当前位置:文档之家› 改性聚丙烯八大应用领域

改性聚丙烯八大应用领域

改性聚丙烯八大应用领域
改性聚丙烯八大应用领域

改性聚丙烯八大应用领域

一、以PP为载体的碳酸钙填充母料

碳酸钙填充母料自上世纪八十年代初诞生以来,已为塑料加工行业和全社会做出了巨大贡献,年产量达一百多万吨,是改性塑料重要的品种之一。

填充母料的载体最初使用的是聚丙烯聚合时的副产物——无规聚丙烯(APP),故亦称之为APP母料。后因北京燕山石化公司技术改造,无规聚丙烯的来源枯竭,而碳酸钙作为合成树脂紧缺年代的替代物,市场需求旺盛。在此背景下以聚乙烯树脂为载体的碳酸钙填充母料应运而生,如LDPE1F7B至今仍然是多数填充母料的主要原料。由于填充母料的主要用途是聚丙烯编织袋用的扁丝和打包带,从价格、相容性和扁丝强度等方面考虑,使用聚丙烯为载体树脂更适合于此种填充母料。二十世纪九十年代初,当时的轻工业部塑料加工应用研究所率先推出以粉状聚丙烯为载体树脂的碳酸钙填充母料,称之为PPM母料,并于一九九二年获得国家级新产品称号。

PPM母料以小本体PP粉料为载体,在价格上比起1F7B等PE树脂有显著优势,至今也仍保持着1000元/吨以上的差价。同时PP本身的密度低,意味着相同质量的树脂有更多数量的聚合物承担载体树脂的任务。此外PP的强度高于PE,同样情况下可使扁丝、打包带等具有更高的强度,见表13、表14。

等制品类似的结果,即将PP为载体树脂的填充母料与其它树脂为载体的填充母料相比,按QB 1126-91《聚烯烃填充母料》行业标准规定制成的注塑样条中,当配方相同、制样设备、条件相同时,PP为载体的填充母料效果最好,见表15。

①粉状PP比粒状PP更便宜,更易与碳酸钙混合均匀,应优先使用。

②粉状PP的熔体流动速率不宜过大,4~10g/10min为好。

③粉状PP中没有加入抗氧剂、润滑剂等助剂,必须适量添加。

④粉状PP在存放过程中会逐渐降解,放出酸味,因此一定要问清生产时间,并及时使用,最好在聚合出后的一个月内用完。

⑤以粉状PP为载体的碳酸钙填充母料可以使用同向平行双螺杆挤出机加工,碳酸钙的比例可以达到80%以上。关键问题是不能使用模面风冷热切造粒,也不宜使用拉条水冷造粒,只能使用传送带风冷方式造粒。

二、以代替ABS为主要目标的改性聚丙烯专用料

(1)日本卡尔普株式会社的CALP专用料组成、性能及用途

表16 CALP专用料的牌号、性能及用途

CALP专用料在很多场合可以替代价格昂贵的ABS,但仍然有明显的不足。

·密度比ABS大;

·表面硬度低,不耐刻划;

·刚性不足;

·表面光泽度低;

·表面涂装性差;

·成型尺寸收缩率大。原来使用ABS的注塑成型模具需加以修改才能使用改性PP 专用料。

(2)高光泽PP专用料

聚英慧点塑料科技有限公司研制的可漆PP专用料,由于使用了助剂A,得到了比接枝改性PP更好的可漆性能,可以在保证材料良好力学性能的前提下,直接使用普通硬胶漆进行表面涂装。

三、汽车零部件用改性聚丙烯专用料

用料。

时使用多种无机材料以保持模量不变。他们还使用抗氧剂保证了改性聚丙烯的耐热氧化性。此种改性聚丙烯具有高流动性、高韧性和高模量和耐候几大特点,适合用于大尺寸薄壁制品的注塑成型,可用于空调器的零部件生产。

研究结果表明POE和自制增韧母料并用,可在缺口冲击强度达80J/m以上的情况下,改性PP的弯曲模量仍可达到1700MPa;综合使用滑石粉等无机填料,可使改性PP的缺口冲击强度达到70J/m时,弯曲强度进一步提高;综合使用抗氧剂1010、168、1330和抗紫外线剂770,可使改性PP在95℃热老化箱中放置100小时后,拉伸强度仍然能达到初始值的93.8%。

营口洗衣机总厂以均PP粉料为基础料,填料经表面活化处理的800目滑石粉25%,再加入适量EPDM和抗氧剂等助剂,经混炼造粒制成的改性PP可用于制作干衣机中的关键部件——双翼风扇。该风扇是在80±5℃环境下长时间运行的旋转刚性体,同时承担换热任务,靠它将湿衣物中蒸发出来的水蒸汽聚集凝结成水排出机体外。该扇叶由数十个折曲片翼组成,属薄壁长流道距离制品,因此要求材料不仅刚性好、耐热性好、尺寸稳定性好、韧性也要好,还要求有良好的加工流动性。该改性PP的性能为:MFR:10±1g/min,拉伸强度:32~34MPa,弯曲弹性模量:

2.1~2.5GPa,Izod冲击强度(23℃/-20℃):60~70/20~30,维卡软化点:154℃。

五、户外家具用改性PP专用料

户外使用的休闲椅、桌、沙滩椅等大部分使用聚丙烯制造,而且为了提高生产效率,大多是一次注塑成型,这就要求原材料具有良好的力学性能和成型加工性能,同时还要求优异的耐老化(耐候)性能。

国内研制的户外家具用改性PP专用料的性能见表25。

影响最小,在填料中硫酸钡(BaSO4)填充PP的光泽度最高。

六、聚丙烯的老化与耐老化研究

PP的主链上有叔碳原子,在热、氧、紫外线等外界因素作用下极易发生化学变化,其表现为红外吸收光谱中出现羰基峰,随后生成过氧化物,断裂后形成游离基,这些游离基进一步引起整个大分子链裂解、支化与交联,使PP失去高分子材料的特征,丧失其使用性能。

宏观上可以通过PP特性粘度下降或熔体流动速率增大而加以判断。特性粘度下降或熔体流动速率增大,意味着聚丙烯分子量变小。例如分子量为27.1万的PP在310℃的加工温度下挤出加工三次后,分子量降低至5.23万。PP主链断裂产生大量游离基,一方面会继续攻击主链上碳原子,导致新的降解反应,同时也还会伴随着游离基之间的藕合或交联,分子量下降的速度有可能减慢,但材料宏观上会变硬和脆化。降解过程中产生的氧化结构(如羰基、过氧化物等),会进一步提高对光引起降解的敏感性

根据作用机理不同,抗氧剂可分为游离基链反应终止剂(主抗氧剂)和过氧化物分解剂(辅助抗氧剂)两类。现在市场上有许多种抗氧剂供选用。选用的原则是价格、与PP的相容性和抗氧化效果。目前获得认可,且技术经济两方面较为合适的抗氧剂是酚类1010和亚磷酸酯168的复配物,称之为B215或B225,前者1010与168比例为1:2,后者1010与168比例为1:1。

以上试验中PP为北京燕化2401粉料,未加过任何助剂,其配比为PP:抗氧剂:硬脂酸钙=100:0.25:0.25;挤出加工工艺条件:五区温度(℃)从加料口到机头分别为150、210、230、240、230,螺杆转速为60r/min。

在加工过程中只要加入足够量的抗氧剂并分散均匀,就可以保证PP在整个热历程中的稳定,而且在成型后的相当时期内都保持良好的稳定,不会发生严重降解。但如果暴露在户外,仅有残存的抗氧剂还不足以保护聚丙烯。在热氧化过程中生成的羰基化合物会在强烈吸收紫外线后处于激发态,在常温下也会使PP发生严重降解。

紫外线吸收剂可吸收波长290~400nm的紫外线。紫外线吸收剂吸收紫外线后被激化,然后转化成没有破坏性的长波光(如红外光)。PP最敏感的波长为290~325nm 和370nm左右的紫外光,这在选择紫外线吸收剂时应加以注意。

紫外线淬灭剂其作用是将吸收了光能的激发态分子的能量迅速地转移掉,再回到稳定的基态。它是通过分子间的作用使能量转移,而紫外线吸收剂是通过分子内结构的变化使能量转化的。

紫外线屏蔽剂主要指炭黑,最好是粒径为15~25nm的槽法炭黑。添加0.2%炭黑的PP制品预计有10年的耐晒性,而2%的炭黑可以使PP制品有20年以上的耐曝晒性。

对于白色或浅色制品,可使用氧化锌为屏蔽剂。研究结果表明,添加粒径0.11μm

的氧化锌10%,可使PP的耐候能力提高到8年以上。适合PP使用的光稳定剂有吸收剂UV-531、UV-327、三嗪-5和淬灭剂NBC、1084等。

特别需要加以注意的是液相本体法聚合出来的聚丙烯,尽管在分子量分布上、灰分含量上和卤素含量上已有很大改进,但大部分仍以不加任何助剂形式出厂。用户在使用时必须注意及时使用并加入适量的助剂。下面是粉状PP耐老化改性的研究结果,见表26、27、28、29。

型加工关,初始力学性能就达不到国际要求,更不用说在使用过程中的表现了。另一方面耐老化助剂用量越多,编织袋的初始性能越好,可以理解为足够量的助剂可以更细微地分布到每一个PP大分子跟前,起到及时的保护作用。当然从成本考虑,只要能满足使用要求,适量即可。

七、聚丙烯的阻燃

聚丙烯是易燃材料,其氧指数仅为18%,即在空气中只要达到一定温度就可以点燃。现在越来越多的应用场合要求塑料材料具有一定的难燃性。评判塑料材料燃烧性能的试验方法有氧指数、垂直燃烧、水平燃烧等。这些方法只能表明被试验的材料在一定条件下的阻燃性,但阻燃并不意味着不能燃烧。因此一方面要注意寻找最佳的阻燃途径,另一方面也要对阻燃塑料材料燃烧时的表现给予密切关注,避免或减少燃烧产物形成的危害。

在国际上最为通行的试验是美国保险业实验室的UL94燃烧试验。此试验将塑料的阻燃级别分为V-0、V-1和V-2和HB四级。通过V-0级试验的塑料可以用于阻燃性要求最高的场所。我国对应此方法的是垂直燃烧法(GB 4609),分别为FV-0、FV-1、FV-2。如果试验材料的燃烧行为连FV-2也达不到,则该材料的阻燃性能不能, 采用垂直燃烧法评定。UL94HB级的试验是将试样水, , 平放置,将试样一端灼烧30秒,观察试验的燃烧程度及燃烧速率,并根据标记之间的燃烧速度再分为

HB-1、HB-2、HB-3三级。

在传统的阻燃剂中,十溴二苯醚是聚丙烯最重要的阻燃剂,它不仅含溴量高,而且其分解温度在300℃以上,高于PP的成型加工温度,在阻燃PP加工时不至于提前分解,而在PP着火温度下又能及时分解。分解出的Br??游离基与PP反应生成HBr,在三氧化二锑等阻燃剂的协同作用下,一方面扑灭反应活性更强的HO?游离基,一方面形成比重很大的气体SbBr3等覆盖在可燃物表面隔断与氧气的接触,从而达到阻燃的效果。

我国是生产包括十溴二苯醚在内的溴化物的大国,仅十溴的年生产能力就已达5万吨。2005年十溴二苯醚生产量约3万吨,还进口约1万吨。溴系阻燃剂是否安全,前景如何,关系重大。欧盟双绿指令之一《关于在电子电气设备中禁止使用某些有害物质指令》(ROHS)将于2006年7月1日正式实施,即2006年7月1日以后投放欧盟市场的电气和电子产品中不得含有铅、汞、镉、六价铬、多溴联苯和多溴联苯醚等六类有害物质。我国由信息产业部、国家发改委、商务部等七个部门联合制定的《电子信息产品污染控制管理办法》(有人称之为中国ROHS)已正式出台,并将于2007年3月1日起施行。那么在今后的阻燃塑料制品中还能不能使用溴系阻燃剂呢?

2005年10月17日,欧盟公布一项决议,将十溴二苯醚列入欧盟ROHS指令的豁免清单。即在卤系阻燃剂中,十溴二苯醚是对人体健康和环境无危害的,不在禁用之列。

(2)非卤阻燃体系

氮、磷系列阻燃剂常常被人们提到,如红磷、聚磷酸铵、磷酸三聚氰胺等。遗憾的是这些阻燃剂与聚丙烯的相容性都不好,而且价格较高,因此真正在聚丙烯阻燃方面用得很少。

非卤阻燃聚丙烯往往指的是用氢氧化铝或氢氧化镁做阻燃剂,可以达到阻燃、消烟,同时兼具填充的效果。

由于氢氧化铝(Al(OH)3)受热后第1个H2O分子有可能在140℃就分解出来,在聚丙烯加工温度下(220~230℃)有严重的分解现象,造成制品中的气泡或表面产生银纹,故对聚丙烯塑料使用氢氧化镁更为合适。Mg(OH)2的分解温度为340℃,它在PP加工时很稳定,而在PP燃烧时可迅速分解为不燃物氧化镁和水。分解反应为吸热反应,分解时可吸收燃烧区域大量热能,而氧化镁覆盖在可燃物表面,起到隔绝空气的作用,又有水蒸汽冲淡了可燃物的浓度,起到阻燃的效果。由于氢氧化镁的分解产物仅为氧化镁和水,阻燃聚丙烯即使燃烧也不会释放出有毒物质和大量烟雾,而烟雾对火灾现场人员撤离逃生是最大的威胁,特别是地铁、公共场所,一旦发生火灾,烟雾越少,越无毒无害,越有利于人员逃生或救援灭火。

氢氧化镁可由氯化镁经化学反应制得,也可由水镁石矿经粉碎、磨细分级而得,前者的价格贵,但因粒径小,比表面积大,同样用量不仅阻燃效果好,而且阻燃聚丙烯的力学性能也比较好。

必须指出的是要想使氢氧化镁阻燃聚丙烯的阻燃效果好,例如氧指数达到30以上,又要有良好的成型加工性能(流动性、制品表面光泽等),还要材料的力学性能好,需要有良好的氢氧化镁表面处理技术和科学合理的材料配方。

国内研制的几种低烟无卤阻燃聚丙烯塑料的情况分别见表31、32、33。

八、玻纤增强聚丙烯

玻璃纤维添加到聚丙烯中可提高拉伸强度、弯曲弹性模量、洛氏硬度以及热变形温度等,其电性能不受影响,耐化学腐蚀性、耐水性等不变,只是断裂伸长率显著降低,缺口冲击强度变化不大。随玻纤含量增加,增强聚丙烯的性能见表34。

料的性能更好。此外在150℃下保持1500小时,其拉伸强度和热变形温度都不会下降,在沸水和水蒸汽中可长期使用。

玻纤增强聚丙烯的加工流动性因玻纤的存在有所下降,但与其它塑料相比,仍然属良好的加工流动性。提高成型加工温度可使其流动性得到改善。

通常制备玻纤增强聚丙烯是将长纤维从靠近机头一端的加料口加入,直接与已熔融的聚丙烯物料混合,这主要是为避免在双螺杆挤出机中停留时间过长而被多次剪切,长径比减小,影响增强效果。纤维的长度(指在最后成型的塑料制品中)应在0.1~1mm范围内,如长度低于0.04mm,则会大大影响增强效果。此外玻纤表面处理也十分重要。使用硅烷偶联剂,如TTS,可以使玻纤与PP之间有很好的相界面。中科院化学所研制的玻纤增强聚丙烯及国内外部分厂家同类产品的性能见表35[24]。

聚丙烯材料改性研究

聚丙烯材料改性研究 摘要:利用共混的方法,针对聚丙烯制品在实际应用中出现韧性差,易燃烧的缺点,重点研究了增塑剂POE 不同的量对聚丙烯抗冲击强度的影响,以及氢氧化镁对聚丙烯燃烧性能的影响。本次试验采用了高混机对所用原料进行共混,再将共混的原料放入双螺杆挤出机中挤出造粒,然后将制成的粒料利用注射机制作我们所需的的标准样条,最后对标准样条测试抗冲击强度和氧指数。结果显示,POE 增塑剂的量越多,则对聚丙烯的韧性改善更好,氢氧化镁由于加的量比较少,对聚丙烯的阻燃作用不明显。 关键词:聚丙烯;改性;造粒;增塑;阻燃 1前言 聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotactic polypropylene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯(syndiotactic polypropylene)三种。甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含量约为95%,其余为无规或间规聚丙烯。工业产品以等规物为主要成分。聚丙烯也包括丙烯与少量乙烯的共聚物在内。通常为半透明无色固体,无臭无毒。由于结构规整而高度结晶化,故熔点可高达167℃。耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。密度小,是最轻的通用塑料。缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。 采用相容剂技术和反应性共混技术对PP 进行共混改性是当前PP 共混改性发展的主要特点。它能在保证共混材料具有一定的拉伸强度和弯曲强度的前提下大幅度提高PP 耐冲击性。相容剂在共混体系中可以改善两相界面黏结状况,有利于实现微观多相体系的稳定,而宏观上是均匀的结构状态。反应型相容剂除具有一般相容剂的功效外,在共混过程中还能在两相之间产生分子链接,显著提高共混材料性能。 PP/弹性体二元共混体系虽有很好的韧性效果,但往往降低了材料的强度和刚度,耐热性能也有所降低。在二元共混体系中加入有增容作用或协同效应的物质,形成多元共混体系,则其综合性能可得到进一步提高。为了提高增韧PP 的硬度、热变形温度及尺寸稳定性,可使用经偶联剂活化处理的填料或增强材料进行补强。例如采用弹性体/无机刚性粒子/PP 三元复合增韧体系实现PP 的增韧增强,提高材料的综合性能,并且具有较低的成本。 溴系阻燃剂效率高、用量少,对材料的性能影响小,并且溴系阻燃剂价格适中。与其它类型的阻燃剂相比,溴系阻燃剂效能/价格比更具有优越性,我国供出口电子电气类产品中70%~80%都用此类阻燃剂。但是,近年来欧盟一些国家认为溴系阻燃剂燃烧时会产生有毒致癌的多溴代苯并恶瑛(PBDD)和多溴代二苯并呋喃(PBDF)。欧盟出台了禁令,在欧盟国家销售的所有电子电气设备,不能含有多溴联苯及多溴二苯醚。阻燃剂的种类众多,其用量和性能都各自不同,需要在不同的情况下选用不同的阻燃剂。现如今,聚丙烯的阻燃剂正向着高效、低烟、绿色、环保和低成本的方向发展。所以本次实验采用比较绿色的阻燃剂氢氧化镁。 本次实验采用POE 对聚丙烯增韧;氢氧化镁对聚丙烯进行阻燃改性,由于加入氢氧化镁的量太多,挤出机挤出较困难,所以同时加入少量三氧化二锑(Sb 2O 3)来减少氢氧化镁用量, 降低加工难度。 2.实验 2.1配方设计

塑料材料-聚丙烯(PP)的基本物理化学特性及典型应用介绍

聚丙烯(PP)的介绍 聚丙烯概述 聚丙烯采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。聚丙烯的英文名称为Polypropylene,简称PP,俗称百折胶。聚丙烯按其结晶度可以分为等规聚丙烯和无规聚丙烯,等规聚丙烯为高度结晶的热塑性树脂,结晶度高达95%以上,分子量在8~15万之间,以下介绍的聚丙烯主要为等规聚丙烯。而无规聚丙烯在室温下是一种非结晶的、微带粘性的白色蜡状物,分子量低(3000~10000),结构不规整缺乏内聚力,应用较少。 聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。然而,通过添加冲击改性剂,可以提高其抗冲击性能。 一、聚丙烯的特性 (1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙

相似,但在油润滑下,不如尼龙。 (3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。 (4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。(5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。 (6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。 二、聚丙烯的用途 (1)薄膜制品:聚丙烯薄膜制品透明而有光泽,对水蒸汽和空气的渗透性小,它分为吹膜薄膜、流延薄膜(CPP)、双向拉伸薄膜(BOPP)等。 (2)注塑制品:可用于汽车、电气、机械、仪表、无线电、纺织、国防等工程配件,日用品,周转箱,医疗卫生器材,建筑材料。 (3)挤塑制品:可做管材、型材、单丝、渔用绳索。打包带、捆扎绳、编织袋,纤维,复合涂层,片材,板材等。吹塑中空成型制品各种小型容器等。 (4)其它:低发泡、钙塑板,合成木材,层压板,合成纸,高发泡可作结构泡沫体。 三、聚丙烯的成型加工 聚丙烯的成型加工性好,成型的方法很多,如注塑、吹塑、真空热成型、涂覆、旋转成型、熔接、机加工、电镀和发泡等,并可在金属表面喷涂。其中注塑成型的比例大,注塑温度在180~200 之间,注塑压力在68.6~137.2MPa,模具温度为40~60℃。预干燥温度在80℃左右。应避免PP 长时间与金属壁接触。 聚丙烯的二次加工性很好,其印刷性比聚乙烯好,照相凸版,胶版、平凹板等印刷方法均可使用,要获得良好的良好的耐热、耐油、耐水等要求的印刷性能,须经电晕放电处理等再行印刷。 四、聚丙烯的改性 聚丙烯可通过填充、增强、共混、共聚、交联来改性。如添加碳酸钙、滑石粉、无机矿物质等填料,可提高刚性、硬度、耐热性和尺寸稳定性;添加玻璃纤维、石棉纤维、云母、玻璃微珠等可提高拉伸强度,并可改善抗蠕变性、低温抗冲击性;添加弹性体和橡胶等可提高冲击性能、透明性等等。 均聚PP和共聚PP的介绍 1. PP均聚物 聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。其历史意义更体现在,它一直是增长最快的主要热塑性塑料,2004年它的全国总产量达到300万吨。它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。 1.1 化学和性质

2020年(塑料橡胶材料)聚丙烯塑料的改性及应用(三)

(塑料橡胶材料)聚丙烯塑料的改性及应用(三)

热塑性低烟无卤阻燃电缆料性能

玻纤增强聚丙烯的抗蠕变性得到改善,能够比聚碳酸酯、耐热ABS、聚甲醛等塑料的性能更好。此外在150℃下保持1500小时,其拉伸强度和热变形温度都不会下降,在沸水和水蒸汽中可长期使用。 玻纤增强聚丙烯的加工流动性因玻纤的存在有所下降,但和其它塑料相比,仍然属良好的加工流动性。提高成型加工温度可使其流动性得到改善。

2改性聚丙烯发展动向

聚丙烯在生产数量迅速发展的同时,也在性能上不断出新,使其应用的广度和深度不断变化,近年来或者通过在聚合反应时加以改进,或者在聚合后造粒时采取措施,有壹些更具独特性能的聚丙烯新的品种问世,如透明聚丙烯、高熔体强度聚丙烯等。 2.1透明改性 PP的结晶是造成不透明的主要原因,利用急冷冻结PP的结晶趋向,能够得到透明的薄膜,但有壹定壁厚的制品,因热传导需要时间,芯层不可能迅速被冷却冻结,因此对于有壹定厚度的制品不能指望用急冷的办法提高透明度,必须从PP的结晶规律和影响因素入手。 经壹定技术手段得到的改性PP,可具有优良的透明性和表面光泽度,甚至能够和典型的透明塑料(如PET、PVC、PS等)相媲美。透明PP更为优越的是热变形温度高,壹般可高于110℃,有的甚至可达135℃,而上述三种透明塑料的热变形温度都低于90℃。由于透明PP的性能优势明显,近年来在全球都得以迅速发展,应用领域从家庭日用品到医疗器械,从包装用品到耐热器皿(微波炉加热用),都在大量使用。 PP的透明性提高可通过以下三种途径: (1)采用茂金属催化剂聚合出具有透明性的PP; (2)通过无规共聚得到透明性PP; (3)在普通聚丙烯中加入透明改性剂(主要是成核剂)提高其透明性。 4.1.1国内外发展态势 据日本理化株式会社介绍,日本7%的PP为透明PP,透明PP的产量在400kt/a之上。日本透明PP市场以微波炉炊具及家具俩方面的消耗量最大。日本出光化学X公司制造出和PVC具有同样透明性和光泽性的透明PP,当下能够广泛替代普通透明PVC制作文具、笔记本壹类的包装物,价格只相当于PVC的20%-30%,1999年出售了1200t透明PP。

聚丙烯改性

聚丙烯纤维的表面改性 学院:同济大学浙江学院 姓名:董瀚 学号:090736 摘要:结合聚丙烯( PP) 纤维分子结构特点、表面特性以及在水泥基材料应用中存在的问题, 研究了等离子处理方法对聚丙烯纤维表面的改性技术。 关键词:聚丙烯纤维; 表面改性;等离子处理 Research Progress in Surface Modification Technology of PP Fiber ABSTRACT:In this article, we discussed the molecule structure and surface characteristics of PP fiber and the problems whenthey were used in cement matrix material. The surface modification technology of PP fiber was also researched with corona treatment with coupling agent. KEYWORDS:polypropylene fiber; surface modification;corona treatment 1 前言 近年来, 聚丙烯( PP) 纤维在抗裂要求较高的混凝土工程中得到迅速的推广应用, 其出色的阻裂效果已得到试验及工程的证实。但同时也存在一些致命缺点: 表面光滑; 表面能低; 分子链上不含任何活性基团, 而且表面疏水, 以致于纤维在水泥基材料中不易分散; 与水泥基材的物理化学粘接性能较差等,严重制约了其在水泥基材料中的应用。因此对纤维表面进行适当的改性, 提高其在水泥基材料基体中的分散性和界面结合力是聚丙烯纤维扩大应用的关键所在。本文主要介绍等离子处理方法(塑性开裂性能的缺陷)。 2 PP 纤维的结构和性能 聚丙烯是一种结构规整的结晶型聚合物, 为乳白色, 无味, 无毒, 质轻, 是聚烯烃的一种, 密度为0190~ 0. 91g/ cm3, 不溶于水, 熔点为165 ℃ , 燃点为590 ℃; 耐热性能良好; 聚丙烯几乎不吸水, 耐蚀性能良好, 与大多数化学品, 如酸、碱和有机溶剂接触不发生作用; 物理机械性能良好, 抗拉强度330 ~414MPa, 极限伸长率200% ~ 700% , 弹性模量为3.92~ 4. 90GPa; 耐光性能差【1】。 聚丙烯纤维是聚丙烯切片经纺丝、拉伸工艺制成的纤维级产品, 其抗拉强度、极限伸长率以及弹性模量随制作工艺不同而变化较大【2】。聚丙烯纤维虽然具有很好的力学性能, 耐化学侵蚀, 但也存在一些致命缺点, 分子不带有极性基团、表面呈化学惰性和憎水性、在水泥基材料的应用中存在与基材的粘结性和抗蠕变性能较差的缺点。 众所周知, 水泥基材料耐久性的重要地位并不亚于强度和其它性能, 而耐久性不足最终都归结为材料开裂。在水泥基材料中掺入高弹性模量的钢纤维, 其作用主要是阻止硬化材料破坏时的裂缝扩展, 使硬化材料在开裂后仍能保持一定的抗拉强度。与钢纤维相比, 聚丙烯纤维的掺入能有效的抑制早期( 塑性期和硬化初期) 水泥基材料由于离析、泌水、收缩等因素形成的原生裂隙的发生和发展, 减少原生裂隙的数量和尺寸。因此, 聚丙烯纤维和钢纤维的阻裂效应是不同的, 它们分别改善了不同时期水泥基材料的性能。在一些对水泥基材料裂缝要求严格的工程中, 掺用聚丙烯纤维则有可能获得更为满意的效果, 因钢纤维在材料开裂后方能发挥阻裂效应,有些场合并无实际意义, 而水泥基材料在早期易发生塑性开裂性能的缺陷, 却可通过掺入聚丙烯纤维得到解决和改善。

聚丙烯抗冲改性的研究进展

聚丙烯抗冲改性的研究进展 [摘要] 综述了近年来有关反应器内抗冲改性聚丙烯研究的最新进展, 介绍了反应器内抗冲改性聚丙烯的生产工艺及多区循环流反应器在丙烯多段聚合中的应用; 介绍了反应器内抗冲改性聚丙烯的形态、结构与性能的关系; 介绍了 反应器内抗冲改性聚丙烯的研究方法及增韧机理。 [关键词] 聚丙烯; 抗冲改性; 共聚物; 结构与性能. 聚丙烯( PP)质轻、价廉, 具有良好的加工性能,应用范围广。PP的很多应用领域要求它具有较好的韧性。均聚PP在低温时变脆, 抗冲改性PP是通过在均聚PP中加入橡胶相制备的。以提高PP抗冲强度为目的的改性大多采用物理共混方法, 将PP和两种或两种以上的其它聚合物以机械共混方法进行混合, 可以得到一种宏观上均匀的聚合物共混物,在一定程度上提高共混物的性能。一方面, 以这种混合方式得到的PP与改性成分达不到真正均匀分布的状态, 故不能显提高共混物的冲击强度; 另一方面, 由于增加了共混工艺, 提高了生产抗冲改性PP的成本。因此, 研究人员想在聚合过程中完成共混工艺, 在反应器内直接合成抗冲改性的PP, 这样不仅可以简化工艺、降低生产成本, 而且还可以使PP和改性成分的混合程度达到亚微观状态, 从而有效地改善PP的抗冲性能。 本文对反应器内抗冲改性PP的生产工艺、形态结构、研究方法、增韧机理等方面的最新进展进行了综述。 1 应器内抗冲改性PP的生产工艺 反应器内抗冲改性PP的生产建立在第四代球形M gC l2 负载Z ieg ler- N atta 催化剂的基础上[ 1 ] 。第四代球形M gC l2 负载Z ieg ler- N a tta 催化剂具有以下特点[ 2] : ( 1)比表面积大; ( 2)孔隙率高, 孔径分布均匀; ( 3)活性中心在催化剂上分布均匀; ( 4)催化剂既具有一定的强度, 又能被聚合物增长时产生 的压力将内部结构破碎成较小颗粒, 并均匀地分布在膨胀着的聚合物内部; ( 5)单体可以自由地扩散到催化剂内部而发生聚合。由于聚合过程中的复制效应, 均聚过程中生成的丙烯均聚物复制了催化剂的某些特点, 如呈规则的球形、具有较高的孔隙率、活性中心在聚合物粒子内部分布均匀等。 反应器内抗冲改性PP 的生产一般采用两步法: 第一步先合成丙烯均聚物, 形成高立构规整度的聚合物, 为最终产品提供足够强的刚性, 这一步一般采用液相本体聚合或气相聚合工艺; 第二步合成乙丙共聚物(橡胶相), 为最终产品提供韧性, 共聚阶段一般采用气相共聚工艺; 最终产品的机械性 能实际上是刚性和韧性的平衡。气相共聚是反应器内抗冲改性PP 合成的关键步骤, 特殊的催化剂结构形态使本体聚合阶段获得的PP粒子具有较高的流动性和多孔性, 完全可以满足气相共聚的要求。合适的气相共聚工艺可以自由地调控共聚物的含量、组成及分子结构。气相共聚也保证了共聚物能均匀地分散在已形成的PP均聚物基体中, 这样既可以得到较高的橡胶相含量, 又不致使橡胶相过

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用 1、聚丙烯在合成树脂生产中占据重要地位,发展极为迅速 聚丙烯是五大通用合成树脂中的一个重要品种,在国内外的发展均十分迅速。在全球塑料用五大合成树脂中,聚丙烯的产量占有1/4左右的份额,预计2006年世界五大通用合成树脂的总产能将达到1亿9千万吨,其中聚丙烯4878万吨,占总产能的25.6%[1]。而我国2004年聚丙烯树脂产量为474.88万吨,进口291.4万吨,出口1.53万吨,其表观消费量为764.7万吨,占当年全国五大通用树脂表观消费量总和2954万吨的25.9%。预计到2010年我国聚丙烯树脂的表观消费量将增加至1080万吨,较2004年增长40%以上。表1列出近期投产和正在建设的聚丙烯装置的地点和产能。 表1 近期投产和在建聚丙烯装置

在已宣布的新增产能中,中石化253万吨/年,中石油135万吨/年,而且大多数项目的产能都在30万吨以上,达到世界级规模。这些装置全部投产后,中石化的聚丙烯产能将超过巴赛尔公司,跃居全球榜首,中石油也将列位前五名之列,届时中国将成为生产聚丙烯树脂全球产能最大的国家。 另据报道,我国聚丙烯树脂的产量1995年仅为107.35万吨,到2005年达到522.95万吨,平均年递增38.7%,同期表观消费量也从212.92万吨增至823万吨,平均年递增28.7%,成为全球聚丙烯消费增长最快的国家[2]。 1 聚丙烯基本知识 1.1 树脂与塑料的定义和分类 树脂(Resin):高分子材料亦称高分子聚合物,分为天然高分子材料和合成高分子材料。在合成高分子材料中按塑料、橡胶、纤维三大用途分为合成树脂、合成橡胶和合成纤维三大类,其中用于塑料的合成树脂所占的比例最大,约占合成材料总量的2/3以上。 塑料(Plastics):以合成树脂为主要成分,添加有适量的填料、助剂、颜料,而且在加工过程中能流动成型的材料。 热塑性塑料(ThermoPlastics):能在特定温度范围内反复软化和冷却硬化的塑料。 热固性塑料(Thermosetting Plastics):在第一次成型之后,成为不熔、不溶性物料的塑料。

聚丙烯改性技术的研究进展

聚丙烯改性技术的研究进展 五大通用塑料中,聚丙烯(PP)发展历史虽短,却是发展最快的一种。与其他通用塑料相比,PP具有较好的综合性能,例如:相对密度小,有较好的耐热性,维卡软化点高于HDPE和ABS,加工性能优良;机械性能如屈服强度、拉伸强度及弹性模量均较高,刚性和耐磨都较优异;具有较小的介电率,电绝缘性良好,耐应力龟裂及耐化学药品性能较佳等。但由于PP成型收缩率大、脆性高、缺口冲击强度低,特别是在低温时尤为严重,这大大限制了PP的推广和应用。为此,从上世纪70年代中期,国内外就对PP改性进行了大量的研究,特别是在提高PP的缺口冲击强度和低温韧性方面,目前已成为国内外研究的重点和热点。 1 橡胶增韧PP 橡胶或热塑性弹性体以弹性微粒状分散结构增韧塑料,已被证实是增韧效果较为明显的一种方法。由于PP具有较大的晶粒,故在加工时球晶界面容易出现裂纹,导致其脆性。通过掺人各种含有柔性高分子链的橡胶或弹性体,可大幅度提高PP的冲击强度,改善低温韧性。传统的PP增韧剂有三元乙丙橡胶(EPDM)、二元乙丙橡胶(EPR)、苯乙烯与丁二烯类热塑性弹性体(SBS)、顺丁橡胶(BR)、丁苯橡胶(SBR)等,其中以EPDM或EPR取效果最好。 1.1 PP/乙丙橡胶共混体系 PP与乙丙橡胶都含有丙基,溶度参数相近,根据相似相容原理,它们之间应具有较好的相容性。由于乙丙橡胶具有高弹性和良好的低温性能,因此与PP 共混可改善PP的冲击性能和低温脆性。 李蕴能等研究了乙丙橡胶心P共混物的性能,得出结论:在相同橡胶含量下,增韧共聚PP的效果远优于增韧均聚PP,且增韧效果与橡胶的种类有关。通常情况下,EPR的增韧效果优于EPDM。通过实验发现,当橡胶含量为30%时,增韧效果最好;不同结晶度的EPR对PP的增韧效果也不一样,结晶度越低,其增韧效果越好。 刘晓辉等对不同PP心Pr)M共混物的力学性能进行了研究。结果表明:(1)随着体系中EPDM加入量的增多,材料的冲击强度明显上升,当EPDM含量为30%左右时,冲击强度出现极值;(2)冲击强度的提高和变化与EPDM在PP中的形态和分布有关;(3)EPDM的加入对共混晶体结构有影响,但晶体结构上的差

开发高性能聚丙烯改性材料

(总第154期> 2004年10月30日 开发高性能聚丙烯改性材料 提升湛江电饭煲地质量档次 湛江市包装材料企业有限公司 涂志刚 市科技专家咨询委员会专家 众所周知,在小家电行业,湛江地电饭煲全国有名,早在八十年代半球地广告就遍布全国大中城市.据统计目前湛江生产地电饭煲市场占有率为30%左右,而且大量出口到东南亚.电饭煲产业地发展也带动了相关配件行业地发展,其中包括电饭煲上用到地大量塑料制件,因此在湛江催生了塑料注塑成型加工行业,通过注塑成型,生产电饭煲上地塑料制件,如外壳、内盖、中环、蒸笼、底座等.电饭煲上用到地塑料材料主要是聚丙烯改性材料,最初,这些改性材料主要从珠三角地区购买,近年来在湛江本地逐步有一些私人小企业开始生产,由于价格低廉,但是技术水平与广州附近地企业相比有较,很快地占有了大部分市场 大差距,产品质量较差,因此最终会使电饭煲地质量受到一定程度地影响,这将成为电饭煲产业链拓展地薄弱环节.由此可见在湛江开发高性能地聚丙烯改性材料,对促进电饭煲产业群地发展具有十分重要地意义.b5E2RGbCAP

一聚丙烯

PP共混改性配方大全精编版

PP共混改性配方大全 聚丙烯是目前用量最大的通用塑料之一,但较高的结晶度也给 PP造成低温韧性差、成型收缩率大和缺口敏感性大等缺点,在一定 程度上限制了其更广泛的应用。共混改性是PP增韧的最有效途径。 它是利用组份之间的相容性或反应共混的原理,将两种或两种以上的聚合物与助剂在一定温度下进行机械共混,最终形成一种宏观上均匀,微观上相分离的新材料。通过对PP的共混故性,可以使其综合性能 大大提高,从而和工程塑料及聚合物合金在众多应用领域里竞争。 PP共混改性使用的主要共混物物及改性效果如下表: PP 接下来就是干货满满的具体改性配方和工艺啦! 1、PP/LDPE共混改性 配方 树脂PP100;相容剂PE-g-MAH5;LDPE20;润滑剂HSt0.3; 加工工艺 将PP与PE、相容剂及助剂按配方比例混合、搅拌、挤出造粒,制成改性材料。挤出机料筒温度为:一段210℃,二段215℃,三段210℃;螺杆长径比为25:1;螺杆转速为120~160r/min。 性能 PP与PE共混,可改善PP的韧性,增大低温下落球冲击强度。按配方比例的共混材料的屈服应力13.6MPa;屈服应变率为12.3%,断裂应力为4.78MPa;断裂应变率为114.6%。

2、PP/HDPE共混改性 配方 树脂PP57.35;抗氧剂10760.2;HDPE40;PEPQ0.2;交联剂叔丁基过氧基异丙苯0.15;加工助剂硬脂酸镁0.1;填充剂硅灰石2; 加工工艺 在常温常压下,将各组分按配方比例在高速混合机中混合10min,然后采用双螺杆挤出机进行熔融共混,挤出造粒。挤出温度150-220℃,螺杆转速为300r/min,经切粒、干燥工序制得PP/HDPE共混改性材料。 性能 拉伸强度34.8MPa,悬臂梁冲击强度49.3J/m。该材料表面消光效果良好,可用于包装、日用品和建筑材料等领域。 3、PP/LLDPE共混改性 配方 树脂PP(EPF30R)60-70;钛酸酯偶联剂(ND2-311)适量;LLDPE15-20;抗氧剂增韧剂POE(8150)5~10;光稳定剂适量;填充剂滑石粉(平均粒径12μm)10~15; 加工工艺 等高速混合机预热至110℃,加入一定量的无机填料,低速搅拌15min后,分三次加入填料质量分数为2%的偶联剂,每次加入偶联剂后,高速搅拌5min,然后放出填料备用。按配方比例准确称取PP、PE、POE、填料和其他助剂,混合后加入双螺杆挤出机料斗中,挤出

聚丙烯改性研究及其在输液瓶瓶盖中的应用

聚丙烯改性研究及其在输液瓶瓶盖中的应用 王以秀,张乃潮,唐雷,朱雪真,刘应福,李忠志 威高集团创新公司 大输液制剂作为常用药之一,临床需求量非常大。作为第一代输液产品玻璃瓶装大输液,由于玻璃瓶包装的生产工艺复杂,需反复清洗使用,易产生玻璃纤维,质量难以控制,存在对人体健康产生不良影响的诸多隐患,且运输成本高、易碎。同时使用后的玻璃瓶不便处理、污染环境,逐步淘汰是必然的趋势。随着人们医疗健康水平和科学技术不断提高,塑料包装大输液已成为当今国际输液包装发展的主流之一。 2006年全国各类输液的用量约为30多亿瓶,塑瓶输液约占20%,瓶盖料的用量将高达2500吨,产值达1亿元;预计未来几年塑瓶输液的需求量将占输液产量的40-50%,将达到15亿瓶,瓶盖料的用量将达6000吨,产值达2亿元。输液用改性聚丙烯瓶盖料目前国内只有几家公司生产,而市场瓶盖料的用量每年以10%的速度递增,面对如此巨大的市场,同时为了保证威高集团洁瑞医用制品有限公司的市场竞争力,我公司决定研制开发输液用改性聚丙烯瓶盖料。 目前,我公司已经大批量生产输液用改性聚丙烯瓶盖料,除了供威高集团药业公司使用,还对外销售。 1 实验部分 1.1主要原料 无规共聚聚丙烯(PP),乙烯—辛烯共聚物(POE),聚乙烯(PE),三元乙丙橡胶(EPDM),乙烯—醋酸乙烯共聚物(EVA)。 以上原料均为商品。 1.2 试验设备 双螺杆挤出机 南京橡塑机械厂制造的SJSH-40双螺杆挤出机组。其螺杆直径Φ为40mm,长/径比为36,各段温度控制在150-220℃。 1.3 性能检测 1.3.1 熔体指数 采用长春长城试验机厂生产的XNK—400Z型熔融指数仪,测试条件为230℃,

聚丙烯的共混改性

聚丙烯的共混改性 材料一班历晨 1205101018 摘要:聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规,无规和间 规聚丙烯三种。 甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含 量约为95%,其余为无规或间规聚丙烯。 关键字:聚丙烯共混改性、聚丙烯改性研究、改性制品八大应用 聚丙烯共混改性 PP/EVA共混体系 : 物理共混改性的方法分别制备出乙烯—醋酸乙烯含量为0~20wt%的聚丙烯(PP)/乙烯—醋酸乙烯(EVA)共混切片,以PP为皮层、PP/EVA共混物为芯层,采用熔融纺丝工艺制备出皮芯复合中空纤维。文中通过研究原材料的组成、EVA含量、复合比例、纺丝温度和挤出速率/卷绕速率匹配对熔融纺丝稳定性的影响,确定了最佳熔融纺丝工艺,同时对复合纤维的力学性能进行了测试。采用差示扫描量热分析仪(DSC)、声速仪、宽角X-射线衍射仪(WXRD)和扫描电子显微镜(SEM)等分析与检测手段对PP/EVA共混物及共混纤维进行相关性能测试,并经过浸泡,研究皮芯复合中空纤维对有机小分子物质的吸附性能。结果表明:1、当EVA含量为0~20wt%时,可以顺利的进行共混造粒。PP/EVA共混物的熔融指数随着EVA质量百分含量的增加而明显降低;随着温度的升高,共混物熔融指数在230℃后急剧升高,流动性明显改善;PP/EVA共混体系为热力学不相容体系。2、具有可纺性的PP/EVA共混物,经严格控制纺丝条件,可以纺制成一定直径且粗细均匀的皮芯复合中空纤维。最佳纺丝工艺条件为:EVA含量10wt%,皮芯复合比6/4,纺丝温度230℃,挤出速率39.69g/min,卷绕速率500m/min。3、随EVA含量的增加和拉伸倍数的增大,纤维的纤度和断裂强度单调减小。当EVA含量为10wt%,实际拉伸倍数为3.7时,纤维的纤度为9dtex,断裂强度和断裂伸长分别为3.0cN/dtex、39%。4、皮芯复合中空纤维通过纤维内部EVA中的极性基团吸附有机小分子物质,吸附量主要取决于纤维中EVA的含量。5、乙烯—醋酸乙烯与有机小分子物质的溶解度参数差异决定吸附量,两者的溶解度参数差异越小,吸附量越大,因此皮芯复合中空纤维对丙烯酸甲酯的吸附性能很好,对苯乙烯吸附性较好,对乙酸乙酯和柏树精油的吸附性相对较差。 6、拉伸倍数在0~4倍时,随着拉伸倍数的增加,纤维对有机小分子物质的吸附量降低;随着温度 的升高,纤维对有机小分子物质的吸附量在50℃时出现最大值. PP/TPEE共混体系:聚丙烯(PP)纤维是由等规聚丙烯经纺丝加工制得的纤维,具有质轻、强力高、 弹性好、化学稳定性好、制造成本低、再循环加工简便等特点,被广泛用于无纺布、卫生用品、绳 索等。但由于聚丙烯纤维大分子内不含任何极性基团,结构规整,结晶度高,疏水性强,分子内不 含能与染料发生作用的染座,所以丙纶的染色性能较差,严重影响了其在服用纺织品上的应用。因 此,对聚丙烯进行可染改性,是广大研究工作者一直关注的热点。其中在聚丙烯基体中通过加入含 染座的改性剂进行共混改性,是聚丙烯纤维可染改性的主要方法。但改性剂的添加,会对聚丙烯的 纺丝性能和纤维力学性能带来较大的影响,因此,选择适宜的改性添加剂及如何改善聚丙烯与改性 添加剂的相容性,是共混改性的难点。本文采用共混改性的方法,选用与PP溶解度参数较接近的聚 对苯二甲酸丁二醇酯(PBT)与聚四亚甲基醚二醇(PTMG)的嵌段共聚物(TPEE)作为改性添加剂,分别 以乙烯-辛烯共聚物接枝甲基丙烯酸缩水甘油酯(POE-g-GMA)、聚丙烯接枝甲基丙烯酸缩水甘油酯 (PP-g-GMA)、乙烯-醋酸乙烯共聚物(EVA)为相容剂,在双螺杆挤出机中按一定共混比例制得共混样 品;利用扫描电镜(SEM)、旋转流变仪、差示扫描量热仪(DSC)、X-射线衍射仪(XRD)、热重分析仪(TG)

聚丙烯及其改性材料简介

目录 一聚丙烯 (2) 1.1 聚丙烯的性能 (2) (1)优点 (2) (2)缺点 (2) 1.2 聚丙烯链的立体结构 (2) 1.3 聚丙烯的晶体结构 (3) 二聚丙烯改性 (3) 三聚丙烯填充与增强改性新材料 (4) 3.1 聚丙烯填充改性性能特点及发展趋势 (4) 3.2 常用填充材料 (5) 1、碳酸钙 (5) 2、滑石粉 (5) 3、高岭土 (5) 3.3 聚丙烯的增强改性 (5) 3.4 聚丙烯填充与增强改性新材料 (6) 1、碳酸钙与滑石粉填充改性聚丙烯 (6) 2、玻璃微珠改性聚丙烯新材料 (6) 3、云母填充改性PP (6) 4、玻璃纤维增强聚丙烯新材料 (7)

一聚丙烯 1.1 聚丙烯的性能 (1)优点 1)聚丙烯密度为0.90~0.91g/cm3,是通用塑料中最轻的一种; 2)具有优良的耐热性,长期使用温度可高达100~120℃,无载荷时使用温度可达150℃,是通用塑料中唯一能在水中煮沸,并能经受135℃的消毒温度的品种; 3)聚丙烯是一种非极性塑料,具有优良的化学稳定性,并且结晶度越高,化学稳定性越好,室温下只有强氧化性酸(如发烟硫酸、硝酸)对它有腐蚀作用。吸水性很小,吸水率不到0.01%; 4)力学强度、刚性和耐应力开裂都超过高密度聚乙烯,而且有突出的延伸性和抗弯曲疲劳性能; 5)电绝缘性能优良,特别是高频绝缘性好,击穿电压强度也高,加上吸水率低,可用于120℃的无线电、电视的耐热绝缘材料; 6)综合性能优异,易加工、生产成本低。 (2)缺点 1)聚丙烯的耐低温性能不如聚乙烯,脆化温度约为-30~-10℃,低温甚至室温下的抗冲击性能不佳,低温易脆; 2)在成型和使用中易受光、热、氧的作用而老化; 3)熔点较低、热变形温度低、抗蠕变性差、尺寸稳定性不好。 1.2 聚丙烯链的立体结构 丙烯用齐格勒-纳塔催化剂聚合后,所得聚合物的X射线构型有等规、间规和无规三种。在PP生产过程中,尽管采用不同的催化剂和不同的操作条件,但工业PP产品主要是等规PP(含有少量的无规物和间规物)。

高熔体强度聚丙烯的研究解析

高熔体强度聚丙烯的研究简介概述1 PP Mont-ecati年由意大利蒙特卡迪尼(万。195710~50聚丙烯(PP),分子量一般为)公司实现工业化生产。聚丙烯为白色蜡状材料,外观与聚乙烯相近,但密度比聚ni℃左右,热性能好,在通用树脂中是唯一能在水165乙烯小,透明度大些,软化点在℃,具有优异的介电性能。溶解性-10~20130℃下消毒的品种,脆点中煮沸,并能在相近。作为一种通用塑料,聚丙烯具有较好的综合性能,聚丙烯的成PE能及渗透性与型收缩率较聚乙烯小,具有良好的耐应力开裂性。因而被广泛应用于制造薄膜、电绝缘体、容器、包装品等,还可用作机械零件如法兰、接头、汽车零部件、管道等,聚丙烯还可以拉丝成纤维。在近年来所举的通用塑料工程塑料化技术中,聚丙烯作为首机械强度和硬度较低以及成PP也存在低温脆性、选材料不断地引起了人们的重视。但型收缩率大、易老化、而热性差等缺点。因此在应用范围上,尤其是作为结构材料和年代中期国内外就采用化学或物理改性方工程塑料应用受到很大的限制。为此,从70的缺口冲击强度和低温韧性方面进PP进行了大量的研究开发特别是针对提高法对PP行了多种增强增韧改性研究开发。常见的改性方法有共聚改性、共混改性和添加成核剂等。 1.1 PP生产方法和种类 中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,生产技术、工艺也趋于多样化,已经基本上形成了淤浆法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工艺并举,大中小型生产规模共存的生产格局。中国的大型聚丙烯生产装置以引进技术为主,中型和小型聚丙烯生产装置以国产化技术为主。由最初的浆液工艺发展到目前广泛使用的液相本体法和气相法,液相本体法因其不使用稀释剂、流程短、能耗低,现已显示出后来居上的优势。 (1)淤浆法:在稀释剂(如己烷)中聚合,是最早工业化的方法; (2)液相本体法:在70℃和3MPa的条件下,在液体丙烯中聚合; (3)气相法:在丙烯呈气态条件下聚合。 - 2 - )和间规IPP根据甲基排列位置聚丙烯可分为等规聚丙烯()、无规聚丙烯(APP 聚丙烯(SPP)三种。甲基无秩序的排列在分子主链的两甲基排列在分子主链的同一侧称等规聚丙烯,侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的,其余为无规或间规聚丙烯。工业产品以等规聚丙烯树脂中,等规结构含量约为95%物为主要成分。通常为半透明无色固体,无臭无毒,由于结构规整而高度结晶化,故熔点可高达167℃,耐热、耐腐蚀,制品可用蒸汽消毒,密度小,是最轻的通用塑料。 PP的特点1.2 ℃)、低透明度、低光泽度、低刚性,冲击强100PP材料有较低的热变形温度(℃。由于结晶度较高,这种材料150度随着乙烯含量的增加而增大,维卡软化温度为不存在环境应力开裂问题,无毒、无味、密度小、的表面刚度和抗划痕特性很好。PP℃左右使用。具有良好的介强度、刚度、硬度、耐热性均优于低压聚乙烯,可在100电性能和高频绝缘性且不受湿度影响,但低温时变脆,不耐磨、易老化。

聚丙烯(论文

前言 聚丙烯(PP)是五大通用塑料之一,具有密度小、刚性好、强度高、耐挠曲、耐化学腐蚀、绝缘性好等优等。不足之处是低温冲击性能较差、易老化、成型收缩率大。PP 用途相当广泛,可用于包括农业和三大支柱产业(汽车工业、建筑材料、机械电子) 在内的诸多领域。开拓PP在重大产业领域的市场,取代其他塑料,所凭借的因素一是PP 物美价廉、二是PP改性的进展。尽管PP 生产工艺和催化剂历经几代更新,取得了很大的成就,但要用反应器产品直接作为某些目标产品(包括注塑级、纤维级、薄膜级等) 的原料或专用料,有的还需提高它的综合性能。即对反应器后产品作一定的改性。反过来说,PP改性也扩大了自身的应用领域,通过改性,人们可以得到性能好和价廉的PP原料。 按照参加聚合的单体组成,PP可分为均聚物和共聚物两种。均聚物由单一丙烯单体聚合而成,因而具有较高的结晶度、机械强度和耐热性。PP共聚物是聚合时加入少量乙烯单体共聚而成,具有较高的冲击强度。广义上讲,相对于均聚物,共聚物可以说是一种改性产品。目前国内石化厂生产PP以均聚物为主,品种单一,提供PP均聚物的改性方法无疑是有现实意义的。

聚丙烯的改性方法 §1章PP聚合物的改性综述 1.1化学改性 聚丙烯的化学改性是指通过化学方法改变聚丙烯分子链上的原子或原子团的种类及组合方式的改性方法。经化学改性后的聚丙烯, 其分子链结构发生变化, 从而对材料的聚集态结构或织态结构产生影响, 改变材料性能, 因此, 通过化学改性可以得到具有不同应用性能的新材料。 1.1.1聚丙烯的共聚改性 以丙烯单体为主的共聚改性可在一定程度上增进均聚PP的冲击性能、透明性和加工流动性,它是提高PP 韧性, 尤其是低温韧性的最有效的手段之一。将丙烯、乙烯混合在一起聚合, 其聚合物主链中无规则地分布着丙烯和乙烯链段,乙烯则起着阻止聚合物结晶的作用, 当乙烯质量分数达到20%时结晶便很困难, 当质量分数为30%时就完全无定形, 成为无规共聚物, 其特点是结晶度低、透明性好、冲击强度增大等。采用Zieglar 催化剂或茂金属催化剂可以制备立构嵌段聚丙烯( 又称为热塑性弹性聚丙烯,Thermoplastic elastomer)。由于在分子链上同时含有等规和无规两种链段, 因此具有低的初始弹性模量,相对高的拉伸强度, 低的蠕变性能以及高的可逆形变。嵌段共聚物与等规共聚物相比, 低温性能优良, 耐冲击性好; 与等规PP 和各种热塑性高聚物的共混物相比, 刚性降低不大。 Exxon 公司[2 ]采用双茂金属催化剂在单反应器中制备了双峰分布的丙烯- 乙烯共聚物,其加工温度范围大约为26 ℃,比常用的聚丙烯共聚物的加工温度范围(约15 ℃)宽,克服了单峰茂金属聚丙烯树脂加工温度范围窄的缺点,在生产BOPP 薄膜时拉伸更均匀且不易破裂,并可以在低于传统聚丙烯的加工温度下生产性能良好的聚丙烯薄膜。浙江大学合成3种新型非桥联二茚锆茂催的存在下, 与PP在挤出机中熔融共混完成接枝反应(或者与丙烯单体共聚),然后在水的作用下,硅烷水解成硅醇,经缩合脱水而交联。该技术的关键是在接枝反应时必须严格监控,防止PP降解。 1.1.2 聚丙烯的接枝改性

高熔体强度聚丙烯的研究解析

高熔体强度聚丙烯的研究简介 1 PP概述 聚丙烯(PP),分子量一般为10~50万。1957年由意大利蒙特卡迪尼(Mont-ecati ni)公司实现工业化生产。聚丙烯为白色蜡状材料,外观与聚乙烯相近,但密度比聚乙烯小,透明度大些,软化点在165℃左右,热性能好,在通用树脂中是唯一能在水中煮沸,并能在130℃下消毒的品种,脆点-10~20℃,具有优异的介电性能。溶解性能及渗透性与PE相近。作为一种通用塑料,聚丙烯具有较好的综合性能,聚丙烯的成型收缩率较聚乙烯小,具有良好的耐应力开裂性。因而被广泛应用于制造薄膜、电绝缘体、容器、包装品等,还可用作机械零件如法兰、接头、汽车零部件、管道等,聚丙烯还可以拉丝成纤维。在近年来所举的通用塑料工程塑料化技术中,聚丙烯作为首选材料不断地引起了人们的重视。但PP也存在低温脆性、机械强度和硬度较低以及成型收缩率大、易老化、而热性差等缺点。因此在应用范围上,尤其是作为结构材料和工程塑料应用受到很大的限制。为此,从70年代中期国内外就采用化学或物理改性方法对PP进行了大量的研究开发特别是针对提高PP的缺口冲击强度和低温韧性方面进行了多种增强增韧改性研究开发。常见的改性方法有共聚改性、共混改性和添加成核剂等。 1.1 PP生产方法和种类 中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,生产技术、工艺也趋于多样化,已经基本上形成了淤浆法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工艺并举,大中小型生产规模共存的生产格局。中国的大型聚丙烯生产装置以引进技术为主,中型和小型聚丙烯生产装置以国产化技术为主。由最初的浆液工艺发展到目前广泛使用的液相本体法和气相法,液相本体法因其不使用稀释剂、流程短、能耗低,现已显示出后来居上的优势。 (1)淤浆法:在稀释剂(如己烷)中聚合,是最早工业化的方法; (2)液相本体法:在70℃和3MPa的条件下,在液体丙烯中聚合; (3)气相法:在丙烯呈气态条件下聚合。

关于聚烯烃(聚丙烯、聚乙烯)共混改性的现代研究

龙源期刊网 https://www.doczj.com/doc/fb2872876.html, 关于聚烯烃(聚丙烯、聚乙烯)共混改性的现代研究 作者:赵艳张滨茹杨伟 来源:《科学与信息化》2017年第29期 摘要随着当今社会的快速发展和科学技术的不断进步,高分子材料在工农业中应用的比重也在不断增加,并得到了广泛的应用。由于塑料是高分子材料发展的重要内容之一,PP在使用过程中,不仅应该具有较高的强度,也应该有良好的韧性。因此对通用大品种树脂聚丙烯(PP)和聚乙烯(PE)开展改性研究一直是高分子材料科学研究领域的重要课题。 关键词聚烯烃;聚丙烯;聚乙烯;共混改性 前言 众所周知,PP和PE是重要的通用大品种树脂,聚丙烯(PP)具有比重小、耐应力开裂性和耐磨性能突出、较好的耐热性和化学稳定性等优点,但脆性和低温抗冲击性能差。聚乙烯(PE)具有优良的电绝缘性、耐化学性、耐低温性和良好的加工流动性等特点,但耐热性 差、耐大气老化性能差以及易应力开裂等缺点也相当突出。因此聚丙烯和聚乙烯的改性研究已经成为目前高分子材料科学研究的重点,本文主要对聚丙烯(PP)与聚乙烯(PE)的共混改性进行研究与探讨。 1 聚烯烃概述 1.1 聚丙烯 聚丙烯(即)是非常重要的廉价通用高分子材料,它具有比重小、耐应力开裂性和耐磨性能突出、较好的耐热性和化学稳定性等优点,广泛用于薄膜、管材、板材、注射产品及中空制品中。聚丙烯相对低的价格和适宜的特性提高了它的市场效能,不仅用做其他材料的替代物,而且也不断地开发出一些新的应用[1]。 1.2 聚乙烯 聚乙烯工艺化已有60多年的历史,聚乙烯现在是世界上产量最大、品种繁多的最重要的合成树脂之一。其应用已深入到国民经济的各个部门和人们的日常生活中。历经半个多世纪的开发,现在已能生产各种类型和品级的聚乙烯树脂,可以做成不同形式、不同用途的系列制品。在满足最终用途的前提下,与其他聚合物和非聚合物材料相比,聚乙烯树脂以其价廉质优而具有强劲的市场竞争力,已发展成生产量大、用途宽广的最重要的一类通用树脂。 2 聚烯烃(聚丙烯,聚乙烯)共混改性方法

相关主题
文本预览
相关文档 最新文档