当前位置:文档之家› 发动机活塞传热的三维无网格法模拟及试验验证_张建平

发动机活塞传热的三维无网格法模拟及试验验证_张建平

发动机活塞传热的三维无网格法模拟及试验验证_张建平
发动机活塞传热的三维无网格法模拟及试验验证_张建平

柴油机活塞环拆卸与装配

柴油机活塞环拆卸与装配 活塞环拆卸: 1、简介 活塞环是装于活塞环槽内具有弹性的金属圆环,是柴油机燃烧室的组成零 件之一,具有保持活塞与气缸套之间的有效密封作用和将活塞热量传递给气缸壁的散热作用,以及调节气缸润滑油的作用。按其功用不同可分为气环(压缩环、密封环)和油环(刮油环)两种。 在十字头式柴油机里,气缸采用专门的润滑机构进行润滑,所以一般只装压缩环,没有刮油环,而另设有承磨环。 气环:主要作用是防止气缸中的气体漏泄和将活塞上的部分热量传递给气缸。并起支撑活塞的作用。以上这些作用中密封作用尤其重要,对于冷却式活塞埸是如此。压缩环的密封作用是靠环本身的弹性将环压紧在缸壁上,间隙很小,形成第一次密封。由于间隙节流在环的上下平面和内侧产生不平衡的气的体力,将环进一步压紧在缸壁和环槽上,形成第二次密封。值得注意的是:第二次密封是建立在第一次密封的基本上的,若环的弹性消失,第一次和第二次密封将均不存在。通常为了保证密封可靠,均安装多道气环,如4~5道气环油环:筒形活塞式柴油机,活塞和气缸套之间是靠飞溅来和滑油进行润滑的。由于飞溅到气缸壁上的滑油一般较多。而且气环会通过泵油作用把滑油泵入燃烧室,这不仅增加了滑油的消油量,而且还会污染活塞、气缸、气阀和排气管道。因此在气环下面安装1~3道刮油环,调节气缸壁面上的滑油以保证良好的气缸润滑,油环工作时在是运动中将油刮下,并把气缸壁上多余的滑油,经环上的泄油孔和环槽上的泄油孔排回曲轴箱 承磨环:十字头式柴油机专门为活塞与气缸的磨合而设置的承磨环(超短裙活塞不设置,短裙活塞设置1~2道承磨环,长裙活塞设置2~4道承磨环)。承磨环在运动中

柴油机活塞环拆卸与装配

活塞环拆卸: 1、简介 活塞环是装于活塞环槽内具有弹性的金属圆环,是柴油机燃烧室的组成零 件之一,具有保持活塞与气缸套之间的有效密封作用和将活塞热量传递给气缸壁的散热作用,以及调节气缸润滑油的作用。按其功用不同可分为气环(压缩环、密封环)和油环(刮油环)两种。 在十字头式柴油机里,气缸采用专门的润滑机构进行润滑,所以一般只装压缩环,没有刮油环,而另设有承磨环。 气环:主要作用是防止气缸中的气体漏泄和将活塞上的部分热量传递给气缸。并起支撑活塞的作用。以上这些作用中密封作用尤其重要,对于冷却式活塞埸是如此。压缩环的密封作用是靠环本身的弹性将环压紧在缸壁上,间隙很小,形成第一次密封。由于间隙节流在环的上下平面和内侧产生不平衡的气的体力,将环进一步压紧在缸壁和环槽上,形成第二次密封。值得注意的是:第二次密封是建立在第一次密封的基本上的,若环的弹性消失,第一次和第二次密封将均不存在。通常为了保证密封可靠,均安装多道气环,如4~5道气环 油环:筒形活塞式柴油机,活塞和气缸套之间是靠飞溅来和滑油进行润滑的。由于飞溅到气缸壁上的滑油一般较多。而且气环会通过泵油作用把滑油泵入燃烧室,这不仅增加了滑油的消油量,而且还会污染活塞、气缸、气阀和排气管道。因此在气环下面安装1~3道刮油环,调节气缸壁面上的滑油以保证良好的气缸润滑,油环工作时在是运动中将油刮下,并把气缸壁上多余的滑油,经环上的泄油孔和环槽上的泄油孔排回曲轴箱 承磨环:十字头式柴油机专门为活塞与气缸的磨合而设置的承磨环(超短裙活

塞不设置,短裙活塞设置1~2道承磨环,长裙活塞设置2~4道承磨环)。承磨环在运动中若已磨平,也不必更换。 2、活塞环的结构与配置 活塞环的材料为耐磨合金铸佚,共有6道环。第一道是经过镀铬处理,其余表面为镀锡或磷化处理。活塞环一般是4道气环,2道刮油环(按机型大小环环数有所不同):高、中速柴油机2~4道气环,1~2道刮油环;十字头式低速柴油机常用5~6道压缩环,1~4道承磨环。 3、拆卸活塞环 (1)、大中型柴油机活塞环的拆卸必须使用拆装专用工具来进行。专用工具类型很多。如教材这P120图16.1 (2)、在没有专用工具时,一般小型柴油机活塞环可用麻绳或铁丝等物料弯成环形,套在拇指上,另一半分别套在活塞开口两端,缓慢地用力使活塞环张开后移出环槽拆出。 (3)、张开活塞环时务必注意,在使它能够移出环槽的情况下尽可能地张得小些,否则很容易拆断或使活塞环受到内伤,使之良快疲劳断裂。 拆下的活塞环应按该缸的环序放置,不可随意弄乱缸号环序,以备清洁后检查测试。 活塞环装配: 拟装配到活塞上的活塞环,其活塞环的搭口间隙、平面间隙(通常称天地 间隙)和弹力情况,均已检查测量并符合规定要求才能装配。 装配及注意事项: 1、活塞安装时应使用拆装专用工具,将环的开口扩大使之缓慢顺利地装复 到环槽中。

汽车汽油发动机装配全过程[1]

1 气缸体总成的装配 1.1气缸孔直径公差在装配时气缸孔直径不进行分组装配。正常生产情况下,气缸孔直径公差为 0.01mm,公差范围为±0.005。 1.2 主轴承孔的测量在安装前应用干净的无纺布或绸布将缸体和框架上的主轴承孔擦干净,测量并记录主轴承孔直径,用于选配主轴瓦,测量点见图1所示。 图1 主轴承孔测量点 1.3 碗形塞的安装 装碗型塞:将缸体装在装配支架上,用压装工具将缸体进气侧的两个碗型塞、缸体排气侧的三个碗型塞、后端面的一个碗型塞装在缸体上相应孔内,装碗型塞之前需要在碗型塞的结合面涂一层“乐泰648胶”,用压装工具(或机床)将碗型塞压装到位,如下页图所示(碗型塞压入后应低于平面 2±0.5mm )。 碗形塞装配后,气缸体总成应进行压力试验: 1) 气缸体总成水套,在2bar的气压下,保持10 秒种,其泄漏量为<10cm3/min 2) 气缸体总成油道,在4bar的气压下,保持10 秒种,其泄漏量为<10cm3/min 3) 气缸体总成回油孔,在2bar 的气压下,保持10 秒种,其泄漏量为<30cm3/min 气缸体总成应彻底清洗,除去所有外来杂质及毛刺,全部油道和油孔要打通并清洗干净,在装配其它零部件前应吹干。 左 右

1.4 丝堵的安装 见图3所示,将油道丝堵(M18×1.5)分别装在缸体前后端面的主油道孔内,拧紧力矩为 20+5Nm ,丝堵(M10×1)装在排气侧,拧紧力矩为 20±3Nm ,装配前均需涂“乐泰243胶 ” 。 ①碗形塞 ②螺堵 ③定位销 ④丝堵 图3碗形塞、丝堵、定位销的安装 2 连杆总成的装配和安装 2.1 活塞 在装配时,活塞销孔和活塞销无须分组装配。 2.2 活塞销 在销及销孔分别涂上一层机油,先将一只卡环 装在活塞销孔卡簧槽内,将活塞销通过连杆小头孔 装到活塞销孔内,装上另一只卡环。注意,活塞销 上有字的一面朝向缸体前端面,连杆上有标记的一 面朝向前端面装配。装配后检查活塞销转动的自如 情况。 2.3 连杆总成的装配 图4活塞分解图 连杆螺栓在装配前应用发动机润滑油润滑螺纹,先用手拧上连杆螺栓,然后拧紧到力矩

三维网格分割的经典方法

三维网格分割的经典方法 摘要:本文针对三维网格分割问题,提出一个经典的方法。该方法基于微分几何和测地距离。在算法中,将面片类型相同的顶点分割在一起。测地距离利用顶点之间的最短路径表示,这里可以利用一些经典的算法求最短路径,如Dijkstra 算法。但是当网格的数量很多时,Dijkstra 算法的效率很低。因此,此算法避免了在整个网格上应用最短路径算法,在局部网格中求最短路径,从而减少了计算量。 本文在人造物体的三维网格模型以及分子结构中验证了该方法的有效性。 关键字:几何算法 面片分割 测地距离 简介 3D 物体的三维网格表示法具有很多的应用。例如,在图像分析中,表示利用深度图像重建的物体表面。此外,在复杂物体和场景的建模和可视化中也有广泛的应用。在网格面片的分析中,网格分割已经成为一个关注的问题。网格分割也就是将网格上相互接近并且具有相似曲率的顶点分成一组。网格分割在很多方面具有重要的应用。特征提取,模型匹配等。 Mangan 和Whitaker 提出三维网格分割的分水岭算法。Razdan 和Bae 扩展了此算法,将基于点元(voxel-based )和分水岭算法相结合,来分割三角网格。这两种方法在分割中都需要计算整个曲率,然后在局部曲率最小处建立初始分割。然而,在某些物体中,局部曲率的最小值是很难确定的。因此,在这里提出一个初始分割的新方法。 在该算法中,应用基于面片的类型信息的网格区域增长方法,对顶点进行初始分割。利用高斯曲率和平均曲率对顶点所在的面片进行分类。这里利用离散微分几何计算高斯曲率和平均曲率。通过本文提出的新方法来求得测地距离。 文章结构:第二部分,介绍网格面片的曲率分析和面片分类。第三部分,详述本文的分割算法。第四部分,实验以及其分割结果。第五部分,结论。 2 面片分析 在面片分析中,首先计算高斯曲率和平均曲率,然后利用它们进行面片分类。顶点P 0的高斯曲率K 的计算公式如下: , A K θ ρ?= ,∑-=?i i 2θπθ ∑=i i A A , A 为相邻三角形T i ( i =1,2,3,…)的面积总和。ρ为常量3。如图1所示。

活塞环安装方法

活塞环安装方法 汽车(发动机)大修 活塞环是一种具有较大向外扩张变形的金属弹性环,它被装配到剖面与其相应的环形槽内。往复和旋转运动的活塞环,依靠气体或液体的压力差,在环外圆面和气缸以及环和环槽的一个侧面之间形成密封和断面形式的开口环,分为气环和油环两种。其中气环的作用是密封活塞与气缸间的间隙,防止漏气。油环的作用是刮下气缸壁上多余的机油,避免进入燃烧室燃烧,同时还能使气缸壁上的机油分布均匀,改善气缸壁面润滑条件。 活塞环安装之前请看如何正确选择活塞环 活塞环可分为标准环和修理环两种。修理环通常有6级修理尺寸(+0.25~+1.5mm),每一级加大+0.25mm。有些厂家也生产特殊尺寸的修理环,以适应修理的需要。 在选择活塞时,应注意以下几点: ①应符合原机型号。活塞的气环按其断面形状可分为五种,即矩形 环、扭曲环、桶形环、锥面环和梯形环。油环可分普通环和组合油环两种。由于气环断面形状不同,其特点效果也不一样。有些机型,原厂设计已搭配妥当,不可随意拆散搭配使用,以免造成不良后果。②要与活塞尺寸相符。正常使用条件下,当发动机出现机油耗量明 显增多,油底壳通气孔排气增加,机油上窜,排气管冒蓝烟等现象时,就是活塞环磨损的征兆。若原机活塞为标准尺寸,第一次更换活塞环也应使用标准活塞环。旧活塞、缸套磨损后,允许采用大一级的活塞

环,即加大+0.25mm。 在安装活塞环之前需要检查活塞环的一些参数和与发动机的装配情况 活塞环的检查 (1)检查活塞环侧隙。 活塞环侧隙是指活塞环与环槽的间隙,用厚薄规检查活塞环侧隙,如图1-87所示。新活塞环侧隙应为0.02~0.05mm,磨损极限值为0.15mm。 侧隙也称活塞环边间隙,即活塞环在活塞环槽内的上下间隙。检查时,将活塞环放入对应的活塞环槽内滚动,用厚薄规片插入环与槽间,沿圆周测量一圈,感觉抽动厚薄规不太费劲、又觉得有些发涩既为实测间隙。通常新环配旧活塞使用,边间隙不必修磨;新环配新活塞大都边间隙过小。间隙过小,可用平面磨床或用人工在平板上用细砂布修磨。 修磨中应注意以下几点: 一是气环只能磨削环的下侧面。 二是人工施磨时,要求对全环的压力平均一致,特别是切口处的压力。三是施磨过程中,要边磨、边试配,以免磨多造成废品。 四是磨削后的活塞环要求达到宽度一致,特别是开口处,并沿圆周测量间隙一致。 五是旧活塞配新活塞环时,有时会遇到活塞环入槽不到底,须清理环

第五章 三维实体网格划分

第五章三维实体网格划分 本章讲述三维实体网格划分。包括三部分内容: ●生成四面体网格零件:对实体指定线性或者2次四面体网格。 ●四面体网格填充器:通过从曲面网格生成四面体网格来对实体划分网格。 ●扫描实体网格:通过从曲面网格生成六面体或者楔形网格对实体划分网格。 5.1 生成3D零件网格 本节说明如何使用四面体网格划分方法生成3D网格。在【Generative Structural Analysis】(通用结构分析)工作台和【Advanced Meshing Tools】(高级网格划分工具)工作台都有本命令。根据用户安装的产品不同,显示的选项是不同的: ●【Generative Structural Analysis】(通用结构分析)或者【FEM Surface】(曲面网格划分) 系列产品。 ●【FEM Solid】(有限元实体划分)系列产品。 5.1.1 【Generative Structural Analysis】(通用结构分析)或者【FEM Surface】(曲面网格划 分)系列产品 在通常的用户中,一般安装的是第一种情形。在这种设置下,无论是在通用结构分析工作台还是高级划分工具工作台,定义3D网格的零件时,弹出的对话框只有两个选项卡。(1)点击【Meshing Methods】(网格划分方法)工具栏内的【Octree Tetrahedron Mesher】 (四面体网格划分器)按钮,如图5-1所示。如果用户在【Generative Structural Analysis】(通用结构分析)工作台,则需要点击【Model Manager】工具栏内的【Octree Tetrahedron Mesher】(四面体网格划分器)按钮,如图5-2所示。 图5-1【Octree Tetrahedron Mesher】(四面体网格划分器)按钮图5-2 (2)在图形区选择要划分网格的实体零件。选择后弹出【OCTREE Tetrahedron Mesh】(四面体网格划分器)对话框,如图5-3所示。 注意!只能选择属于【PartBody】下的元素。 ●【Global】选项卡:可以修改网格全局参数。 ●【Local】选项卡:创建局部网格参数。 (3)在对话框的选项内输入相应的数值。在本例中,在【Size】 (尺寸)数值栏内输入20mm。(4)点击对话框内的【确定】按钮,生成新的网格零件,并且在模型树上显示出新的网格零件名称,如图5-4所示。

004071三维模型分割(下)

展望 三维模型分割(下) 关键词:三维模型分割 三维网格模型分割应用 三维检索中的网格模型分割算法 随着万维网的发展,在三维VRML1数据库中寻找一个与给定物体形状相似的模型的应用需求正变得越来越广泛,比如:计算生物学、CAD、电子商务等等。形状描述子和基于特征的表示是实体造型领域中基本的研究问题,它们使对物体的识别和处理变得容易。因为形状相似的模型有着相似的分割,所以基于分割的形状描述子可以用于形状匹配。 2002年毕斯乔夫[37]提出从三维模型分割得到的椭球集合中得到的某种统计信息(比如椭球半径的平均方差或者标准方差,以及它们的比率)。由于这些信息在不同的形状修改中都保持不变,因此可以作为一种检索特征。但是这个想法没有得到严格的理论或者实验证明。 2002年,扎克伯吉[65]在一个拥有388个VRML三维网格模型的数据库上进行检索。首先他们将三维网格模型分割为数目不多的有意义的分割片。然后评价每一个分割片形状,确定它们之间的关系。为每个分割片建立属性图,看作是与原模型关联的索引。当在数据库中检索与给定网格模型相似的物体时,只是去比较属性图相似的程度。 该方法检索结果的精确性较差;分割片属性图比较采用图同构的匹配,计算量较大,且是一个很困难的问题;从实验结果看,分割效果显然还不够有意义,出现飞机、灯座等模型被检索为与猫相似的结果;区分坐、立等姿态不同的人体模型效果显然也很差(如图19)。 2003年戴伊[9]基于网格模型的拓扑信息,给出名为“动力学系统”的形状特征描述方法,并模拟连续形状给出了离散网格模型形状特征的定义。实验表明,该算法十分有效地分割二维及三维形状特征。 目前,基于几何以及拓扑信息的中轴线或骨架等形状描述子也得到了广泛的研究,如基于水平集[55]、拓扑持续性[69]、Shock图[15]、Reeb 图[54]和中轴线[56]等方法。这些形状描述可以从 孙晓鹏 中国科学院计算技术研究所 认知心理学、心理物理学认为:人类对形状的识别过程部分地基于分割,复杂形状往往被看作是若干简单元素的组合。同时,在视觉识别过程中,显著形状特征以很高的 优势屏蔽了其它不显著特征。为了获取形状的显著特征,首先必须进行分割。 1 Virtual Reality Modeling Language,虚拟现实建模语言,一种在WWW中描述虚拟现实(VR)的工 具,用来描述三维物体及其行为。其基本目标是建立互联网上的交互式三维多媒体,具有三维性、交互性、动态性、实时性等特征,能够在互联网或局域网上快速传递。该语言于1998年1月被正式批准为国际标准(ISO/IEC14772-1:1997),是第一个用HTML发布的国际标准。 (接上期)

活塞、活塞环标记分析、活塞环的安装

项目名称:活塞、活塞环标记分析、活塞环的安装成绩: 班级:姓名:学号: 设备:活塞环拆装钳毛刷汽油材料:活塞、活塞环 步骤:1 资料查阅:汽车维修手册,汽车构造 2 活塞标记分析 (1)识别:活塞顶上有无无缺口、圆点、字母等痕迹或在活塞小轴座附近或在活塞底裙边上。在连杆看连杆的瓦盖和连杆上有无突或凹陷下去的小坑或字母等 如下图所示: (2)安装:因为受力点和摩擦系数的不同,在铸造和喷涂时所使用的材料也不一样所以这些标记在装配时一律朝向机体的前方 3 活塞的安装 (1) 用螺丝刀将新卡环安装在活塞销孔的一段

(2) 逐渐加热活塞至80-90℃ (3)对准活塞和连杆上的朝前标记并用拇指推入活塞 (4)使用螺丝刀在活塞销孔的另一端安装一个新卡环 如下图所示: 4活塞环标记分析 (1)识别:活塞环标记 GB/T 1149.1—94规定:所有要求有安装方向的活塞环应在上侧面,即接近燃烧室的侧面加以标志。在上侧面标志的环包括:锥面环、内倒角、外切台环、鼻形环、楔形环和要求安装方向的油环,环的上侧面均有标记。 (2)装配:标记的一面应朝上(要按标记说明来装配)。 如果没有标记,应从环的断面形状来掌握:若活塞环的断面带有“内切口”的为第一道环,安装时“切口面”朝上。活塞环的断面带有“外切口”的为第二道、第三道环,安装时“切口面”应朝下。装反会导致发动机烧机油。 5 活塞环的安装

(1)清洗干净零部件(活塞、活塞环) (2) 用专业工具把活塞环装入环槽中: 把组合油环装入油槽中,第二道气环记号朝上装入第二道环槽,第一道气环朝上装入第一道环槽,或内倒角朝上,外倒角朝下安装。 (3)把环口摆动到正确位置 第一道气环口朝向活塞侧压力较小一边,与活塞销成45度,第二道环口与第一道环口相隔180度,油环的保持架接口与活塞销成90度,第一道油环开口于第二道气环开口相隔90度,第二道油环开口与第一道油环开口相隔180度。 6 分析总结 在安装活塞、活塞环是应特别注意其标记,装有新环的发动机应选用粘度适当的机油,加注要适量,油路不畅是造成活塞断裂的重要原因。安装活塞环时要把环口摆动到正确位置。

基于三维网格模型的网格排布优化技术综述

科学与财富 0引言 近年来,随着计算机图形软硬件技术的提高及人们对绘制效果的要求越来越高,计算机图形学研究和应用呈现出场景对象越加复杂,对绘制真实感的要求越来越高,显示分辨率不断递增,模型趋于复杂化,数据精度要求较高等问题。基于此提出了提高绘制性能的主要途径:GPU加速技术,并行绘制技术,可见性剔除技术,网格简化技术,多分辨率绘制技术,存储访问优化技术,基于图像的绘制技术,图像和网格压缩技术,基于预计算的绘制技术等。 对于计算机硬件性能的不断提高,存储访问带宽与计算能力的差距越来越大,因此缓存访问效率成为影响应用程序运行效率的关键因素。而要改善缓存的性能有以下几种方法:①降低缓存访问失配率;②降低失配损失;③通过并行技术降低失配率或是失配损失;④减少命中缓存的时间。降低缓存访问失配率,可以从提高缓存硬件性能与编译优化等方面来解决,其原理是:通过调整指令顺序和数据的使用顺序,增强代码和数据使用的时间局部性和空间局部性特征,从而提高缓存命中率。体系结构方面,通过缓存硬件性能来提高缓存访问效率。应用程序方面,采用编译优化不需要修改或者增加硬件,可分为计算重排和数据重排。 计算重排,根据重新排列指令顺序,提高访问相同数据单元指令的局部性,通常由编译器对应用程序编译后的指令序列进行重排来完成,对于指令,重新组织程序而不影响程序的正确性。数据重排,根据指令对数据单元的访问方式求解出缓存连贯的数据排布,由应用程序直接对数据进行重排来完成,通过优化改善了数据的空间局部性和时间局部性[1]。目前网格排布优化技术是计算机图形学与可视化领域的重点研究方向之一,该技术基于数据重排,通过对网格图元的存储顺序进行重新排序,能够减少平均缓存访问失配率,提高大型三维网格模型和大规模虚拟场景的处理和绘制性能。 2网格排布优化技术 顶点缓存的访问性能通常用平均缓存失配率(ACMR)来衡量,定义为绘制每个三角形的平均缓存失配次数,即缓存的总失配次数与总访问次数之比,ACMR的取值范围为[0.5,3.0],因为每个顶点至少失配一次,至多失配三次。需要注意的是,ACMR无法达到最小值,主要是因为顶点缓存区容量的限制。若顶点缓存区可以装下所有顶点,则以任何方式组织的三角形都可以使ACMR接近于0.5。但是缓存容量很小,很难装下所有的顶点,并且网格的形状也会导致ACMR额外的开销。 2.2.1网格排布优化方法的分类 网格排布优化技术是图排布理论的应用与引伸,根据不同的划分方式可以将网格排布优化技术分成不同的类。根据求解技术手段的不同,网格排布优化技术可分为基于优化策略、基于空间填充曲线和基于谱序列三类[1],现代的GPU使用一个小的缓冲区来存储最近需要访问的顶点,为了最大化的利用好顶点缓存用于快速渲染的优点,对三角形进行重排序是必要的,基于优化策略即使用了这一优点。基于空间填充曲线是对二维或者三维规则网格单元的一种具有较好空间局部性的特殊线性遍历方法,是在某种程度上保留局部相关性的多维网格单元遍历。基于谱序列方法是通过特定的线性算子推导出相关的特征性、特征向量以及特征空间投影,并利用这些特征量和组合求解出问题。因为谱序列是求解图排布问题的一个有效引导策略,所以也可以应用到网格排布技术中。 根据网格描述方式的不同,可分为基于三角形、基于三角形条带、基于三角形扇[3],或者简单分为基于条带和基于非条带两种方式,每种描述方式又可分为索引形式和三角形汤形式。三角形扇和三角形条带类似,但是不如三角形条带灵活,所以很少使用。索引形式只需少量数据,传输代价小,使之成为目前使用最为普遍的方式,但顶点随机读取也带来了ACMR的增加。因此许多研究者提出对网格图元的存储顺序进行重新排布,可以减小 ACMR,降低顶点处理的运算量,提高渲染速度。 2.2.2三角形排布优化算法的介绍 为提高网格模型的处理和绘制性能,现代图形卡使用顶点缓冲器来提高顶点缓存命中率,使模型在绘制过程中减少发送的顶点数据。有效利用顶点缓冲器,在已有的图形绘制流水线基础上,通过重新排列网格模型图元的线性序列,增加缓存中顶点的命中率。下面对国内外几种常见的相关算法做一个简要的介绍。 Hoppe(Hoppe.1999)提出了一种贪心条带算法生成三角形序列[4],该算法是基于优化策略和三角形条带的研究,核心思想是沿着逆时针方向生成条带,进行三角形条带合并,在合并的过程中不断检测预期的ACMR。此算法针对一个预先指定的缓存大小,比如16,对算法进行优化求解,使用FI-FO策略对三角形进行重排,采用了三角形条带索引模式。Hoppe算法可以得到很低的平均缓存失配率,其运算时间复杂度高于O(m),该算法也存在一些待解决的问题,在网格的顶点索引中很难确定三角形的拓扑方向,对可能合并入条带的三角形进行ACMR的预估会增加算法的复杂度。Bogomjakov等人(2002)提出的面向具有任意大小的FIFO缓存的通用序列构造算法(称为BoG算法)[5],是一种最具代表性的空间填充曲线。该算法把Hilbert空间填充曲线和MLA空间填充曲线的应用推广到不规则三角网格,使用图划分软件包Metis将网格分成多个三角形簇,保证每个簇内三角形序列的ACMR最优,从而形成整个网格的ACMR最优化。该算法在相同缓存参数前提下,AMCR指比Hoppe算法增大20%左右,分割的切割边上的失配率对整体失配率有影响。 Lin等人(Lin and Thomas.2006)算法则是基于贪心优化策略的3D渲染多边形网格序列生成算法[6],该算法适用于非条带三角形的排布优化,可以应用于渐进网格,应用启发式条件对网格顶点进行全局搜索,同样可以得到很低的平均缓存失配率,其运算时间复杂度也高于O(m)。核心思想是赋予每个顶点一个缓存访问代价度量,选择代价度量最小的顶点作为当前输出顶点,找到与该顶点邻接的所有未输出三角形,按顺时针方向访问并逐一将这些三角形的顶点压入缓存中,最后以三角形环为单位逐一输出三角形,并在整个网格中对下一个需要输出的三角形环进行全局最优性搜索。Nehab等人(Nehab et al.2006)提出了一种多功能三角形序列重排算法[7],该算法不仅能减少顶点缓存的平均缓存失配率,而且能减少图元的重绘率(通过深度测试的片元总数与最终可见的像素总数之比),作者首先提出通过局部优化减少顶点处理时间,同时通过三角形序列重排减少像素处理时间是自相矛盾的,原因是基于视点的深度排序会毁掉顶点缓存性能,且局部优化会导致当前视点下的高度透支。基于此提出了基于优化策略的多功能三角形序列重排算法,实现两者之间的融合。 Sander等人(Sander et al.2009)对Lin等人算法进行了改进,使三角形排布适用于动态模型[8]。其核心思想是以顶点在缓存中的位置作为代价度量,选出代价度量最小的顶点作为当前顶点,即以三角形环作为计算单位,然后输出与该顶点邻接的所有未输出三角形(随机访问),与Lin等人算法 基于三维网格模型的网格排布优化技术综述 娄自婷 (云南师范大学信息学院,云南昆明650500) 摘要:网格排布优化技术通过对网格图元的存储顺序进行重新排序,能够减少平均缓存访问失配率,提高大型三维网格模型和大规模虚拟场景的处理和绘制性能。文中综述了网格排布优化技术的研究进展,分析比较了基于优化策略、基于空间填充曲线和基于谱序列的网格排布优化方法。 关键词:三维网格模型,网格排布优化;ACMR A Survey of mesh layout optimization for3D mesh models LOU Ziting (College of computer science and information technology,Yunnan Normal University,Kunming City Yunnan Province650500,China) Abstract:The mesh layout technology through storage order of the mesh primitive reorder,can reduce the average cache miss rate and improve the process-ing and rendering performance of large3D mesh models and large-scale virtual scene.This paper gives an introduction to advances in technology mesh layout optimization.We analyze and compare the mesh layout optimization method based optimization strategy,space-filling curve and spectral sequences. Keywords:3D mesh models,Mesh layout optimization;ACMR 科学论坛 536

柴油机活塞环断环原因分析及管理

柴油机活塞环断环原因分析及管理 [摘要] 在大型船舶柴油机燃烧室诸多构件中,活塞环是主要的组成零件之一。由于其复杂的运动状态和恶劣的工作环境,活塞环又是柴油机的易损件之一。活塞环的工况直接影响主机工作过程的好坏,同时也影响主机的安全运行和使用寿命。活塞环作为柴油机的主要受热零件之一,长期工作在恶劣的环境下,承受很高的热负荷,活塞环恶劣的工作环境导致活塞环容易发生故障极大地危害柴油机整机的可靠性和耐久性。因此,活塞环在运行中的管理和维护对保证柴油机安全,可靠和经济运行显得非常重要。针对船用柴油机常见的活塞环折断故障,本文以“南海502”轮上LB6250ZLC-6型主机为例,分析出造成该故障出现的主要原因——环槽积碳、气缸套磨台、环槽过度磨损、活塞环挂住气口和活塞环径向胀缩疲劳,并在此基础上提出相应的预防措施和对策,并对活塞环的日常管理和维护提出了切实可行的管理建议。 [关键词] 活塞环;折断;分析;管理

The Reason Analysis and Countermeasure of Piston Ring Breaking of Diesel Engine [Abstract]Piston rings are the main composites parts in the combustion chamber of the Marine Diesel Engine. For its badly working condition and the piston rings can be easily damaged. The working condition of piston ring has much influence on the working quality of diesel engine such as efficiency, mobility and reality. And so how to keep the piston ring working in good condition is becoming one of main tasks for the engineers. Harsh environment can cause the piston ring fault. So, Good management and maintenance for piston rings are very important for safety running of the Diesel Engine .Aim at usual fault of piston ring breaking of marine diesel engine, As an example in LB6250ZLC-6 M.E. on board of “South China Sea502”, this paper analyzes the fault of broken piston ring and gives the causes including cumulated carbon in the ring-slot, abrasion of cylinder jacket over-abrasion of slot, air-vent of piston ring and expanding-shrinking fatigue at radial direction. And on this basis, present corresponding precautionary measures and countermeasure and give practical management advice to daily management and maintenance for piston ring. [Key words] Piston ring; Breaking; Analysis; Management

汽车发动机在汽车上拆装和安装的工艺过程讲解

汽车发动机在汽车上拆装和安装的工艺过程 在我们拆装发动机之前,让我们先来认识一下汽车的总体构造及发动机的总体构造,汽车的总体构造有四部分组成即:发动机、底盘、车身和电气设备。拆装发动机的工作任务有以下几点,认识汽车的总体构造、就车拆卸发动机、分解发动机、总装发动机。 发动机是汽车的动力之源,是汽车的心脏,汽油机由两大机构和五大系统组成,即曲柄连杆机构、配气机构、燃料供给系、润滑系、冷却系、点火系和起动系;柴油机由以上两大机构和四大系统组成没有点火系。 一般情况下只有发动机到了大修期进行总成更换修理时,或因意外交通事故而必须更换发动机时才需要从汽车上拆卸发动机。因为使用合理、保养恰当的桑塔纳轿车,行驶里程达15万km以上不必大修发动机的事亦十分平常。 从汽车上拆卸发动机总成,一般原则是先解除发动机各总成及附配件与汽车上其它系统的电路、气路及油路的联系,并且常与变速器总成同时拆卸下来 拆卸的方向是从汽车发动机罩盖位置向上,其起吊的专用吊具代号为VAG1202,应当指出,具体拆卸顺序可以各不相同,但总是先拆最外围的、拆下电喷发动机控制单元ECU与各传感器及执行元件的连接拆下空气滤清器。从蓄电池上拆下接

地线。将暖风开关拨到“暖气”位置,打开散热气盖。冷却液泵有三个进口,自散热器出液口来的称大循环进口;自暖风出液口来进入冷却液泵的第二进口;小循环时的冷却液泵进口。我们从冷却液泵的大循环进口处拆开,放出防冻冷却液,并用容器收集好,以备今后使用。从气缸盖冷却液出液口处(往散热器去的一路)拔掉冷却液软管,并保管好夹箍,拆下热敏开关(在三通接头处)和电扇上的连接电线。松开并拆下散热器顶部左、右角上的固定支架,将散热器连同冷却风扇和护风罩一起整体取出,并妥善保管好。拆卸交流发电机的接线,使其完全脱线。拆下化油器的进油管、出油管及回油管(仅适用于采用化油器式汽油机的桑塔纳2000型轿车)。从燃油油压调节器上拆下真空管、回油管。拆下燃油滤清 器到喷嘴前的近有管汽车发动机的拆卸原则 1、在拆装顺序上本着"先装的后拆,后装的先拆,能同时拆就同时拆"的原则。 2、在拆卸范围上本着"能不拆的就不拆尽量避免大拆大卸"的原则。 3、在拆卸目的上本着"拆是为了装"的原则。因此拆卸零件是要特别留意观察记录零件的安装方向装配记号耗损状况并做好零件的分类存放。二、汽车发动机的拆卸顺序 1、拆下排气管罩及排气管。 2、拆下正时带罩。 3、用活口扳手扳住张紧装置拆卸发电机及发电机皮带。 4、拆卸供油总管火花塞高压线及进气管。 5、拆卸正时带张紧轮正时带以及曲轴皮带轮。 6、拆卸气缸盖罩凸轮轴并观察5个凸轮轴盖的记号、顺序安顺序摆放好。 7、按照从四周向中央交叉对称分3次拧松的的原则拆卸气缸盖螺栓取下气缸盖、取下气缸垫注意气缸垫的安装朝向。 9、翻转发动机拆卸油底壳固定螺钉注意螺钉也应从两端向中间旋松。 10、拆下油底壳和油底壳密封垫。 11、旋松机油粗滤清器固定螺钉拆卸机油滤清器、机油泵链轮和机油泵。 12、拆卸发动机活塞连杆组转动曲轴使发动机1、4缸活塞处于下止点。 13、分别拆卸1、4缸的连杆的紧固螺母取下连杆轴承盖注意连杆配对记号并按顺序放好。 14、用橡胶锤或锤子木柄分别推出1、4缸的活塞连杆组件用手在气缸出口接住并取出活塞连杆组件注意活塞安装方向。 15、将连杆轴承盖连杆螺栓螺母按原位置装回不同缸的连杆不能互相调换。用同样方法拆卸2、3缸的活塞连杆组。 16、因为发动机安装在发动机翻转架上发动机的曲轴飞轮组不便于拆卸所以在拆卸发动机曲轴

大型低速柴油机活塞环常见故障分析及处理解读

分类号编号 烟台大学 毕业设计 大型低速柴油机活塞环常见故障分析及处理Fault analysis and processing of large low-speed diesel engine piston rings 院系:海洋学院 专业:轮机工程技术 姓名:朱武刚 学号:201060602147 指导老师:王鑫 2013年5月26日 烟台大学海洋学院

大型低速柴油机活塞环常见故障分析及处理 姓名:朱武刚 导师:王鑫 2013年5月26日

烟台大学毕业论文任务书 院(系):海洋学院 姓名朱武刚学号201060602147 毕业届别2013 专业轮机工程毕业论文题目大型低速柴油机活塞环常见故障分析及处理 指导教师王鑫学历本科职称工程师所学专业船舶电气 主要内容: 分析柴油机活塞环常见的故障,对其故障机理和原因进行分析,论述常见故障的诊断和检测方法,提出各种故障的维修方法。 基本要求: ⑴格式符合规范要求,文字材料通顺、清楚; ⑵论文结构要严谨、层次清晰,选用数据准确、论据充分,分析归纳合理,结论正 确。 进度安排: 2013.2.25~3.1 开题、搜集资料 2013.3.4~3.18 完成论文大纲 2013.3.19~5.20 撰写毕业论文初稿。 2013.5.20~6.8 论文修改定稿、打印并准备答辩。 指导教师签字: 2013年02月25日 院(系)意见: 教学院长(主任)签字: 年月日 附注:

大型船用柴油机活塞环故障分析及处理 【摘要】:活塞环是柴油机中重要的零部件之一,活塞环的工作情况对燃油燃烧完善程度和工作状态起着至关重要的作用,活塞环在气缸套中受到高温高压燃气的作用和冲刷产生很大的机械应力与热应力;在恶劣的工作条件和低的运动速度下难于形成理想的液体动压润滑,管理不当会出现故障的可能性,一旦出现故障就有可能破坏主机的正常工作性能,严重时还会致使活塞,气缸,增压器等相关件损坏,其危害是相当严重的,因此,正确认识活塞环断裂产生的机理,并采取积极的预防措施,对于船舶的安全营运和提高机械设备的使用效益有十分重要的意义。随着现代柴油机监控技术的发展,如油液分析技术、磨损监控技术、缸套油膜监控技术等已经在新型现代化船舶上得到应用,这为轮机员分析判断活塞环及气缸内的工作状态提供了有利的依据。所以对活塞环运行管理和维护,提高活塞环运行寿命,对保证柴油机的安全、可靠和经济运行尤为重要。本文探讨了活塞环出现故障的原因和影响的因素,并针对该故障的诱发原因对柴油机的日常维护管理提出了建议。 关键词:活塞环;故障;处理方案;意义

汽车发动机--活塞环安装方法

一些发动机维修后,使用300~500h左右,就出现烧、排机油的现象。我们通过多年的摸索改进,取得了较好的效果。 一、发动机烧、排机油的主要原因 1、缸套、活塞环早期磨损,使缸套与活塞的配合间隙以及活塞环的开口间隙增大,密封效果差。 2、活塞环质量差。当前市场投入的活塞环大部分制成矩形环,这种环刮油性能差,是造成发动机窜油的重要因素之一。

3、活塞环口临近或开口重叠,特别是油环重叠对口致使机油上窜,外溢。 4、机手不重视空气滤清器的保养。我们做过试验,当进入气缸内的空气含尘量m时,工作25~100h后,气缸的磨损增加~。由此可见,空气滤清器的好坏,是气缸、活塞环磨损的原因之一。我们除了改造空气滤清器以及加强平时保养外,重点对活塞环的结构、装配方法进行了研究和试验。 二、活塞环结构的改进 将第二、三道气环及油环进行了加工,方法是:用半圆锉,沿第二、三道活塞内圆一端,均匀锉削成1mm×45度倒角,使其成为内倒角的扭曲环,并在铸铁油环较薄的外圆上锉成×45度倒角,装配时气环内倒角和油环外倒角向上。这两种扭曲环在工作中,都可呈碟状扭曲,使环的下边角张力大于上边角,具有向上刮油的功能。 三、装配方法的改进 在实际装配中,我们没有按照三道气环开口呈120度均匀分配,油环与衬环的开口也未按180度安装,而是将三道气环开口呈180度安装。即相邻的活塞环开口必须相隔180度安装,这样安装的活塞环汽车维修资料免费提供qq3空间日志每天实时更新大量免费汽车维修资料、实用汽车维修案例开口要比呈120度安装的活塞环开口有效地避免开口重叠。在有三道气环的结构中,活塞环的开口呈180度安装时,第一道气环和第三道气环的开口处在一条直线上,但由于第二道气环的密封作用,不会使从第一道气环开口进入的气流直进入到第三道气环开口处。这就是三道气环的开口呈180度安装的优点。但工开口位置必须与活塞销垂直。同理,在油环安装时,也应遵循这一道理,可有效地避免缸壁上机油上窜,从而避免发动机烧、排机油。根据这一道理,对多台车进行试验,效果很好,发动机连续工作2000多小时,没出现烧排机油现象。

船舶柴油机活塞环故障分析Microsoft Word 文档 (3)DOC

目录 1. 活塞环的工作条件----------------------------------------------2 2. 活塞环的主要故障----------------------------------------------3 3. 影晌活塞环工作的主要因素--------------------------------------4 3.1活塞环硬度和缸套硬度匹配------------------------------------5 3.2活塞环搭口间隙----------------------------------------------6 3.3活塞环和缸套的几何配合状况----------------------------------7 3.4活塞环槽----------------------------------------------------8 3.5燃油品质和气杠油量------------------------------------------9 3.6日常维护修理------------------------------------------------10 结束语------------------------------------------------------------11 参考文献----------------------------------------------------------12

内容摘要 活塞环是柴油机燃烧室的组成零件之一。具有保持活塞与气缸套之间有效密封的作用和将活塞热量传递给汽缸壁的散热作用,以及调节气缸润滑油的作用。活塞环又是柴油机的易损零件。主要损坏形式有:过度磨损、折断、粘着、和弹力丧失等。此文通过对活塞环故障实例的分析,阐述了产生故阵的主要原因和主要影响因素,对日常运行管理提出了切实可行的建议,还对新型活塞环磨损监控系统作了简单介绍。 关健词活塞环搭口间隙故障维护管理影响监控 前言 活塞环的主要作用是密封燃烧室,保证活塞到达上止点时,燃烧室内的新鲜空气有足够的温度和压力,满足燃油自燃的温度,并使燃烧迅速、及时和完善;切实保证气缸内高压燃气膨胀作功而不泄漏,对燃油燃烧和柴油机的工作状态起着至关重要的作用。众所周知,活塞环的密封作用,是靠活塞环本身的弹性,和在气缸内气体压力的作用下紧贴于气缸壁和活塞环槽平面来实现的。但是,活塞环和气缸套这对摩擦副工作条件非常恶劣,摩擦损失占到整个柴油机摩擦损失功率的55%---65%。活塞环运行中的管理和维护,对保证柴油机的安全可靠和经济运行显得尤为重要。

相关主题
文本预览
相关文档 最新文档