当前位置:文档之家› 金融中的概率与随机过程导论(英文版——Fabio Trojani)

金融中的概率与随机过程导论(英文版——Fabio Trojani)

金融中的概率与随机过程导论(英文版——Fabio Trojani)
金融中的概率与随机过程导论(英文版——Fabio Trojani)

2012北京邮电大学概率论与随机过程试题

北邮人: 一、填空题 1. 设事件,A B 满足()0.7,()0.3P A P AB ==, 则()P AB = 2. 袋中有10个球,其中1个红球,10个人不放回地依次抽取,每次抽取一个,问最后一个人取到红球的概率是 3. 设平面区域D 由1,0,x y y x ===围成,平面区域1D 由21,0,x y y x ===围成。现向D 内依次随机地投掷质点,问第3次投掷的质点首次落在1D 内的概率是 4. 设随机变量(1,2),(2,4)X N Y N 且相互独立,求23X Y +-的概率密度函数()f x = 5. 设平稳过程{(),0}X t t ≤≤+∞的功率谱密度为28()+14X S ωω= +,则其自相关函数为 6.设一灯管的使用寿命X 服从均值为1/λ的指数分布,现已知该灯管用了10小时还没有坏,该灯管恰好还能再用10小时的概率为 7.设电话总机在(0,]t 内接受到电话呼叫次数()N t 是强度(每分钟)为0λ>的泊松过程,(0)0N =, 则2分钟收到3次呼叫的概率 8.设随机过程(),0X t tY t =≥,其中Y 服从正态分布,即(1,4)Y N ,求103()E tX t dt ??= ??? ? 二、设二维随机变量(X,Y)具有概率密度 , 0(,)0, 其他 y e x y f x y -?<<=??

(1) 求边缘概率密度(),()X Y f x f y ,(2) 求条件概率密度|(|)Y X f y x , |(|)X Y f x y ,(3)求条件概率(1|1),{1}P Y X P X Y ≤≤+<. 三、在某交通路口设置了一个车辆计数器,记录南行北行的车辆总数。设X(t)和Y(t)分别表示在[0,t]内南行和北行的车辆数,它们是强度分别为1λ和2λ的possion 过程,且相互独立。如果在t(>0)时记录的车辆总 数为n ,求其中南行车辆有k(0

概率论与随机过程题集

第二章 概率论与随机过程 2 2-16 图P2-16中的电路输入为随机过程 X(t),且E[X(t)]=O, xx ()= (),即X(t)为白噪 过程。 (a )试求谱密度 yy ( f )。 2 (b )试求 yy ( )和 E[Y (t)]。 ----kW 1 R X(t) 图 P2-16 2 (b) E [y (t)]= yy (0) 解:由功率密度谱的定义知 C 二 Y(t) xx xx ( )e j2f d ()e j2f d 又系统函数 H(f)=^ X(f) 1 j2 fc 1 j 2 fc 1 __ j2 fc yy (f) xx (f)H(f)2 (2 fcR)2 yy () yy (f)e j2 df 2 1 R 2f^e j2f df 莎汀 2 ?- E [y (t)]= yy (0) 2Rc 2-20 一离散时间随机过程的自相关序列函数是 (k) (1/2)W ,试求其功率密度谱。 (f)= k (k)e j2 fk

2-24 系统的噪声等效带宽定义为 B eq 认 2 H(f) df 1/知 o XJ) ???命题得证。 2-23 试证明函数 在区间[ (f) 1 (2) k 2 I k l e 2 j fk / 1 2 j f 、 2 1e j2f 2 1 !e j2f 2 1e j2f 2 1 1 e j2 2 sin[2 W(t f k (t)= ]上为正交的,即 G e o 2 1 1 le j2f 2 即为所求。 2W )] k 2 W(t ) 2W ,k = o , 所以,抽样定理的重建公式可以看作带限信号 s(t)的级数展开式,其中权值为 s(t)的样值, 且{ f k (t )}是级数展开式中的正交函数集。 证明: 由题得 k sin[2 W(t -)] f k (t)f j (t)dt = ---------- 2 W(t —) 2W sin[2 W(t j )] 込dt 2 W(t j ) 1 cos[( j k) 2 cos[4 wt (k j) ] dt (2 wt k)(2 wt j)

(完整版)答案应用随机过程a

山东财政学院 2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A ) (考试时间为120分钟) 参考答案及评分标准 考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉 一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ) 1. 严平稳过程一定是宽平稳过程。(ⅹ ) 2. 非周期的正常返态是遍历态。(√ ) 3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。(ⅹ ) 4. 有限马尔科夫链没有零常返态。(√ ) 5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(?nd ii p 。(ⅹ ) 二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。 2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。 三. 简答题(每小题5分,共10分) 1. 简述马氏链的遍历性。 答:设) (n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(?=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。 2. 非齐次泊松过程与齐次泊松过程有何不同?

答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。它反映了其变化与时间相关的过程。如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。 四. 计算、证明题(共70分) 1. 请写出C —K 方程,并证明之. (10分) 解: 2. 写出复合泊松过程的定义并推算其均值公式. (15分) 解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y 1,那么{}0),(≥t t X 复合泊松过程

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 (6) 甲乙二人下棋一局,观察棋赛的结果。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 (10) 测量一汽车通过给定点的速度。 (11) 将一尺之棰折成三段,观察各段的长度。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 (2) A 与B 都发生,而C 不发生。 (3) A ,B ,C 都发生。 (4) A ,B ,C 中至少有一个发生。 (5) A ,B ,C 都不发生。 (6) A ,B ,C 中至多于一个发生。 (7) A ,B ,C 中至多于二个发生。 (8) A ,B ,C 中至少有二个发生。 3. 设{}10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,??????≤<=121x x A ,? ?????<≤=234 1x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,81)(=AC P ,求A , B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算)? (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少?

随机过程习题答案

1、 已知X(t)和Y(t)是统计独立的平稳随机过程,且它们的均值分别为mx 和my ,它们的自 相关函数分别为Rx()和Ry()。(1)求Z(t)=X(t)Y(t)的自相关函数;(2)求Z(t)=X(t)+Y(t)的自相关函数。 答案: (1)[][])()()()()()()(t y t x t y t x E t z t z E R z ττττ++=+= [][] ) ()()()()()()()()(τττττy x z R R t y t y E t x t x E R t y t x =++== :独立的性质和利用 (2)[]()()[])()()()()()()(t y t x t y t x E t z t z E R z +?+++=+=ττττ [])()()()()()()()(t y t y t x t y t y t x t x t x E ττττ+++++++= 仍然利用x(t)和y(t)互相独立的性质:)(2)()(τττy y x x z R m m R R ++= 2、 一个RC 低通滤波电路如下图所示。假定输入是均值为0、双边功率谱密度函数为n 0/2 的高斯白噪声。(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。 答案: (1) 该系统的系统函数为RCs s X s Y s H +==11)()()( 则频率响应为Ω +=ΩjRC j H 11)( 而输入信号x(t)的功率谱密度函数为2 )(0n j P X =Ω 该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为: ()2 20212/)()()(Ω+=ΩΩ=ΩRC n j H j P j P X Y 对)(Ωj P Y 求傅里叶反变换,就得到输出的自相关函数: ()??∞ ∞-Ω∞ ∞-ΩΩΩ+=ΩΩ=d e RC n d e j P R j j Y Y ττππτ22012/21)(21)( R C 电压:y(t) 电压:x(t) 电流:i(t)

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

最新随机过程习题及答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程 ,其中 是常数,与是 相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概 率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1.写出下列随机试验的样本空间。 (1)记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。 (4)生产产品直到得到10件正品,记录生产产品的总件数。 (5)一个小组有A,B,C,D,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。 (6)甲乙二人下棋一局,观察棋赛的结果。 (7)一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9)有A,B,C三只盒子,a,b,c三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。 (10)测量一汽车通过给定点的速度。 (11)将一尺之棰折成三段,观察各段的长度。 2.设A,B,C为三事件,用A,B,C的运算关系表示下列事件。 (1)A发生,B与C不发生。 (2)A与B都发生,而C不发生。 (3)A,B,C都发生。 (4)A,B,C中至少有一个发生。 (5)A,B,C都不发生。 (6)A,B,C中至多于一个发生。 (7)A,B,C中至多于二个发生。 (8)A,B,C中至少有二个发生。

3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,?????? ≤<=121x x A ,? ?????<≤=2341x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,1)(=AC P ,求A ,B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算) (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少 8. 一盒子中有4只次品晶体管,6只正品晶体管,随机地抽取一只测试,直到4只次品管子都找到为止。求 第4只次品管子在下列情况发现的概率。 (1) 在第5次测试发现。 (2) 在第10次测试发现。 9. 甲、乙位于二个城市,考察这二个城市六月份下雨的情况。以A ,B 分别表示甲,乙二城市出现雨天这一 事件。根据以往的气象记录已知4.0)()(==B P A P ,28.0)(=AB P ,求)/(B A P ,)/(A B P 及)(B A P ?。 10. 已知在10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概 率。 (1) 二只都是正品。 (2) 二只都是次品。 (3) 一只是正品,一只是次品。 (4) 第二次取出的是次品。 11. 某人忘记了电话号码的最后一个数字,因而随意地拨号,求他拨号不超过三次而接通所需的电话的概率

随机过程补充例题

随机过程补充例题 例题1 设袋中有a 个白球b 个黑球。甲、乙两个赌徒分别有n 元、m 元,他们不知道那一种球多。他们约定:每一次从袋中摸1个球,如果摸到白球甲给乙1元,如果摸到黑球乙给甲1元,直到两个人有一人输光为止。求甲输光的概率。 解 此问题是著名的具有两个吸收壁的随机游动问题,也叫赌徒输光问题。 由题知,甲赢1元的概率为b p a b =+,输1元的概率为 a q a b =+,设n f 为甲输光的概率,t X 表示赌t 次后甲的赌金, inf{:0 }t t t X or X m n τ===+,即τ 表示最终摸球次数。如果 inf{:0 }t t t X or X m n τ===+=Φ(Φ为空集),则令τ=∞。 设A =“第一局甲赢”,则()b p A a b = +,()a p A a b = +,且第一局甲赢的条件下(因甲有1n +元),甲最终输光的概率为1n f +,第一局甲输的条件下(因甲有1n -元),甲最终输光的概率为1n f -,由全概率公式,得到其次一元二次常系数差分方程与边界条件 11n n n f pf qf +-=+ 01f =,0m n f += 解具有边界条件的差分方程 由特征方程 2()p q p q λλ+=+

(1)当q p ≠时,上述方程有解121,q p λλ==,所以差分方程的 通解为 212()n q f c c p =+ 代入边界条件得 1()11()n n n m q p f q p +-=- - (2)当q p =时,上述方程有解121λλ==,所以差分方程的通解为 12n f c c n =+ 代入边界条件得 1n n f n m =- + 综合(1)(2)可得 1()11() 1n n m n q p p q q f p n p q n m +? -?- ≠?? -=?? ?-=? +? 若乙有无穷多的赌金,则甲最终输光概率为 () lim 1n jia n m q p q p p f p q →∞ ?>?==??≤? 由上式可知,如果赌徒只有有限的赌金,而其对手有无限的赌金,当其每局赢的概率p 不大于每局输的概率q ,即p q ≤时,

05-06概率论与随机过程试题(A卷)

05-06概率论与随机过程试题(A ) 一、选择题 1.设0

2. 设随机变量X 的密度函数为, 0 1, ()0, .ax x f x <

《概率论与随机过程》课程自学内容小结

大学2015~2016学年秋季学期本科生 课程自学报告 课程名称:《概率论与随机过程》 课程编号:07275061 报告题目:大数定律和中心极限定理在彩票选号的应用学生: 学号: 任课教师: 成绩: 评阅日期:

随机序列在通信加密的应用 2015年10月10日 摘 要:大数定律与中心极限定理是概率论中很重要的定理,较多文献给出了不同条件下存在的大数定律和中心极限订婚礼,并利用大数定律与中心极限定理得到较多模型的收敛性。但对于他们的适用围以及在实际生活中的应用涉及较少。本文通过介绍大数定律与中心极限定理,给出了其在彩票选号方面的应用,使得数学理论与实际相结合,能够让读者对大数定律与中心极限定理在实际生活中的应用价值有更深刻的理解。 1. 引言 在大数定律与中心极限定理是概率论中很重要的定理,起源于十七世纪,发展到现在,已经深入到了社会和科学的许多领域。从十七世纪到现在,很多国家对这两个公式有了多方面的研究。长期以来,在大批概率论统计工作者的不懈努力下,概率统计的理论更加完善,应用更加广泛,如其在金融保险业的应用,在现代数学中占有重要的地位。 本文主要通过对大数定律与中心极限定理的分析理解,研究探讨了其在彩票选号中的应用,并给出了案例分析,目的旨在给出大数定律与中心极限定理应用对实际生活的影响,也对大数定律与中心极限定理产生更深刻的理解。 2. 自学容小结与分析 2.1 随机变量的特征函数 在对随机变量的分析过程中,单单由数字特征无法确定其分布函数,所以引入特征函数。特征函数反映随机变量的本质特征,可唯一的确定随机变量的分布函数、随机变量X 的特征函数定义为: 定义1 ][)()(juX jux e E dx e x p ju C ==? +∞ ∞ - (1) 性质1 两两相互独立的随机变量之和的特征函数等于各个随机变量的特征函数之积。 性质1意味着在傅立叶变换之后,时域的卷积变成频域的相乘,这是求卷积的简便方法。类比可知求独立随机变量之和的分布的卷积,可化为乘法运算,这样就简便了计算,提高了运算效率。 性质2 求矩公式:0)(|) ()(][=-=u n u x n n n du C d j X E (2) 性质3 级数展开式:!)(][!|)()()(0 00n ju X E n u du u C d u C n n n n n n n n X ∑∑∞ ==∞ === (3) 2.2 大数定律与中心极限定理 定义2 大数定律:设随机变量相互独立,且具有相同的μ=)(k X E 和,...2,1,)(2 ==k X D k σ, 则0∈>?,有

随机过程复习试题及答案

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 证明:当12n 0t t t t <<< <<时, 1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤= n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x , X(t )-X(0)=x )≤= n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x , X(t )=x )≤=n n P(X(t)x X(t )=x )≤ 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

应用随机过程习题课二

习题 1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数 12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞ 且1221 (),()33P P ωω==,分别求: (1)一维分布函数(0,)F x 和(,)4F x π ; (2)二维分布函数(0,;,)4F x y π ; (3)均值函数()X m t ; (4)协方差函数(,)X C s t . 2. 利用抛掷一枚硬币一次的随机试验,定义随机过程 1 2 cos ()2t X t πωω?=??出现正面出现反面 且“出现正面”与“出现反面”的概率相等,各为1 2 ,求 1)画出{()}X t 的样本函数 2){()}X t 的一维概率分布,1 (;)2F x 和(1;)F x 3){()}X t 的二维概率分布121 (,1;,)2 F x x 3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t cos ()2 t t X t t π?=? ?在时刻抛掷硬币出现正面 在时刻抛掷硬币出现反面 求:(1)1(,),(1,)2F x F x ; (2)121 (,1;,)2 F x x 4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ. (1)分别求3,,,424t ππππωωωω = 时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程: ()X t t ξη=+ ()t -∞<<+∞ 其中r. v. (,)ξη的协方差矩阵为1334C ?? = ??? , 求随机过程{(),}X t t -∞<<+∞的协方差函数. 6. 考虑随机游动{(),0,1,2,}Y n n =

《概率论与随机过程》第1章习题答案

《概率论与随机过程》第一章习题答案 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 解: ? ??????=n n n n S 100 , ,1,0 ,其中n 为小班人数。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 解:{}18,,4,3 =S 。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 解: {}10,,4,3 =S 。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 解: { } ,11,10=S 。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。 (6) 甲乙二人下棋一局,观察棋赛的结果。 解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 解: {}Ca Bb Ac Cc Ba Ab Cb Bc Aa Cb Ba Ac Ca Bc Ab Cc Bb Aa S ,,;,,;,,;,,;,,;,,=其中,Aa 表示球a 放 在盒子A 中,余者类推。 (10) 测量一汽车通过给定点的速度。 解:{}0>=v v S (11) 将一尺之棰折成三段,观察各段的长度。 解: (){}1,0,0,0,,=++>>>=z y x z y x z y x S 其中,z y x ,,分别表示第一段,第二段,第三段的 长度。# 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 解:C A (2) A 与B 都发生,而C 不发生。 解: C AB (3) A ,B ,C 都发生。 解: ABC (4) A ,B ,C 中至少有一个发生。 解: C B A ?? (5) A ,B ,C 都不发生。 解: C B A (6) A ,B ,C 中至多于一个发生。 解: A C C A ?? (7) A ,B ,C 中至多于二个发生。 解: C B A ?? (8) A ,B ,C 中至少有二个发生。 解: CA BC AB ??. # 3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 解: {}5=B A ; (2)B A ?。 解: { }10,9,8,7,6,5,4,3,1=?B A ; (3)B A 。 解:{}5,4,3,2=B A ;

随机过程复习题(含答案)

随机过程复习题 一、填空题: 1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有 ______}|{|lim =<-∞ >-εa X P n n ,则称}{n X 依概率收敛于a 。 2.设}),({0≥t t X 是泊松过程,且对于任意0 12 ≥>t t , ,则 15 92}6)5(,4)3(,2)1({-??= ===e X X X P , 6 18}4)3(|6)5({-===e X X P 15 3 2 6 2 3 2 92! 23 ! 2)23(! 23 }2)3()5({}2)1()3({}2)0()1({}2)3()5(,2)1()3(,2)0()1({} 6)5(,4)3(,2)1({----??=? ?? ==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P 6 6 2 18! 26 }2)3()5({}4)3(|6)5({--== =-===e e X X P X X P 3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(4 1 2141, ????? ? ?? ? ????? ??? ?=434 10313131 04341 1)(P ,则167)2(12 =P ,16 1}2,2,1{210= ===X X X P

???????? ? ????? ????=48 3148 1348 436133616367164167165)1()2(2 P P 16 7)2(12= P 16 1314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{} 2,2,1{12010102010210=??=================X X P X X P X P X X X P X X P X P X X X P 4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R , )]()([)(π?δπ?δπω-++=X S 6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。 7.已知平稳过程)(t X 的谱密度为2 3)(2 4 2++= ωωω ωS ,则)(t X 的均方值 = 212 1- 222 22 2 11221)2(2 221 1 1 22 )(+??-+?? = +- += ωωωωωS τ τ τ--- = e e R X 2 12 1)(2

概率论与随机过程论文

随机过程论文 题目: 通信系统中随机过程的模型研究 姓名刘鲁鹏 学院电子工程学院 专业电子科学与技术 班级概率论与随机过程1班学号2014110632 本人签字 2014 年12月

通过幅度概率分布研究通信系统中的骚扰问题 摘要:通过目前学术界广泛关注的幅度概率分布(APD)检测方法与传统电磁兼容测量方法的比较,说明了幅度概率分布统计测量方法的优越性.并且采用统计测量方法来研究骚扰对数字通信系统的影响,以PAM二进制调制系统为例,推导出了骚扰的APD与通信系统误码概率之间的关系式,给出了骚扰的幅度概率分布测量结果与对应干扰下的数字通信系统的误码概率两者之间的联系.本文的研究结果对于制订电子设备的电磁辐射限值具有参考价值. 关键词:电磁兼容;幅度概率分布;数字通信系统;误码概率;测量检波器

随着数字通信技术的飞速发展,各种电子设备大量涌现,这使得我们的电磁环境变得越来越复杂.如何保证通信系统在如此复杂的电磁环境下能够正常工作是通信技术发展面临的难题,因此电磁兼容性问题变得越来越重要.研究骚扰对通信系统的影响就是要求当骚扰通过通信系统之后,对接收机所产生的最终结果.现有标准中所采用的方法是直接测量这种最终结果,以表示干扰的大小.例如在话音通信中,接收者就是凭听觉来判断干扰的存在和强弱的.由于骚扰经准峰值检波器之后的电表指示与人耳的主观感觉一样,所以准峰值常用来评价骚扰对调幅通信系统的影响,在国际无线电干扰特别委员会(CISPR)出版物中规定的各种骚扰限值都是以准峰值表示的.但是现在面临的问题是准峰值无法反映出骚扰对数字通信系统的影响,如何解决这一问题,是目前CISPR关注的焦点.目前针对这一问题的解决方案主要有:①研究一种新型的加权评估检波器;②采用传统的有效值(RMS)检波器;③采用APD统计测量方法. 其中,方案①研究进展比较缓慢,很难找到一种新型的评估检波器,能像准峰值检波器对模拟通信系统的评估一样有效.RMS检波器只是在评估类似于高斯型噪声对数字通信系统方面得到了验证,对于脉冲型噪声的评估方面,仍显得无能为力.APD统计参量描述的是,骚扰的随机包络的统计特性,它与数字通信系统的误码率有着紧密的联系,而且可以用来建立脉冲干扰的统计模型.目前APD统计测量方法已经得到了CISPR的初步认可,CISPR已经投票通过了APD测量仪的标准草案,而关于APD限值标准则,正在征求各个产品分委会的意见. 本文分析了APD测量方法的理论基础及APD测量方法的优越性,推导了干扰的APD统计结果与二进制PAM调制系统误码率之间的关系,并通过实验数据说明了干扰APD测量结果对于预测通信系统性能的可行性. 1.APD统计测量基础 APD统计测量方法是建立在概率论和数理统计的基础之上的,统计测量最重要的一个目的是获得无线电骚扰的概率密度函数. CISPR给出的APD定义为:干扰幅度超过规定电平的时间概率,用下式表示为 式中:R是门限电平;T是测量总时间;tk是第k个幅度超过R的脉冲的持续时间应用概率论的知识可以把APD表示为 式中,P(R)是干扰包络的累积概率分布. 从式(1)中可以看出,APD与包络的概率密度函数有着直接的联系.以高斯白噪声为例,其概率密度函数满足正态分布为 式中,mx和σ2分别是随机变量x的均值和方差. 由式(1)可以得出高斯白噪声的APD分布为

相关主题
文本预览
相关文档 最新文档