因素,采用完全递归算法,对各链节的各自由度运动幅值的敛散性进行分析,来判定链式输送系统的运动平 图6 加速度响应 4.抱紧力分析 抱紧臂的抱紧力设计也十分重要, 该值越大,抱紧传输体越可靠,但装卸 传输体就困难了;另一方面,从链节中 脱出传输体将消耗过多的能量,对其 他的相关机构工作不利。若该值较低, 则容易使传输体在输送过程的剧烈抖 动中掉落,产生故障,因此需要进行抱 紧臂的抱紧力动态载荷分析,分析结 果如图7所示。 图7 动态载荷分析 三、结束语 本文应用RecurDyn多体动力学软 件,在导入原有实体模型的基础上,快 速构建仿真模型。根据RecurDyn提供 的多级子系统建模、空间多接触和完 全递归算法等特有功能,对复杂链式 输送机构的分析问题进行了动力学仿 真,得到了做为设计参考的动力学参 数,为链式输送机构的动力学设计提 供了很好的设计校验方法。仿真结果 可以检测输送系统工作的平稳性和可 靠性,并预测链式输送机构故障的发 携手济钢机制公司,WIT-CAPP续写业界辉煌 近日,华特软件与济钢集团机械设备制造公司 公司”)正式签订CAPP合同。 秉承“可遵、可信、共赢”的济钢机制公司是济南钢铁集团直属的子 CAD/CAM与制造业信息化?www.icad.com.cn

多体系统动力学基本理论

第2章多体系统动力学基本理论

本章主要介绍多体系统动力学的基本理论,包括多刚体系统动力学建模、多柔体系统动力学建模、多体系统动力学方程求解及多体系统动力学中的刚性(Stiff)问题。通过本章的学习可以对多体系统动力学的基本理论有较深入的了解,为具体软件的学习打下良好的理论基础。 2.1 多体系统动力学研究状况 多体系统动力学的核心问题是建模和求解问题,其系统研究开始于20世纪60年代。从60年代到80年代,侧重于多刚体系统的研究,主要是研究多刚体系统的自动建模和数值求解;到了80年代中期,多刚体系统动力学的研究已经取得一系列成果,尤其是建模理论趋于成熟,但更稳定、更有效的数值求解方法仍然是研究的热点;80年代之后,多体系统动力学的研究更偏重于多柔体系统动力学,这个领域也正式被称为计算多体系统动力学,它至今仍然是力学研究中最有活力的分支之一,但已经远远地超过一般力学的涵义。 本节将叙述多体系统动力学发展的历史和目前国内外研究的现状。 2.1.1 多体系统动力学研究的发展 机械系统动力学分析与仿真是随着计算机技术的发展而不断成熟的,多体系统动力学是其理论基础。计算机技术自其诞生以来,渗透到了科学计算和工程应用的几乎每一个领域。数值分析技术与传统力学的结合曾在结构力学领域取得了辉煌的成就,出现了以ANSYS、NASTRAN等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS和DADS为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE)技术的重要内容。 多体系统是指由多个物体通过运动副连接的复杂机械系统。多体系统动力学的根本目的是应用计算机技术进行复杂机械系统的动力学分析与仿真。它是在经典力学基础上产生的新学科分支,在经典刚体系统动力学上的基础上,经历了多刚体系统动力学和计算多体系统动力学两个发展阶段,目前已趋于成熟。 多刚体系统动力学是基于经典力学理论的,多体系统中最简单的情况——自由质点和一般简单的情况——少数多个刚体,是经典力学的研究内容。多刚体系统动力学就是为多个刚体组成的复杂系统的运动学和动力学分析建立适宜于计算机程序求解的数学模型,并寻求高效、稳定的数值求解方法。由经典力学逐步发展形成了多刚体系统动力学,在发展过程中形成了各具特色的多个流派。 早在1687年,牛顿就建立起牛顿方程解决了质点的运动学和动力学问题;刚体的概念最早由欧拉于1775年提出,他采用反作用力的概念隔离刚体以描述铰链等约束,并建立了

第二章:动力学系统的微分方程模型

第二章:动力学系统的微分方程模型 利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。 在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。 §2.1 动力学系统统基本元件 任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。 1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。 惯量(质量)= ) 加速度(力(2 /) s m N 惯量(转动惯量)= ) 角加速度(力矩(2/) s rad m N ? 2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。 对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。 x k F ?= 这里k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性力的方向总是指向弹簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。 3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。阻尼力通常表示为: α x c R = 阻尼力的方向总是速度方向相反。当1=α,为线性阻尼模型。否则为非线性阻 尼模型。应注意当α等于偶数情况时,要将阻尼力表示为: ||1--=αx x c R 这里的“-”表示与速度方向相反

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

动力学主要仿真软件

车辆动力学主要仿真软件 1960年,美国通用汽车公司研制了动力学软件DYNA,主要解决多自由度无约束的机械系统的动力学问题,进行车辆的“质量-弹簧-阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学与运动学问题的简便形式。 随着多体动力学的诞生与发展,机械系统运动学与动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N、Orlandeo与,研制的ADAMS软件,能够简单分析二维与三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR 刚性积分算法,采用稀疏矩阵技术提高计算效率。1977年,美国Iowa 大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学与动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLR早在20世纪70年代,Willi Kortüm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna(1977)、MEDYNA(1984),以及最终享誉业界的SIMPACK(1990)、随着计算机硬件与数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MEDYNA软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACK软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPACK软件中将多刚体动力学与有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACK算法技术的优势,成功地将控制系统与多体计

ADAMS多体动力学仿真多种速度曲线函数

1、梯形速度曲线 A=0.5,V=2 if(time-2:0,0,if(time-6:0.5,0.5,if(time-14:0,0,if(time-18:-0.5,-0.5,0)))) A=181.891d,V=2 if(time-2:0,0,if(time-6:-181.891d,-181.891d,if(time-14:0,0,if(time-18:181 .891d,181.891d,0)))) A=181.891d,V=2 if(time-2:0,0,if(time-6:-181.891d,-181.891d,if(time-14:0,0,if(time-18:181 .891d,181.891d,0)))) 2、简化5段S型速度曲线 A=0.5,V=1 if(time-2:0,0,if(time-4:-0.25*time+0.5,0.5,if(time-6:-1.5+0.25*time,0,if(ti me-14:0,0,if(time-16:-3.5+0.25*time,-0.5,if(time-18:-0.25*time+4.5,0,0)) )))) A=0.5=181.891d,V=1 if(time-2:0,0,if(time-4:-181.891d/2*time+181.891d,-181.891d,if(time-6:-3*181.891d+181.891d/2*time,0,if(time-14:0,0,if(time-16:-7*181.891d+1 81.891d/2*time,-181.891d,if(time-18:-181.891d/2*time+9*181.891d,0, 0)))))) A=1,V=2 if(time-2:0,0,if(time-4:-0.5*time+1,1,if(time-6:-3+0.5*time,0,if(time-14:0 ,0,if(time-16:-7+0.5*time,-0.5,if(time-18:-0.5*time+9,0,0))))))

动力学主要仿真软件

车辆动力学主要仿真软件 1960年,美国通用汽车公司研制了动力学软件DYNA,主要解决多自由度无约束的机械系统的动力学问题,进行车辆的“质量-弹簧-阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的诞生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAMS软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR 刚性积分算法,采用稀疏矩阵技术提高计算效率。1977年,美国Iowa 大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLR早在20世纪70年代,Willi Kortüm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA(1984),以及最终享誉业界的SIMPACK(1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MEDYNA软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACK软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPACK软件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACK算法技术的优势,成功地将控制系统和多体

柔性多体动力学建模

柔性多体动力学建模 、仿真与控制 近二十年来,柔性多体系统多力学(the dynamics of the flexible multibody systems)的研究受到了很大的关注。多体系统正越来越多地用来作为诸如机器人、机构、链系、缆系、空间结构和生物动力学系统等实际系统的模型。huston认为: “多体动力学是目前应用力学方面最活跃的领域之一,如同任何发展中的领域一样,多体动力学正在扩展到许多子领域。最活跃的一些子领域是: 模拟、控制方程的表述法、计算机计算方法、图解表示法以及实际应用。这些领域里的每一个都充满着研究机遇。”多柔体系统动力学近年来快速发展的主要推动力是传统的机械、车辆、军械、机器人、航空以及航天工业现代化和高速化。传统的机械装置通常比较粗重,且*作速度较慢,因此可以视为由刚体组成的系统。而新一代的高速、轻型机械装置,要在负载/自重比很大,*作速度较高的情况下实现准确的定位和运动,这是其部件的变形,特别是变形的动力学效应就不能不加以考虑了。在学术和理论上也很有意义。 关于多柔体动力学方面已有不少优秀的综述性文章。 在多体系统动力学系统中,刚体部分: 无论是建模、数值计算、模拟前人都已做得相当完善,并已形成了相应的软件。但对柔性多体系统的研究才开始不久,并且柔性体完全不同于刚性体,出现了很多多刚体动力学中不呈遇到的问题,如: 复杂多体系统动力学建模方法的研究,复杂多体系统动力学建模程式化与计算效率的研究,大变形及大晃动的复杂多体系统动力学研究,方程求解的stiff数值稳定性的研究,刚柔耦合高度非线性问题的研究,刚-弹-液-控制组合的复杂多体系统的运动稳定性理论研究,变拓扑结构的多体系统动力学与控,复杂多体系统动力学中的离散化与控制中的模态阶段的研究等等。柔性多体动力学而且柔性多体动力学的发展又是与当代计算机和计算技术的蓬勃发展密切相关的,高性能的计算机使复杂多体动力学的仿真成为可能,特别是计算机的功

多体动力学和非线性有限元联合仿真

A New Solution For Coupled Simulation Of Multi-Body Systems And Nonlinear Finite Element Models Giancarlo CONTI, Tanguy MERTENS, Tariq SINOKROT (LMS, A Siemens Business) Hiromichi AKAMATSU, Hitoshi KYOGOKU, Koji HATTORI (NISSAN Motor Co., Ltd.) 1 Introduction One of the most common challenges for flexible multi-body systems is the ability to properly take into account the nonlinear effects that are present in many applications. One particular case where these effects play an important role is the dynamic modeling of twist beam axles in car suspensions: these components, connecting left and right trailing arms and designed in a way that allows for large torsional deformations, cannot be modeled as rigid bodies and represent a critical factor for the correct prediction of the full-vehicle dynamic behavior. The most common methods to represent the flexibility of any part in a multi-body mechanism are based on modal reduction techniques, usually referred to as Component Mode Synthesis (CMS) methods, which predict the deformation of a body starting from a preliminary modal analysis of the corresponding FE mesh. Several different methods have been developed and verified, but most of them can be considered as variations of the same approach based on a limited set of modes of the structure, calculated with the correct boundary conditions at each interface node with the rest of the mechanism, allowing to greatly reduce the size of system’s degrees of freedom from a large number of nodes to a small set of modal participation factors. By properly selecting the number and frequency range of the modes, as well as the boundary conditions at each interface node [1], it is possible to accurately predict the static and dynamic deformation of the flexible body with remarkable improvements in terms of CPU time: this makes these methods the standard approach to reproduce the flexibility of components in a multi-body environment. Still, an important limitation inherently lies in their own foundation: since displacements based on modal representation are by definition linear, any nonlinear phenomena cannot be correctly simulated. For example, large deformations like twist beam torsion during high lateral acceleration cornering maneuvers typically lead to geometric nonlinearities, preventing any linear solution from accurately predicting most of the suspension’s elasto-kinematic characteristics like toe angle variation, wheel center position, vertical stiffness. One possible solution to overcome these limitations while still working with linear modal reduction methods is the sub-structuring technique [2]: the whole flexible body is divided into sub-structures, which are connected by compatibility constraints preventing the relative motion of the nodes that lie between two adjacent sub-structures. Standard component mode synthesis methods are used in formulating the equations of motion, which are written in terms of generalized coordinates and modal participation factors of each sub-structure. The idea behind it is that each sub-portion of the whole flexible structure will undergo smaller deformations, hence remaining in the linear flexibility range. By properly selecting the cutting sections it is usually possible to improve the accuracy of results (at least in terms of nodal displacements: less accuracy can be expected for stress and strain distribution). Another limitation of these methods is the preliminary work needed to re-arrange the FE mesh, although some CAE products already offer automatic processes enabling the user to skip most of the re-meshing tasks and hence reducing the modeling efforts. An alternative approach to simulate the behavior of nonlinear flexible bodies is based on a co-simulation technique that uses a Multi-body System (MBS) solver and an external nonlinear Finite Element Analysis (FEA) solver. Using this technique one can model the flexible body in the external nonlinear FEA code and the rest of the car suspension system in the MBS environment. The loads due to the deformation of the body are calculated externally by the FEA solver and communicated to the MBS solver at designated points where the flexible body connects to the rest of the multi-body system. The MBS solver, on the other hand, calculates displacements and velocities of these points and communicates them to the nonlinear FEA solver to advance the simulation. This approach doesn’t suffer from the limitations that arise from the linear modeling of the flexibility of a body. This leads to more accurate results, albeit at the price of much larger CPU time. In fact, simulation results are strongly affected by the size of the communication time step between the two solvers: a better accuracy (and more stable solver convergence) can be generally obtained by using smaller time steps which require larger calculation times, as shown also in [3].

动力学模型

月球软着陆控制系统综合仿真及分析(课程设计) 在月球探测带来巨大利益的驱使下,世界各国纷纷出台了自己的探月计划,再一次掀起了新一轮探月高潮。在月球上着陆分为两种,一种称为硬着陆,顾名思义,就是探测器在接近月球时不利用制动发动机减速而直接撞击月球。另一种称为软着陆,这种着陆方式要求探测器在距月面一定高度时开启制动系统,把探测器的速度抵消至零,然后利用小推力发动机把探测器对月速度控制在很小的范围内,从而使其在着陆时的速度具有几米每秒的数量级。显然,对于科学研究,对探测器实施月球软着陆的科学价值要大于硬着陆。 1月球软着陆过程分析 目前月球软着陆方式主要有以下两种方式: 第一种就是直接着陆的方式。探测器沿着击中轨道飞向月球,然后在适当的月面高度实施制动减速,最终使探测器软着陆于月球表面。采用该方案时,探测器需要在距离目标点很远时就选定着陆点,并进行轨道修正。不难发现,该方法所选的着陆点只限于月球表面上接近轨道能够击中的区域,所以能够选择的月面着陆点的区域是相当有限的。 第二种方法就是先经过一条绕月停泊轨道,然后再伺机制动下降到月球表面,如图17-1所示。探测器首先沿着飞月轨道飞向月球,在距月球表面一定高度时,动力系统给探测器施加一制动脉冲,使其进入一条绕月运行的停泊轨道;然后根据事先选好的着陆点,选择霍曼变轨起始点,给探测器施加一制动脉冲,使其进入一条椭圆形的下降轨道,最后在近月点实施制动减速以实现软着陆。 主制动段 开始点 图17-1 月球软着陆过程示意图 与第一种方法相比,第二种方法有以下几个方面较大的优越性: 1)探测器可以不受事先选定着陆点的约束,可以在停泊轨道上选择最佳的着陆点,具有很大的选择余地。

柔性多体动力学建模

柔性多体动力学建模、仿真与控制 近二十年来,柔性多体系统多力学(the dynamics of the flexible multibody systems)的研究受到了很大的关注。多体系统正越来越多地用来作为诸如机器人、机构、链系、缆系、空间结构和生物动力学系统等实际系统的模型。huston认为:“多体动力学是目前应用力学方面最活跃的领域之一,如同任何发展中的领域一样,多体动力学正在扩展到许多子领域。最活跃的一些子领域是:模拟、控制方程的表述法、计算机计算方法、图解表示法以及实际应用。这些领域里的每一个都充满着研究机遇。” 多柔体系统动力学近年来快速发展的主要推动力是传统的机械、车辆、军械、机器人、航空以及航天工业现代化和高速化。传统的机械装置通常比较粗重,且*作速度较慢,因此可以视为由刚体组成的系统。而新一代的高速、轻型机械装置,要在负载/自重比很大,*作速度较高的情况下实现准确的定位和运动,这是其部件的变形,特别是变形的动力学效应就不能不加以考虑了。在学术和理论上也很有意义。关于多柔体动力学方面已有不少优秀的综述性文章。 在多体系统动力学系统中,刚体部分:无论是建模、数值计算、模拟前人都已做得相当完善,并已形成了相应的软件。但对柔性多体系统的研究才开始不久,并且柔性体完全不同于刚性体,出现了很多多刚体动力学中不呈遇到的问题,如:复杂多体系统动力学建模方法的研究,复杂多体系统动力学建模程式化与计算效率的研究,大变形及大晃动的复杂多体系统动力学研究,方程求解的stiff数值稳定性的研究,刚柔耦合高度非线性问题的研究,刚-弹-液-控制组合的复杂多体系统的运动稳定性理论研究,变拓扑结构的多体系统动力学与控,复杂多体系统动力学中的离散化与控制中的模态阶段的研究等等。柔性多体动力学而且柔性多体动力学的发展又是与当代计算机和计算技术的蓬勃发展密切相关的,高性能的计算机使复杂多体动力学的仿真成为可能,特别是计算机的功能今后将有更大的发展,柔性多体必须抓住这个机遇,加强多体动力学的算法研究和软件发展,不然就不是现代力学,就不是现代化。 柔性多体系统动力学时多刚体动力学、连续介质力学、结构动力学、计算力学、现代控制理论等构成的一门交叉性、边缘性学科,这门学科之所以能建立和迅速发展是与当代计算机技术的爆炸式发展分不开的。由于近20年来卫星及航天器飞行稳定性、太阳帆板展开、姿态控制、交会对接的需求和失败的教训以及巨型空间站的构建;高速、轻型地面车辆、机器人、精密机床等复杂机械的高性能、高精度的设计要求等,柔性多体系统动力学引起了广泛的兴趣,已成为理论和应用力学的一个极其活跃的领域。

机械动力学大作业

机电工程学院有限元分析及应用Ansys软件大作业 学号:S314070061 专业:机械工程 学生姓名:郭海山 任课教师:钟宇光 2014年12月18日

一.题目要求: 采用ADAMS软件或Matlab/Simulink环境,建立简单机械系统的动力学模型,借助软件进行求解计算和结果分析。 建立单自由度杆机构(有无滑块均可)动力学模型,由静止启动,选择一固定驱动力矩,,具体机构及参数自拟。 二.模型及结构分析: 利用ADAMS建立如下图1所示单自由度机构模型: 图1单自由度机构模型 结构简图如下图2: 图2 机构简图 曲柄1长度为24cm,质量为1.69kg 滑块2质量为15.6kg 导杆3长度为80cm,质量为5.19kg

部件的材料都是钢, Material Density: 7.801E-006 kg/mm**3 三.建模: 1.启动adams/view,新建模型model_1。单位设置成MMKS-mm,kg,N,s,deg。存储位置设在桌面。设置工作环境后,利用主工具箱里的基本建模工具,先后建立曲柄1、滑块2和导杆3。 2.曲柄和地面之间,曲柄和连杆之间,连杆和滑块之间,都是转动副。滑块和地面之间是移动副。在A,B,C分别放,再在B点添加进行约束。 3.现在给曲柄一个匀速转动。其值如下图3所示: 图3 最后得到模型如下图4所示: 图4 四.仿真: 标签页 simulation.选择下面图标。修改仿真时间参数如下图5:

图5 完成仿真观察机构运动状况。图6为第0.97S时的仿真图像 图6 图7为第2.91S时的仿真图像 图7 图8为第8.24S时的仿真图像

汽车整车多体系统动力学建模和仿真

汽车整车多体系统动力学建模和仿真 作者:上海交通大学包继华张建武于岩 摘要:该文利用多体理论对SGZ4032型牵引车建立整车系统动力学模型,模型中将钢板弹簧离散为多个无质量Timoshenko梁连接的柔性体,以此模拟钢板弹簧的非线性特性。将整车模型在方向盘正弦输入下进行仿真,仿真结果表明:车辆的性能参数与方向盘输入有较好的跟随性,但由于非线性特性的影响而存在滞后现象,同时由于载荷的转移,车辆转弯时内侧的侧向力比外侧的侧向力小,且变化相对平缓。该模型较好地反映车辆实际运行的动力学特性,其建模方法可以应用于类似车辆的动力学性能研究中。 关键词:多体理论;钢板弹簧;建模;仿真 分类号:TP391.9 文献标识码:A 文章编号:1006-9348(2004)01-0053-04 基金项目:SZG4023型新型牵引车研制 作者简介:包继华(1971.3-),男(汉族),江苏泰兴人,在读博士,讲师,美国SAE会员,主要从事机械系统动力学研究;张建武(1952.7-),男(汉族),上海人,博士,教授,博士生导师,上海交通大学汽车研究所所长,主要从事汽车系统动力学及板壳理论研究;于岩(1960.6-),男(汉族),山东乳山人,硕士,教授,山东科技大学运输与控制技术研究所所长,主要从事机电控制研究. 作者单位:包继华(上海交通大学机械工程学院,上海,200030) 张建武(上海交通大学机械工程学院,上海,200030) 于岩(山东科技大学机电学院,山东,济南,250031) 参考文献: [1]Werner Schiehlen. Multi-body Systems Handbook[M]. Spring-Verlag Berlin Heidelberg,1990. [2]S Hegazy,H Rahnejat and K Hussain. Multi-body dynamics in full-vehicle handling analysis under transient manoeuvre [J]. Vehicle System Dynamics,2000,34:1-24. [3]P R Mchenry. An analysis of the dynamics of automobiles during simultaneous cornering and ride motions,in handling of vehicles under emergency conditions[J]. Proc. IMechE,1968-1969,(13):28-48. [4]M A Chace. Methods and experience in computer aided design of large displacement mechanical systems[J]. Computer Aided Analysis and Optimization of

相关主题
文本预览
相关文档 最新文档