当前位置:文档之家› 细菌耐药机制及耐药性消除的研究进展_李科

细菌耐药机制及耐药性消除的研究进展_李科

细菌耐药机制及耐药性消除的研究进展_李科
细菌耐药机制及耐药性消除的研究进展_李科

作者简介:李科(1979-),男,硕士,主管检验师,从事细菌耐药机制研究,Email:softsheld@sina.com

通讯作者:张德纯,Email:zhangdechun46@163.com ·综述·

细菌耐药机制及耐药性消除的研究进展

李科,张德纯

重庆医科大学基础医学院病原生物学教研室;分子医学与肿瘤研究中心,重庆400016

摘要:抗菌药物选择压力导致细菌耐药性日趋严重。究其根源,细菌耐药机制的探讨是为了揭示菌株耐药的根本原理,并从中找到消除耐药性的有效方法。本研究就现今国内外对耐药机制的研究以及耐药性消除的研究进行综述。

关键词:耐药机制;消除;研究进展

中图分类号:Q939.92文献标志码:A文章编号:1005-376X(2014)08-0984-03

DOI编码:10.13381/j.cnki.cjm.201408032

The mechanism and removal of bacterial drug resistance:research progress

LI Ke,ZHANG De-chun

Center of Molecular Medicine and TumorResearch,Department of Pathogenic Biology,College of Basic Medical Sciences,Chongqing Medical University,Chongqing400016,China Corresponding author:ZHANG De-chun,Email:zhangdechun46@163.com Abstract:Antimicrobial selection pressure leads to increasingly serious bacterial drug resistance.The reason for exploring the mechanism of bacterial resistance is to reveal the fundamental principles of drug-resistance of bacterial strains,and find out effective ways to eliminate the resistance.This article reviewsed current researches at home and abroad on the mechanism and the removal of resistance to antibiotics.

Key words:Resistance mechanism;Removal;Research progress

从1940年Abraham等首先在大肠埃希菌中发现青霉素酶,到1956年Newton等在芽胞杆菌中发现头孢菌素酶,从1960年耐甲氧西林金黄色葡萄球菌(MRSA)第一次被发现,到本世纪初耐万古霉素金黄色葡萄球菌首次在美国被报道[1],细菌的耐药发生发展过程伴随着抗菌药物的不停使用和新药的不断开发呈现出逐年加剧的态势。迄今为止,多重耐药细菌[2]、泛耐药甚至是全耐药细菌的报道已经屡见不鲜。现对目前已经研究揭示的细菌耐药的机制以及耐药性消除做一综述。

1基因水平遗传学机制

细菌可通过自身基因突变、染色体垂直传播、质粒或转座子水平传播、整合子捕获外源性耐药基因等多种途径产生耐药性,这些传播方式使细菌的耐药性呈现出固有耐药或获得性耐药。1.1染色体介导耐药这种耐药是由于细菌天然或基因突变导致的染色体代代相传的耐药性,通过染色体遗传基因发生突变,使突变后的变异株对抗菌药物产生耐药。此耐药性具有种属特异性,如铜绿假单胞菌对头孢噻肟、头孢哌酮、头孢曲松等耐药,肠球菌对头孢菌素耐药,一些肠杆菌科细菌对不稳定青霉素耐药等。

1.2质粒介导耐药质粒是细菌核质以外的DNA,可在菌体内部自行复制,也可以通过性菌毛或噬菌体等媒介在细菌间传播。耐药质粒通常是细菌后天获得的,因为传播途径多样化,这种机制介导的耐药在临床上占重要地位。如超广谱β-内酰胺酶就是通过耐药质粒在某些肠杆菌科之间垂直或种间传播。1.3整合子(integron)介导耐药整合子是细菌捕获外源性基因并使之转变为自身功能性基因的一种基因表达单位,是通过转座子和接合质粒在细菌之间进行传播的遗传物质。这个概念首先由Stocks 等[3]在1989年提出,他们在研究不同来源耐药质粒和转座子时发现基因两侧的序列具有相似的限制性酶切位点,推测可能是一个移动性基因元件,将其

命名为DNA整合子。两年后,Hall等[4]对转座子上各种不同的耐药基因进行研究分析,正式提出了基因盒-整合子系统的概念。整合子主要由编码整合酶基因(int I)、基因重组位点、启动子和耐药基因盒组成,目前经研究报道有四类:Ⅰ类整合子发现最早,因而研究比较成熟,是目前最常见的一种,曾经在大肠埃希菌、肺炎克雷伯菌、弗氏枸橼酸杆菌及铜绿假单胞菌等革兰阴性杆菌中都有发现,随后,Nesvera[5]等在革兰阳性棒状杆菌中也检测到此类整合子的存在,Ⅱ类整合子位于转座子Tn7及其衍生物上,其整合酶基因与Ⅰ类整合酶基因有46%同源性,Ⅲ类整合子与碳青霉烯类耐药有密切的相关性,Ⅳ类整合子是在霍乱弧菌基因组中发现的,其整合酶基因与Ⅰ类整合酶基因有45.5%的同源性,因其含有179个基因盒而被称为超级整合子(super inte-gron),除含有耐药基因外,还含有编码毒素、血凝素和脂蛋白的致病基因。

2蛋白质水平(生物化学)机制

细菌通过产生释放功能蛋白或自身结构蛋白改变而产生的对抗菌药物的耐受,包括以下几种机制。2.1产生水解酶、修饰酶、灭活酶和钝化酶β-内酰胺酶类:通过质粒介导或染色体突变使细菌产生β-内酰胺酶,从而破坏β-内酰胺环,使β-内酰胺类抗菌药物灭活。此类酶包括:青霉素酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC)、碳青霉烯酶。青霉素酶普遍见于葡萄球菌和卡他莫拉菌,此酶赋予细菌对不稳定青霉素耐受;ESBLs是目前临床革兰阴性杆菌分离株中最为常见的产酶机制,种类超过240种,传统的方法将ESBLs分为四种类型:TEM型、SHV型、CTX-M型和OXA型[6 8],此酶可被棒酸抑制,对β-内酰胺类抗菌药物除头霉素类和碳青霉烯类以外,均有一定破坏力;AmpC酶对所有的β-内酰胺类抗菌药物均有一定破坏力,仅对碳青霉烯类、第四代头孢菌素破坏力较弱,但四代头孢的耐药性可因为使用β-内酰胺类抗菌药物而被诱导产生;碳青霉烯酶主要水解碳青霉烯类抗菌药物(如:亚胺培南、美罗培南等),根据Ambler分子分类,可分为A、B、D三类[9 11]。

氨基糖苷类钝化酶:此酶主要导致葡萄球菌属和肠球菌属细菌对氨基糖苷类药物高水平耐药。此酶主要存在于细菌包浆内,主要分为三类:氨基糖苷乙酰转移酶(AAC)、氨基糖苷磷酸转移酶(APH)和氨基糖苷类核苷转移酶(ANT),此酶主要由质粒、转座子、整合子等介导,在种内和种间进行传播[12]。

红霉素类钝化酶(MSL):此类酶可破坏14元环大环内酯环,包括红霉素酯酶、红霉素磷酸转移酶和维吉尼亚霉素酰基转移酶。肠杆菌属中因大量存在此类酶而天然对红霉素高度耐受。

氯霉素乙酰基转移酶:此酶由染色体或质粒上的氯霉素乙酰基转移酶基因cat A和cat B介导,编码产生的酰基转移酶可使氯霉素转化为无抗菌活性的代谢产物,主要存在于肺炎链球菌、D群链球菌、葡萄球菌属及奈瑟菌属种。

2.2抗菌药物作用靶位改变细菌体内的多个抗菌药物结合靶位的结构发生改变,使药物不易结合是导致细菌耐药的重要机制。如青霉素结合蛋白(PBP)就是位于细菌细胞内膜上与β-内酰胺类抗菌药物特定的结合位点,当PBP数量或结构发生改变时,β-内酰胺类抗菌药物与细菌的亲和力就会下降,使菌体对药物产生耐药性。肠球菌对万古霉素的耐药机制也主要是与药物的结合靶位改变有关,耐万古霉素肠球菌(vancomycin resistant enterococcus,VRE)分为VanA、VanB、VanC、VanD四种类型。红霉素结合于细菌核糖体的关键位点A2058可被erm基因编码的核糖体甲基化酶甲基化,使其腺嘌呤残基N-6位二甲基化导致耐药也是肺炎链球菌对红霉素不敏感的主要耐药机制[13]。四环素、氨基糖苷类和喹诺酮类等抗菌药物均可由于作用靶位的改变而耐药。2.3主动外排系统细菌细胞膜上存在一种主动耗能改变自身构象的膜蛋白,在能量支持下,将药物选择性或非选择性地排出细菌细胞外,从而使达到作用靶位的药物浓度明显降低而导致耐药。与细菌多重抗菌药耐药性有关的主动外排泵系统主要归于以下5大类:ATP结合盒转运体类(ABC)、主要易化超家族(MFS)、药物与代谢物转运体家族(DMT)、多重药物与毒物外排家族(MATE)、耐受-生节-分裂家族(RND),以上各类转运体中ABC以ATP水解能量驱动外排泵,MFS、DMT、MATE和RND均以质子为驱动力,并形成质子与药物的反转运体[14]。2.4抗菌药物的渗透性障碍细菌细胞壁的障碍或细胞膜通透性的改变,使抗菌药物无法进入细胞内达到作用靶位而发挥抗菌作用,是细菌自身防卫性产生的又一耐药机制。此机制主要见于革兰阴性菌,因其细胞膜脂多糖成分能阻碍许多疏水性抗菌药物进入细菌体内而产生耐药性。此外,细菌外膜由于基因突变,结构异常可使细菌产生多重耐药性也是常见因素。如大肠埃希菌的mar区基因突变引起外膜蛋白F缺失,外膜蛋白C增加或减少均可使其产生多重耐药性。

2.5细菌生物膜形成生物材料表面被细菌胞外大分子包裹的有组织有层次的细菌群体附着形成的膜称为细菌生物膜,其间细菌相互连结,包被在自身所分泌的胞外基质中。生物膜中包含了细菌所吸附的营养物质、代谢裂解产物和分泌的大分子多聚物等,形成一个结构齐全,功能完整的体系,使其中的细菌对抗外界环境变化或抵抗药物的能力增强。2.6细菌产生抗菌药物拮抗剂细菌产生与抗菌药物竞争结合位点的物质,如金黄色葡萄球菌产生对氨苯甲酸(PAPB),因其与磺胺类药物的对氨基苯磺酰胺结构相似,可起到拮抗作用。

2.7细菌代谢状态的改变呈休眠状态或结构缺陷的细菌均可产生多重耐药性。如细菌芽胞、细胞壁缺陷型细菌。

3耐药性消除

3.1合理用药,控制细菌耐药性的产生及多重耐药菌的增加合理用药包含两方面内容:其一是抗菌药物只对细菌感染有效果,非细菌感染无需使用抗菌药物;其二是针对感染病原菌和药物敏感性,根据患者状况和药物代谢特征等因素恰当地选择抗菌药物。对于新的感染病原菌、新发明的诊疗方法、新开发的抗菌药物以及新的用药办法等,临床医务人员应不断学习更新知识。为预防多重耐药菌株的产生,可轮换使用有效抗菌药物,且在治疗时注意避免用药剂量处于耐药突变窗。

3.2耐药质粒消除细菌耐药质粒的消除是逆转其耐药性的重要途径,常分为物理法和化学法两类方法。物理方法包括:电穿孔法、高温培养、紫外线法及冻融法等,Huang等[15]利用脉冲电击大肠埃希菌,消除了80%的抗药性质粒;化学方法包括:SDS法、抗生素法、中药法及吖啶橙法等,其中,中药消除细菌耐药性的研究较多[16],很多中药如:紫草[17]、鱼腥草、黄连、艾草、车前子、蒲公英、金银花等对于消除质粒有一定的作用。

3.3促进药物进入,减少药物泵出硫利达嗪、帕罗西丁、苯基哌啶等药物本身无抗菌活性,但能有效抑制细菌的排出泵或增加细菌对药物的敏感性,从而达到消除耐药性的目的。Janne等[18]发现硫利达嗪能抑制MRSA中的mec A基因转录,影响其表达,同时青霉素结合蛋白2a的表达水平,从而消除MR-SA对甲氧西林的耐药性;Jette等[19]发现一些非抗生素药物能够很大程度地改变细菌细胞壁和细胞膜的蛋白结构,影响细菌的耐药机制,对细菌的耐药性起到消除作用。3.4抑制灭活酶有些细菌在产生抑制抗生素活性的酶的同时,可以产生一些具有抗菌催化功能的膜蛋白。Lee等[20]发现ampD可逆转细菌感应β-内酰胺类抗生素时产生的募集反应和抗生素灭活酶的催化剂,抑制AmpC酶的表达。

细菌的耐药机制和耐药性消除的研究有着因果共生的关系,耐药机制的揭示给耐药性消除研究提供了切入点和方向,耐药性消除的研究巩固并验证了耐药机制的客观性。随着人类对耐药机制的不断深入了解和耐药性消除途径的不断扩展,我们期待着能够完全阻断细菌耐药性的发生和发展,并能采用人工诱导的方法消除耐药菌株已有的耐药性。

参考文献

[1]Karchmer AW,Bayer AS.Methicillin-resistant Staphylococcus au-reus:an evolving clinical challenge[J].Clin Infect Dis,2008,46

(S5):342-343.

[2]Magiorakos AP,Srinivasan A,CareyRB,et al.Multidrug-resist-ant,extensively drug-resistant and pandrug-resistant bacteria:an

international expert proposal for interim standard definitions for ac-

quired resistance[J].Clin Microbiol Infect,2012,18(3):268-281.

[3]Stokes HW,HallRM.A novel family of potentially mobile DNA el-ements encoding site-specific gene-integration functions:integrons

[J].Mol Microbiol,1989,3(12):1669-1683.

[4]HallRM,Brookes DE,Stokes HW.Site-specific insertion of genes into integrons:role of the59-base element and determination of the

recombination cross-over point[J].Mol Microbiol,1991,5(8):

1941-1959.

[5]Nesvera J,Hochmannova J,Patek M.AN Integron of class1is present on the plasmid pCG4from Gram-positive bacterium Coryne-

bacterium glutamicum[J].FEMS Microbiol Lett,1998,169(2):

391-395.

[6]Rosenau A,Cattier B,Gousset N,et al.Capnocytophaga ochra-cea:characterization of a plasmid-encoded extended-spectrum

TEM-17beta-lactamase in the phylum Flavobacter-bacteroides[J].

Antimicrob Agents&Chemother,2002,44(3):760-762.

[7]ReinertRR,Low DE,Rossi F,et al.Antimicrobial susceptibility a-mong organisms from the Asia/PacificRim,Europe and Latin and

North America collected as part of TEST and the in vitro activity of tige-

cycline[J].J Antimicrob Chemother,2007,60(5):1018-1029.[8]IsturizR.Global resistance trends and the potential impact on empir-ical therapy[J].Int J Antimicrob Agent,2008,32(S4):S201-

S206.

[9]Nordmann P,Poirel L.Emerging carbapenemases in Gram-negative aerobes[J].Clin Microbiol&Infect,2002,8(6):321-331.[10]Hawkey P,Jone AM.The changing epidemiology of resistance[J].J Antimicrob Chemother,2009,64(S1):i3-i10.

[11]Patel JB,Rosheed JK,Kitchel B.Carbapenemases in Enterobac-teriaceae:Activity,epidemiology,and laboratory detection[J].

Clin Microbiol Newsl,2009,31(8):55-63.(下转第990页)

向邦全,李发志.某犬场犬细小病毒性肠炎的流行特点与防

治体会[J].畜牧与兽医,2013,5(7):120-122.

[16]FENG Hai-bo,ZENG Xian-yin,LIU Juan,et al.Study on activi-ty of antivirus of eight Chinese herbal medicine ingredients on ca-

nine parvovirus in vitro[J].China J Vet Sci,2012,32(6):884-

889.(in Chinese)

封海波,曾宪垠,刘娟,等.8种中药成分体外抗犬细小病毒

的研究[J].中国兽医学报,2012,32(6):884-889.

[17]Stepita ME,Bain MJ,Kass PH.Frequency of CPV infection in vaccinated puppies that attended puppy socialization classes[J].J

Am Anim Hosp Assoc,2013,49(2):95.

[18]WU Ying-tao,Yuan Jie-li.The research progress and application of probiotics in enteral nutrition therapy[J].Chin J Microecol,

2012,24(10):943-947.(in Chinese)

吴英韬,袁杰利.微生态制剂在肠内营养治疗的研究进展与

应用[J].中国微生态学杂志,2012,24(10):943-947.[19]Xu J,Guo HC,Wei YQ,et al.Phylogenetic analysis of canine parvovirus isolates from Sichuan and Gansu Provinces of China in

2011[J].Transbound Emerg Dis,2013,18.[Epub ahead of

print]

[20]ZHANG Kao,JIN Hui-jun,ZHONG Fei,et al.Adenovirus-medi-ated canine interferon-γexpression and its antiviral activity against

canine parvovirus[J].Acta Microbiolog Sinica,2012,11(52):

1400-1408.(in Chinese)

张考,靳慧君,仲飞,等.腺病毒介导犬干扰素-r基因的表达

及其体外抗犬细小病毒的作用[J].微生物学报,2012,11

(52):1400-1408.

[21]Wilson S,Stirling C,Borowski S,et al.Vaccination of dogs with

Duramune DAPPi+LC protects against pathogenic canine parvovir-

us type2c challenge[J].VetRec,2013,172(25):662.[22]XU Jin,SUN Shi-qi,CAO Sui-zhong,et al.Canine parvovirus disease research progress of genetic engineering vaccine[J].Chin

Vet Sci,2012,42(5):541-544.(in Chinese)

徐进,孙世琪,曹随忠,等.犬细小病毒病基因工程疫苗的研

究进展[J].中国兽医科学,2012,42(5):541-544.

[23]CHEN Hui-hui,ZHONG Fei,LI Xiu-jin,et al.Effects of canine IL-2and IL-7genes on enhancing immunogenicity of canine parvo-

virus VP2gene vaccine in mice[J].Acta Microbiolog Sinica,

2012,11(52):1392-1400.(in Chinese)

陈慧慧,仲飞,李秀锦,等.IL-2与IL-7基因对犬细小病毒

VP2DNA疫苗在小鼠的免疫增强作用[J].微生物学报,

2012,11(52):1392-1400.

[24]He Y,Cao W,Pan S.Inhibition of canine parvovirus replication incultured cells by small interferingRNAs expressed from plasmid

vectors[J].AntiviralRes,2012,95(3):237.

[25]QU Yi-zhi,YUAN Jie-li.Microbial control of diarrhea and related developments[J].Chin J Microecol,2012,24(9):853-855.(in

Chinese)

曲以之,袁杰利.腹泻及其微生态防治的相关进展[J].中国

微生态学杂志,2012,24(9):853-855.

[26]Zhu Y,Huang Y,Wang Y,et.al.Genome sequence of a canine parvovirus strain,CPV-s5,prevalent in Southern China[J].Ge-

nome Announc,2014,2(1):pii:e01141-13.doi:10.1128/

genomeA.01141-13.

收稿日期:2014-06-04修回日期:

櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆

2014-06-28

(上接第986页)

[12]DING Yuan-ting.The research progress on mechanism of bacterial resistance at home and aboad[J].Mod Prevent Med,2013,40

(6):1109-1111.(in Chinese)

丁元廷.细菌耐药机制的国内外最新研究进展[J].现代预防

医学,2013,40(6):1109-1111.

[13]LeclercqR,Courvalin P.Resistance to macrolides and related an-tibiotics in Streptococcus pneumoniae[J].Antimicrob Agents&

Chemother,2002,46(9):2727-2734.

[14]Sekiya H,Mima T,Morita Y,et al.Functional cloning and char-acterization of a multidrug efflux pump,mexHI-opmD,from a

Pseudomonas aeruginosa mutant[J].Antimicrob Agents&Che-

mother,2003,47(9):2990-2992.

[15]Huang BW,Huang ZP,Guan X.Transformation of E.coli and Bacillus thuringiensis and their curing by electroporation[J].Fu-

jian Agric Univ,1999,28(1):43-46.

黄必旺,黄志鹏,关雄.电穿孔法用于大肠杆菌和苏云金杆菌

的转化及质粒消除[J].福建农业大学学报,1999,28(1):

43-46.

[16]YUN Yun,WANG Chang-zhong,Advances in study on traditional

Chinese medicines against resistant Escherichia coli[J].Chin J Mi-

croecol,2013,25(2):238-241.(in Chinese)

云云,汪长中,中药抗耐药大肠埃希菌研究进展[J].中国微

生态杂志,2013,25(2):238-241.

[17]YE Jia.Research on chemical composition and resistant activity of resistant bacteria inRadix arnebiae seu lithospermi[D].Shanghai:

Fudan University,2009.(in Chinese)

叶佳.紫草化学成分及其抗耐药菌活性的研究[D].上海:复

旦大学,2009.

[18]Klitgaard JK,Skov MN,Kallipolitis BH,et al.Reversal of methi-cillin resistance in Staphylococcus aureus by thioridazine[J].J An-

timicrob Chemother,2008,62(6):1215-1221.

[19]Kristiansen JE,Hendricks O,Delvin T,et al.Reversal of resist-ance in microorganisms by help of non-antibiotics[J].J Antimicrob

Chemothe,2007,59(6):1271-1279.

[20]Lee MJ,Zhang WL,Hesek D,et al.Bacterial AmpD at the crossroads of peptidoglycan recycling and manifestation of antibiotic

resistance[J].J Am Chem Soc,2009,131(25):8742-8743.收稿日期:2014-06-05修回日期:2014-06-20

多种细菌耐药的分析

2014年第三季度多重耐药菌监测情况分析与对策 院感科检验科药学部 2014年7-9月份共监测多重耐药感染或定植患者80例次,涉及22个科室。检出多重耐药菌96 株(含重复送检),占全院送检有临床意义的细菌总数阳性比例的16.45%,同比上升2.22个百分点;其中院内感染多重耐药菌17株,占多耐菌株的17.71%。 一、多重耐药菌分离通报 2014年7月至9月共计分离多重耐药菌71株。主要分布在ICU、泌尿外科、呼吸内科及神经外科等。 二、前五位的多重耐药菌株标本分布 表一:2014年第三季度前五位多耐菌株标本统计 细菌名称 标本名称 痰液尿液分泌物血液引流液脓液其他 金黄色葡萄球菌 3 1 15 2 1

三、多重耐药菌中发生院内感染科室分布 表二:2014年第三季度多耐院内感染菌种及感染部位科室统计 图二、2014年第二季度与第三季度常见多耐菌院内感染检出变化 四、多重耐药菌病例用药合理性情况 本季度共审核使用抗菌药物的多耐病例70份,其中用药合理病例66份,用药合理率为94.29%。病程中对多重耐药菌及抗菌药物使用情况有分析记录的病例57份,记录合格率81.43%。用药方面存在的问题有:(1)前期用药与药敏结果不一致,未做具体分析,也未更改用药,(2)将主要供全身应用的品

种(万古霉素)作局部用药。记录方面存在的问题有:未记录培养结果和用药情况、更改用药未记录分析、对多重耐药菌的性质未做具体分析(考虑为致病菌、定植菌或污染菌)。 表三:第三季度抗菌药物使用不合理原因和或记录存在问题 五、多重耐药菌患者临床科室管理存在问题: 1、第三季度多耐患者临床管理经督查仍存在许多问题,涉及科室有脑外、心胸、肝胆、骨二、泌外、肾内、东呼吸、西呼吸、东心血管、消化、内分泌、血液肿瘤、东神内、重症医学科、耳鼻喉、皮肤、微生物等18个科室。主要存在问题: (1)不能及时开立隔离医嘱;不能及时上报多耐报告卡; (2)抗菌药物使用、多耐培养结果无分析记录; (3)多重耐药患者解除隔离未进行讨论; (4)多耐患者隔离措施落实不到位(无隔离标识等); (5)MDRO定植或感染患者,转科、转院、出院时,未在转科交接单或出院小

细菌对抗生素耐药性的研究进展

细菌对抗生素耐药性的研 究进展 班级:09药剂4班 组长:11-何燕珊:分配工作、选题、摘要、关键词和整理全篇文章 找资料:09-何炳俊:细菌耐药性产生的机理 10-何根铭:耐药性产生的因素及预防措施 12-洪春庆:抗生素的抑菌机理

细菌对抗生素耐药性的研究进展 摘要:抗生素作为治疗细菌感染性疾病的主要药物,在全世界上是应用最广、发展最快、品种最多的一类药物。但随着抗生素的广泛使用,其耐药性亦不断增长,并已迅速发展至十分严重的程度。耐药性的大量出现与广泛传播会给人们的健康造成很大的危害,给临床治疗带来很大困难,甚至造成治疗失败,目前已是全球关注的公共卫生问题。本文通过对抗生素的抑菌机理、细菌的耐药机制、耐药性产生因素以及预防等方面内容作简要综述,以示预防抗生素耐药性产生的重要性。 关键词:抗生素、细菌、耐药性 抗生素是能抑制细菌生长或杀死细菌的一类化学物质,绝大多数由微生物合成,临床上对控制、预防和治疗各种感染性疾病具有重要作用。近年来,由于人类对抗生素的滥用,导致感染性细菌对抗生素不敏感,产生了耐药性,并开始对人类展开致命的反击,严重地威胁着人类的健康。中国工程院院士许文思也感叹:“可以毫不夸张的说,细菌耐药性是21世纪全球关注的热点,它对人类生命健康所构成的威胁绝不亚于艾滋病、癌症和心血管疾病。”可见,预防抗生素耐药性的产生是十分重要的。 一、抗生素的抑菌机理 依据抑菌作用方式的不同,可将抗生素分为三类:一类抗生素通过阻止糖肽交联来阻止细菌细胞壁合成,使细菌失去保护,并因渗透压或自溶酶作用最终导致死亡(如青霉素) ;第二类主要是通过与细菌细胞膜内磷脂结合(如粘菌素) ,或者合成异常蛋白质而导致病菌细胞膜透性增加(如氨基糖苷) ;第三类则是通过阻止细菌DNA (如喹诺酮类)、RNA (如利福平类)、蛋白质(如林可霉素类)的合成而抑菌或杀菌。[1]因此,根据主要作用靶位的不同,抗生素的抑菌机理可分为以下几种。 1)抑制细菌细胞壁合成,细胞壁缺损细菌在低渗条件下常因细胞吸水过多破裂而死亡,而对人和动物无毒害作用,因人和动物不具有细胞壁,如青霉素、头孢菌素、杆菌肽等。 2)破坏细胞模的通透性。主要通过下面 3 种途径:①多肽类抗生素,如多粘菌素E,能降低细菌细胞膜表面张力,因而改变了细胞膜的通透性,甚至破坏膜的结构,结果使氨基酸、单糖、核苷酸、无机盐离子等外漏,影响细胞正常代谢,致使细菌死亡。②多烯类抗生素,如制霉菌素与固醇具有亲和力,因此能与微生物的膜(含固醇物质)结合后形成膜- 多烯化合物,引起细胞膜的通透性能改变,导致胞内代谢物的泄漏。这类抗生素对真菌细胞膜起作用,而对细菌不起作用,因细菌细胞膜不含固醇类物质。③离子载体类抗生素,这类抗生素是脂溶性的,能结合并运载特定阳离子通过双脂层膜。如缬氨霉素、短杆菌肽A 等能增加线粒体膜对H+、K+或 Na+的通透性,为维持线粒体内正常的K+浓度就必须使泵入K+的速度与流出速度平衡,这样使得线粒体消耗能量用于泵入K+,而不是用来形成ATP,因此抑制了氧化磷酸化作用,从而起杀菌作用。 3)抑制蛋白质的合成。能抑制蛋白质合成的抗生素很多,其作用机理也较复杂,主要有下面 4 个方面:①抑制氨酰-tRNA 的形成。如吲哚霉素的抑菌作用是在氨基酸活化反应中和色氨酸竞争与色氨酸激活酶结合,从而抑制氨酰-tRNA的形成。②抑制蛋白质合成的起始。如链霉素、庆大霉素等能抑制 70S 合成起始复合体的形成以及引起 N-甲酰-甲硫氨酰-tRNA从70S合成起始复合体上的解离,因此阻碍蛋白质合成的起始。③抑制肽链的延长。如四环素族抗生素

细菌耐药性的产生机制

福建金谷科技专栏 由福建金谷科技开发有限公司供搞细菌耐药性的产生机制 梅景良福建农林大学动物科学学院%"$$$# 随着磺胺药和抗生素等抗菌药物在临床上的广泛应用和长期使用,细菌等病原微生物的耐药株已逐年增多,导致抗菌药物的疗效越来越差。如对青霉素的耐药菌株,开始使用时仅有+,,近年来已达--,,有的报道认为在.$,以上。因此,细菌的耐药性问题已经成为细菌性疾病化学治疗中非常严重的一个问题,对细菌耐药性产生机制的研究在临床兽医学上具有极其重要的意义。本文简要地介绍了细菌耐药性的产生机制。 大家知道,自然界中存在的致病菌种类繁多,人们所使用的抗菌药物种类也很多,即使是同一种致病菌,对不同抗菌药其产生耐药性的机制也有可能存在很大的差别,因此,细菌耐药性的产生机制级为复杂。但是,通过大量的研究结果,人们发现细菌耐药性的生成只不过是细菌在生存中发挥其对药物的适应性或细菌偶然发生遗传基因突变所产生的后果。具体地说,细菌有可能是自发的,也有可能是在外界药物等因素的作用下发生了遗传基因的改变,产生了耐药基因,然后在耐药基因的介导下,进行/0*1的转录和蛋白质及酶的转译,从而导致细菌的形态结构和生理生化机能等发生了变化,使细菌获得了耐受抗菌药的能力。由此可见,遗传基因发生改变并产生耐药基因是细菌产生耐药性的第一步骤,在耐药基因介导下转录/0*1是细菌产生耐药性的第二步骤,以/0*1为模板转译合成蛋白质或酶,并最终导致细菌的形态结构和生理生化机能发生改变是细菌产生耐药性的第三步骤。当然,这三个步骤的划分是为了阐述的方便而人为界定的,其实这三个步骤是不可分的,因为细菌耐药性的产生是一个统一而完整的过程。 2细菌遗传基因发生变化细菌的遗传物质包括3*1和0*1两种,其中3*1主要存在于染色体上,也有少量3*1存在于质粒当中。不管是染色体中的3*1,还是质粒3*1,都能单独地进行准确地复制,将其遗传信息稳定地传给下一代。但是,细菌在生长繁殖过程中,也有可能受到一些外界因素影响或自发突变,使遗传物质发生改变,并有可能出现耐药基因,导致细菌的某些性状发生了改变,使细菌产生了耐药性。 根据引起细菌3*1遗传基因发生变化的原因不同,可将之分为三种情况:!天然存在耐药基因;"突变产生耐药基因;#质粒传递产生耐药基因。 2)2天然存在耐药基因这是在细菌与任何抗菌药接触之前就已经存在于染色体3*1或质粒3*1之种的遗传基因,它是细菌的遗传特征,由细菌的遗传信息所决定,一般是不会改变的。天然耐药基因的出现和存在与外界因素的影响无关,因此,天然存在的耐药基因所介导产生的细菌耐药性我们称之为先天耐药性。如对许多抗生素具有屏障作用的细菌细胞壁,就是先天耐药性的表现形式之一。 2)#突变产生耐药基因各种理化因素,如各种超短波辐射、高温诱变效应、低浓度诱变物质及细菌自身的代谢产物,尤其是过氧化氢的长时期综合作用,都可诱发细菌发生基因突变。除此之外,突变也可为细菌3*1在没有任何人为因素干扰条件下自发变化所产生。突变以后,新形成的突变基因中就有可能出现耐药基因。有人认为,自发突变是产生突变耐药基因的主要方式。2)%质粒传递耐药基因质粒是存在于染色体外的3*1。质粒常带有多种耐药基因而成为耐药质粒,它广泛存在于革兰氏阳性和革兰氏阴性细菌中,并可通过转化、转导、接合、转座等方式将耐药基因从耐药菌转移到敏感菌体内,由此而使敏感菌产生了耐药基因。 一般来说,先天存在的耐药基因所介导产生的先天耐药性是造成抗菌药具有不同抗菌谱最主要的原因,对细菌而言也是一种最重要的耐药性。由耐药质粒传递的耐药基因介导产生的耐药性由于具有横向传播性,可在短期内造成耐药菌的大量出现,因此,这种耐药性是人们在进行临床化学治疗中最为重要的一种耐药性。由突变耐药基因介导的耐药菌的生长和细胞分裂变慢,对其它细菌包括未发生突变的细菌的竞争力也变弱,因而突变产生的耐药性仅居次要地位。 #细菌/0*1发生变化细菌3*1遗传基因因变化而产生了耐药基因后,就可以耐药基因为模板进行转录,并形成相应的/0*1,这是细菌体内原先所没有的新的/0*1。新的/0*1是细菌产生耐药性所必需的,它是连接耐药基因和最终耐药性之间的桥梁。 这里需要说明的一点是,不同的耐药基因其转录/0*1的状态是不相同。有些细菌虽然具有耐药基因,但因其尚未进入转录状态,不能合成相应的/0*1,因此,细菌就不具备抵抗抗菌药的能力,即不具有耐药性。有些细菌从一开始,其耐药基因就处于不断转录之中,从而导致细菌产生了天然耐药性。另外,有些细菌则必需要有抗菌药的存在,其耐药基因才进入转录状态而产生耐药性,一旦抗菌药不再存在,其耐药基因的转录就停止,从而导致耐药性消失而恢复敏感性。因此,根据研究结果,现在一般认为,当细菌处于生长状态下,在任何特定时刻仅有大约",的基因组是处在高活性和转录之中,其它基因组或者沉默,或者以十分低

细菌耐药机制的国内外最新研究进展_丁元廷

·实验技术及其应用·细菌耐药机制的国内外最新研究进展 丁元廷 (贵阳中医学院第一附属医院检验科,贵州贵阳550001) 摘要:全球性的细菌抗生素耐药是近年来感染性疾病治疗所面临的一大难题,细菌可对某类抗菌药物产生耐药性,也可 同时对多种化学结构各异的抗菌药物耐药。随着各种新型抗生素在临床的应用,细菌的耐药也越来越广。本文对细菌耐 药机制近年来国内外的研究进展进行简要综述,并探索有效的防治措施。 关键词:细菌耐药性;耐药机制;进展 中图分类号:R446.5文献标志码:A文章编号:1003-8507(2013)06-1109-03 The research progress on mechanism of bacterial resistance at home and aboad DING Yuan-ting. Department of Clinical Laboratory,The First Affiliated Hospital,Traditional Chinese Medical College of Guiyang, Guiyang550001,China Abstract:A big problem we meet during the treatment of infectious diseases is the global antibiotic resistance of baceria.Bacte- ria can develop resistance to not only a certain kind of antimicrobial agent,but also a variety of different chemical structure of the antimicrobial drugs.With a variety of new antibiotics applied in clinical practice,more and more extensive drug-resistant bacteria appear.The aim of this paper was to give a brief overview of the progress of bacterial resistance at home and abroad in recent years,and also to explore effective control measures. Key words:Bacterial resistance;Mechanisms of resistance;Progress 随着抗菌药物的大量使用,尤其抗生素的滥用导致细菌在抗生素及环境压力下,细菌群体中的敏感株被灭杀,耐药株被选择或诱导出来并繁殖生长而成为优势菌群,通过多种形式获得了对抗生素耐药性。细菌耐药性不仅可通过基因水平在相同或不同种属细菌中传播,而且结构完整的耐药菌株还可以在医院之间乃至全球播散,所致感染治疗棘手,病死率高,严重威胁人类健康,已成为全球关注的热点[1]。而临床在应用抗生素过程中,不适当治疗和滥用更加速和扩大了细菌对抗生素产生耐药性。据报道,一种新抗生素从研制到临床应用一般需要5~10年,而产生细菌耐药仅需要2年[2]。因此,在临床上减缓耐药性产生与追求抗菌疗效同等重要。了解细菌耐药发生机制的研究状况对于指导合理应用抗生素、预防菌株耐药和有效抗感染治疗具有重要的意义,本文就有关细菌耐药机制主要从基因水平、蛋白质水平及细菌多重耐药性角度对近年来研究进展进行综述。 1细菌耐药性概况 细菌在接触过抗菌药物后,就会千方百计地制造出能灭活抗菌药物的物质,例如各种灭活酶,或通过改变自身代谢规律来使抗菌药物失效,这样就形成了细菌的耐药性。早期细菌的耐药性主要表现在某种细菌对某类药物的耐药,20世纪30年代末磺胺药上市,40年代临床广泛使用磺胺药后,1950年日 作者简介:丁元廷(1975-),男,硕士,副主任检验技师,研究方向:分子生物学本报道80%~90%的志贺痢疾杆菌对磺胺药耐药了;1940年青霉素问世,1951年发现金黄色葡萄球菌能产生β-内酰胺酶灭活青霉素;60~70年代,细菌耐药性主要表现为金黄色葡萄球菌和一般肠道阴性杆菌由于能产生β-内酰胺酶使青霉素类和一代头孢菌素抗菌作用下降;80~90年代,阴性杆菌产生的超广谱β-内酰胺酶和染色体介导的I类酶,三代头孢菌素在内的多种抗生素耐药的多重耐药革兰阴性杆菌,阳性球菌中出现了非常难治的多重耐药菌感染。近年来由于出现了万古霉素中介金葡菌,关注对耐万古霉素MRSA的监测。近年来还开始注意红霉素耐药β-溶血性化脓性链球菌的发展,特别是耐大环内酯类-林可霉素类-链阳霉素B的β-溶血性化脓性链球菌的耐药性发展。 2细菌耐药机制 2.1基因水平(耐药性产生的遗传方式)遗传学机制 细菌可通过自身基因的突变产生耐药性,也可以通过染色体垂直传播和通过质粒或转座子水平传播而获得外源耐药性基因,还可通过整合子捕获外源基因并使之转变为功能性基因来传播耐药性基因。包括细菌先天固有耐药和染色体突变或获得新的脱氧核糖核酸分子。 2.1.1固有耐药天然或基因突变产生的是细菌染色体基因决定的代代相传的天然耐药性,亦称突变耐药。通过染色体遗传基因DNA发生突变,细菌经突变后的变异株对抗生素耐药。一般突变率很低,由突变产生的耐药菌生长和分裂缓慢,故由突变造成的耐药菌在自然界中不占主要地位,但染色体介导的

常见致病菌耐药机制与应对措施 (2)

2014年第二季度细菌耐药监测结果预警与应对策略由于抗菌药物的广泛不合理应用。细菌耐药现象日益严峻,临床出现大量多耐药和泛耐药菌株,给医院感染预防控制带来挑战。细菌耐药有一定的区域性和时间性,及时了解和掌握本院常见多耐药菌的流行现状及耐药特征,有利于临床医师合理选择抗菌药物,提高治疗效果,以达到减少为耐药菌的产生。现对2014年第二季度病原菌分布情况和耐药率进行公布,并向临床科室提供细菌耐药应对措施。

菌药物,提示“慎用抗菌药物”;耐药率超过50%的抗菌药物,提示“参照药敏试验结果用药”;耐药率超过75%的抗菌药物,提示“暂停该类抗菌药物的临床应用”。2细菌产生耐药性机制 2.1铜绿假单胞菌耐药机制

铜绿假单胞菌对生存环境和营养条件要求很低,在自然界分布广泛,甚至在医院内环境经常可见,其具有多药耐药性及耐药机制:(1)该菌能够产生破坏抗菌药物活性的多种灭活酶、钝化酶和修饰酶。(2)基因突变,作用靶位变异。(3)细胞膜通透性降低。(4)主动泵出机制将进入的药物排到体外。(5)产生生物膜,阻隔白细胞、多种抗体及抗菌药物进入细菌细胞内吞噬细菌。由于铜绿假单胞菌复杂的耐药机制导致其感染具有难治性和迁延性。 2.2大肠埃希氏菌耐药机制 大肠埃希菌是G-杆菌中分离率较高的机会致病菌,可引起人体所有部位的感染并且呈多重耐药性。 (1)β-内酰胺酶的产生 ①大肠埃希菌对β-内酰胺类抗菌药物耐药主要是由超广谱β-内酰胺酶(ESBLs)引起的,对头霉素类及碳青霉烯类药物敏感。ESBLs可分为五大类:TEM型、SHV型、CTX-M型、OXA型和其他型,大肠埃希菌ESBLs酶以TEM型最常见。TEM型ESBLs 呈酸性,可水解头孢他啶、头孢噻肟。SHV型ESBLs呈碱性,有水解头孢噻吩的巯基。CTX-M型ESBLs呈碱性,对头孢噻肟水解能力强于头孢他啶。OXA型ESBLs 呈弱酸性或弱碱性,主要水解底物是苯唑西林,OXA型酶主要见于铜绿假单胞菌中,在大肠埃希菌中的分离率较低。 ②AmpCβ-内酰胺酶AmpC酶主要作用于头孢菌素类抗菌药物,且不能被克拉维酸抑制。它是水解酶,与β-内酰胺环羧基部分共价结合,在水分子作用下导致β-内酰胺环开环,破坏β-内酰胺类抗菌药物抗菌活性。 ③对酶抑制剂药的耐药的β-内酰胺酶对酶抑制剂药的耐药的β-内酰胺酶(IRT)主要有TEM系列衍变而来,又称为耐酶抑制剂TEM系列酶。 (2)药物作用靶位的改变 (3)主动外排 (4)外膜通透性的下降 2.3肺炎克雷伯杆菌耐药机制 肺炎克雷伯杆菌属于阴性杆菌,通常存在于人类肠道、呼吸道,是除大肠埃希氏菌外导致医源性感染的最重要的条件致病菌。由于抗菌药物的大量使用,在选择性压力下多药耐药肺炎克雷伯杆菌(KPN)菌株不断出现,耐药率日益上升,KPN 耐药机制包括:(1)产抗菌药物灭活酶 ①β-内酰胺酶包括产超广谱β-内酰胺酶(ESBLs)、AmpC酶、耐酶抑制剂β-内酰胺酶、碳青霉烯酶(KPC酶)及金属β-内酰胺酶(MBLs)等。 ESBLs是耐药KPN产生的最主要的一类酶,由质粒介导,产ESBLsKPN对青霉素类、头孢菌素类及单环类药物耐药,但对头霉素类和碳青霉烯类及酶抑制剂敏感。

细菌耐药性机理分析

细菌耐药性机理分析 卢嘉程 1142042005

抗生素的杀菌机理简介 ?抑制细胞壁的合成 ?某些含有β-内酰胺环的抗生素,如青霉素类和头孢菌素类,能与细菌细胞壁上一种叫PBPS的特定蛋白结合,抑制分裂中的细菌细胞壁的形成,使细菌因失去细胞壁的保护作用而在渗透作用下裂解死亡。 ?改变细胞膜通透性 ?某些抗生素(多粘菌素和短杆菌素)能与细菌细胞膜相互作用,改变膜的通透性,让细菌因体内的有用物质大量流失到胞外或者电解质失调而死亡

?干扰蛋白质的合成(氨基糖苷类四环素类氯霉素类等) ?抗生素进入细菌体内后与细菌的核糖体或者是tRNA,mRNA等反应底物相互作用,抑制细菌蛋白质的合成,某些重要的蛋白如结构蛋白或酶等无法合成,则细菌必死 ?阻碍核酸的复制和转录(人工合成喹诺酮类抗生素) ?通过阻碍细菌DNA的复制,可以阻止其分裂繁殖。而阻碍DNA的转录则可以导致后续的翻译无法进行,使细菌因缺乏生存所必需的蛋白质而死亡

道高一尺,魔高一丈

细菌抗药性的五种机制 ?使抗生素分解或失去活性 ?有的细菌能产生相应的水解酶或钝化酶来水解掉或修饰抗生素,使之失去生物活性。如细菌产生的β-内酰胺酶就能使含β-内酰胺环的青霉素类抗生素被水解掉,而钝化酶(磷酸转移酶、核酸转移酶、乙酰转移酶)则可以使氨基糖苷类抗生素失去抗菌活性 ?改变抗生素的作用靶点 ?耐甲氧西林的金黄色葡萄球菌通过对细胞壁上的青霉素结合蛋白PBPS进行修饰,使抗生素无法和结构改变了的蛋白结合发挥作用。

?改变细胞膜特性 ?细菌发生突变后改变了质膜的通透性,某些原来需进入细菌细胞内发挥作用的抗菌药物被隔离在细胞外 ?改变代谢途径 ?通过大量增加某些代谢底物的产量,稀释抗生素的作用,让细菌对该种抗生素不再敏感。如磺胺药与对氨基苯甲苯酸(PABA),竞争二氢喋酸合成酶而产生抑菌作用。金黄色葡萄球菌多次接触磺胺药后,其自身的PABA 产量增加,可达原敏感菌产量的20~100 倍,后者与磺胺药竞争二氢喋酸合成酶,使磺胺药的作用下降甚至消失。

细菌耐药机制研究进展

细菌耐药机制研究进展 发表时间:2013-01-08T13:58:09.640Z 来源:《中外健康文摘》2012年第42期供稿作者:黄碧娇 [导读] 药物作用靶位的改变,菌体类有许多抗生素结合的靶位,细菌可以通过靶位的改变使抗生素不易结合是耐药发生的重要机制 黄碧娇 (井冈山大学附属医院江西吉安 343000) 【中图分类号】R915 【文献标识码】A【文章编号】1672-5085(2012)42-0085-02 【摘要】了解细菌对β—内酰胺类,喹诺酮类及大环内酯类等临床常用抗菌药物耐药机制的研究进展,有助于抗菌药物的正确使用,尽量减少抗菌药物的耐药出现,为新的抗菌药物的开发及利用打下坚实的基础。 【关键词】细菌耐药性抗菌药物 细菌耐药,为人类战胜病原菌提出了一个严峻的挑战,细菌耐药机制非常复杂,通常认为涉及到以下几个方面: 1 细菌对抗菌药物产生耐药性的可能性机制 主要有四种:①产生灭活酶和钝化酶,细菌能产生破坏抗生素或使之失去抗菌作用的酶,使药物在作用于菌体前即被破坏或失效;②抗菌药物渗透障碍,细菌外层的细胞膜和细胞壁结构对阻碍抗生素进入菌体有着重要的作用,膜上有亲水性的药物通过蛋白,称外膜蛋白,主要有两种分子较大的为ompf和分子较小ompc,最近又发现了第三种蛋白phoe,外膜蛋白的缺失可导致细菌耐药性的发生,在某些药物的外膜上含有特殊药物泵出系统,使菌体药物的浓度不足以发挥抗菌作用而导致耐药;③药物作用靶位的改变,菌体类有许多抗生素结合的靶位,细菌可以通过靶位的改变使抗生素不易结合是耐药发生的重要机制;④代谢途径的改变绝大多数细菌不能利用已有叶酸及其衍生物必须自行合成四氢叶酸,肠球菌属等某些营养缺陷细菌能用外源性胸苷或胸腺嘧啶,表现对磺胺和甲氧嘧啶等药物的耐药。 从分子生物学角度认识细菌的耐药机制过去主要集中在基因突变的研究中,认为基因突变的积累使细菌产生耐药性的重要机制,但近来研究发现,没有接触过抗生素的病原菌,对抗生素也有抗药性,耐药性具有转移的特点,螯分子被认为是抗性基因在水平传播的重要因子,由两部分组成,5’与3’端保守区域(简称cs)以及中间的基因簇,选择性的整合到螯分子上面获得耐药性,通过螯合子的螯合作用,抗性基因之间能够互相转换,再借助于转化,转导与结合作用,使得耐药性在畜禽与畜禽,畜禽与人类,人类与人类之间的病原菌广泛传播,给人类健康造成严重威胁。 2 细菌对β—内酰胺类抗药性的耐药机制。 2.1产生β—内酰胺酶 β—内酰胺环为β—内酰胺类抗菌药物的活性部位,一旦被β—内酰胺酶水解就将失去其抗菌活性,细菌对β—内酰胺类抗菌药物的耐药性约80%通过产生β—内酰胺酶实现,β—内酰胺酶种类繁多,已经报道通过的就有200余种。具有不同特性的β—内酰胺酶的细胞对不同的β—内酰胺酶抗菌药物的耐受性不同。G+菌、G-菌、分枝杆菌和诺卡菌种都发现有各种不同特性的β—内酰胺酶。 针对这一耐药机制,临床上目前应用的药物有2类:①具有对β—内酰胺酶稳定的化学结构的药物,包括苯唑西林、双氯西林、甲氧西林、异口恶唑青霉素等半合成青霉素以及亚胺培南、美罗培南等碳青霉烯类药物等。②β—内酰胺酶抑制剂,包括克拉维酸,舒巴坦、他唑巴坦等,它们与β—内酰胺类药物联用,对产酶菌有很强的增效作用。其复合制剂有:由阿莫西林与克拉维酸组成的奥格门汀,由羧苄西林与克拉维酸组成的替门汀,由氨苄西林与舒巴坦组成的优立新及由哌拉西林与他唑巴坦组成的他唑辛等。 2.2药物作用的靶蛋白改变 β—内酰胺类抗菌药物的作用靶位为青霉结合蛋白(PBP),对β—内酰胺类抗菌药物耐药的细菌除了由于产生大量β—内酰胺酶破坏进入胞内的抗菌药物外,还由于PBP发生了改变使之与这类抗菌药物(如青霉素类、头孢菌素类、单环β—内酰胺类和碳青霉烯类等)的亲和力降低,或是出现了新的PBP所致,这种耐药机制在金萄球菌、表皮葡萄球菌、皮炎链球菌、大肠杆菌、绿脓杆菌和流感嗜血杆菌等耐药菌种均已证实。 2.3细胞外膜渗透性降低细菌的细胞膜使细菌与环境离开。细胞外膜上的某些特殊蛋白即孔蛋白是一种非特异性的、跨越细胞膜的水溶物质扩散通道。一些半合成的β—内酰胺类抗菌药物很容易透过肠细菌的孔蛋白通道;但一些具有高渗透性外膜的对抗菌药物敏感的细菌可以通过降低外膜的渗透性产生耐药性,如原来允许某种抗菌药物通过的孔蛋白通道由于细菌发生突变而使该孔蛋白通道关闭或消失,则细菌就会对该抗菌药物产生很高的耐药性。亚胺培南是一种非典型的β—内酰胺类抗菌药物,其对铜绿假单胞菌的活性,主要是通过一个特殊的孔蛋白通道OprD的扩散而实现的,这就意味着一旦这一简单的孔蛋白通道消失,则铜绿假单胞菌对亚胺培南就会产生耐药性。事实上,最近已经分离到许多具有这种耐药机制的耐亚胺培南的铜绿假单胞菌。 3 细菌喹诺酮类抗菌药物的耐药机制 3.1喹诺酮类药物的作用机制是通过抑制DNA拓扑异构酶而抑制DNA的合成,从而发挥抑菌和杀菌作用,细菌DNA拓扑异构酶有Ⅰ、Ⅱ、Ⅲ、Ⅳ分2大类:第一类有拓扑异构酶Ⅰ、Ⅲ主要参与DNA的松解;第二类包括拓扑异构酶Ⅱ、Ⅳ,其中拓扑异构酶Ⅱ又称DNA促旋酶,参与DNA超螺旋的形成,拓扑异构酶Ⅳ则参与细菌子代染色质分配到子代细菌中,但拓扑异构酶Ⅰ和Ⅲ对喹诺酮类药物不敏感,喹诺酮类药物的主要作用靶位是DNA促旋酶和拓扑异构酶Ⅳ。革兰阴性菌中DNA促旋酶是喹诺酮类的第一靶位,而革兰阳性菌中拓扑异构酶Ⅳ是第一靶位。 DNA促旋酶是通过暂时切断DNA双链,促进DNA复制转导过程中形成的超螺旋松解,或使松弛DNA链形成超螺旋空间构型,喹诺酮类药物通过嵌入断裂DNA链中间,形成DNA—拓扑异构酶—喹诺酮类3者复合物,阻止DNA拓扑异异构变化,妨碍细菌的DNA复制转录,已达到杀菌的目的。 3.2作用靶位的改变,编码组成DNA促旋酶的A亚单位和B亚单位及组成拓扑异构酶Ⅳ和ParC和ParE亚单位中任一亚基的基因发生突变均可引起喹诺酮类药物的耐药性,在所有的突变型中,以gxyA的突变为主,主要为Thr—83→Ile,Ala和ASp—87→Asn,Gly、Thr两者均占75%以上,而其他的突变型罕见,GyrA双点突变仅发生在喹诺酮类高度耐药的菌株中,这是因为gyxA上的83和87位的氨基酸在提供喹诺酮类结合位点时具有重要的作用,而gyrB的突变株则较gyrA上突变少见,主要为Glu—470→Asp,Ala—477→val和ser—468→phe,Parc 的突变主要为Ser—87→Leu,Trp位值得注意的是所有存在parc改变的发生是在gyxA突变之后才发生的,在同时具有gyxA和parc突变的菌株中,以gxyA上的Thx—83→Ile和parc上的ser—87→leu类型为最多见,ParE的突变型为ASp—419→Asn、Ala—425→val但现在parE出现突变极为罕见3/150 3.3 膜通透性改变,喹诺酮类药物与其他抗菌药物一样,依靠革兰阴性菌的外膜蛋白(oMp)和脂多糖的扩散作用而进入细菌体内,

2016年第三季度细菌耐药监测预警分析

2016年第三季度细菌耐药监测预警分析 为加强细菌耐药监测预警工作和临床合理应用抗菌药物,根据《卫生部办公厅关于抗菌药物临床应用管理有关问题的通知》(卫办医政发[2009]38号)、《抗菌药物临床应用指导原则》的要求,结合检验科《2016年第三季度常见细菌耐药性统计、分析》报告,对我院的抗菌药物使用提出以下预警: 一、细菌培养情况 2016年07-09月临床共送检细菌培养标本1178份,共检出病原菌389株,阳性检出率为%。排在前五位的细菌是:肺炎克雷伯杆菌118株、大肠埃希菌75株、铜绿假单胞菌30株、金黄色葡萄球菌29株、鲍曼不动杆菌13株,其他细菌162株。 二、全院细菌耐药监测结果分析及用药建议 根据卫生部办公厅关于抗菌药物临床应用管理有关问题的[2009]38号文件和《抗菌药物临床应用管理办法》要求:1.主要目标细菌耐药率超过30%的抗菌药物,应当及时将预警信息通报本机构医务人员;2.主要目标细菌耐药率超过40%的抗菌药物,应当慎重经验用药;3.主要目标细菌耐药率超过50%的抗菌药物,应当参照药敏试验结果选用;4.主要目标细菌耐药率超过75%的抗菌药物,应当暂停针对此目标细菌的临床应用,根据追踪细菌耐药监测结果,再决定是否恢复临床应用。现根据我院第三季度细菌耐药监测情况,对检出率居前五位的细菌根据该要求及抗菌药物的特点进行推荐用药。 1、肺炎克雷伯氏菌

肺炎克雷伯菌是产质粒介导的超广谱β-内酰胺酶(ESBL)的代表菌种。本季度共检出118株,对抗菌药物耐药情况如下: ①对复方新诺明、妥布霉素、哌拉西林/他唑巴坦、头孢他啶、头孢吡肟、庆大霉素、左氧氟沙星、头孢西丁、氨曲南、呋喃妥因、环丙沙星的耐药率均低于30%,可以作为肺炎克雷伯氏菌的首选治疗用药。 ②对头孢曲松、头孢唑林、氨苄西林/舒巴坦的耐药率超过30%,将预警信息通报本机构医务人员。 ③对氨苄青霉素的耐药率达到99%,应暂停其对肺炎克雷伯氏菌感染的临床应用。 2、大肠埃希氏菌 本季度检出大肠埃希氏菌75株,其中,耐碳青霉烯类大肠埃希菌5例,其对抗菌药物耐药情况如下: ①对哌拉西林/他唑巴坦、头孢替坦、亚胺培南、阿米卡星、呋喃妥因、厄他培南的耐药率均低于30%,可作为初始经验治疗和首选用药。 ②对复方新诺明、妥布霉素的耐药率超过30%,将预警信息通报本机构医务人员。 ③对头孢曲松、头孢他啶、头孢吡肟、头孢西丁、氨曲南的耐药率超过40%,建议临床慎重经验用药。 ④对头孢唑林、庆大霉素、氨苄西林/舒巴坦的耐药率均高于50%,需参照药敏试验结果选用,在大肠埃希菌感染的病例中,不宜作为经验和治疗用药。

细菌主要耐药机制

细菌主要耐药机制 1.产生灭活抗生素的各种酶 1.1 β—内酰胺酶(β-lactamase) β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生β—内酰胺酶是细菌对β-内酰胺类抗菌药物产生耐药的主要原因。细菌产生的β-内酰胺酶,可借助其分子中的丝氨酸活性位点,与β—内酰胺环结合并打开β—内酰胺环,导致药物失活。迄今为止报道的β—内酰胺酶已超过300种,1995年Bush等将其分为四型:第1型为不被克拉维酸抑制的头孢菌素酶;第2型为能被克拉维酸抑制的β-内酰胺酶;第3型为不被所有β—内酰胺酶抑制剂抑制的金属β-内酰胺酶(需Zn2+活化)。可被乙二胺四乙酸和P-chloromercuribenzate所抑制;第4型为不被克拉维酸抑制的青霉素酶。临床常见的β—内酰胺酶有超广谱β—内酰胺酶、头孢菌素酶(AmpC酶)和金属酶。 1.1.1超广谱β-内酰胺酶(Extended-Spectrumβ-lactamases,ESBLs) ESBLs是一类能够水解青霉素类、头孢菌素类及单环类抗生素的β—内酰胺酶,属Bush分型中的2型β—内酰胺酶,其活性能被某些β—内酰胺酶抑制剂(棒酸、舒巴坦、他唑巴坦)所抑制。ESBLs主要由普通β-内酰胺酶基因(TEM—1,TEM—2和SHV—1等)突变而来,其耐药性多由质粒介导。自1983年在德国首次发现ESBLs以来,目前已报道的TEM类ESBIs已有90多种,SHV类ESBLs多于25种。TEM型和SHV型ESBLs主要发现于肺炎克雷伯菌和大肠埃希菌,亦发现于变形杆菌属、普罗威登斯菌属和其他肠杆菌科细菌。 国内近年来随着三代头孢菌素的广泛使用,产ESBLs菌的检出率逐年增加。NCCLs规定,凡临床分离的大肠埃希氏菌和克雷伯氏菌均应监测是否为产ESBLs菌株;若产生,无论体外对第三代头抱菌素、氨曲南的药敏结果如何,均应报告对三代头孢菌素及氨曲南耐药。另外,ESBLs菌株不仅对β-内酰胺类抗生素有很高的耐药率,而且对氨基糖苷类、喹喏酮类耐药率也在60%左右,因此,临床遇到由ESBLs引起的感染时,建议首选含β—内酰胺酶抑制剂的复方抗生素制剂或亚胺培南;对于头孢吡肟等四代头孢,尚有争议。 1.1.2头孢菌素酶(AmpC酶)届Bush分类中的1型(Ⅰ型) β—内酰胺酶。 通常将其分为由染色体介导产生的AmpC β—内酰胺酶和由质粒介导产生的AmpC β—内酰胺酶,前者的产生菌有阴沟肠杆菌、铜绿假单胞菌等,后者主要由肺炎克雷伯氏菌和大肠埃希氏菌产生。AmpC酶可作用于大多数青霉素,第一、二、三代头孢菌素和单环类抗生素。而第四代头孢菌素、碳青霉烯类不受该酶作用。该酶不能被β—内酰胺酶抑制剂所抑制。AmpCβ—内酰胺酶的产生有2种可能:①在诱导剂存在时暂时高水平产生,当诱导剂不存在时,酶产量随之下降,三代头孢菌素、棒酸和碳青霉烯类抗生素是诱导型AmpC酶的强诱导剂;②染色体上控制酶表达的基因发生突变,导致AmpC酶持续稳定高水平表达。由高产AmpC酶耐药菌引起的感染死亡率很高。 实际上,所有的革兰氏阴性菌都能产生染色体介导的AmpC头孢菌素酶,在多数情况下为低水平表达;在肠杆菌、柠檬酸杆菌、沙雷氏菌、铜绿假单胞菌中可高频诱导产生,且常为高产突

病原微生物第6章 细菌的耐药性习题与答案

第 6章细菌的耐药性 一、选择题 A型题 1、编码细菌对抗菌药物耐药性的质粒是: A. F 质粒 B . R 质粒 C. Vi 质粒 D. Col 质粒 E. K 质粒 2、固有耐药性的产生是由于: A. 染色体突变 B. 接合性 R 质粒介导 C. 非接合性 R 质粒介导 D. 转座因子介导 E.细菌种属特异性所决定 3、获得耐药性的产生原因不包括: A. 染色体突变 B. 细菌种属特异性决定的耐药性 C. 非接合性 R质粒介导 D. 接合性 R质粒介导 E. 转座因子介导 4、关于 R 质粒的描述,下列哪项是错误的: A. R 质粒是耐药性质粒 B. R 质粒可通过接合方式传递 C. R 质粒在肠道菌中更为常见 D. R 质粒在呼吸道感染细菌中更为常见 E. R 质粒由 RTF 和 r 决定子组成 5、R 质粒决定的耐药性的特点不包括: A. 以多重耐药性较为常见 B. 可从宿主菌检出 R 质粒 C. 容易因质粒丢失成为敏感株 D. R 质粒的多重耐药性较稳定 E. 耐药性可经接合转移 6、细菌耐药性产生的机制不包括: A. 钝化酶的产生 B. 药物作用靶位的改变 C. 抗菌药物的使用导致细菌发生耐药性基因突变 D. 细菌对药物的主动外排 E. 细菌细胞壁通透性的改变 X 型题 1、下列基因转移与重组的方式中,哪些与细菌的耐药性形成有关? A.转化 B.转导 C.接合 D.溶原性转换 E.原生质体融合 2、获得耐药性发生的原因: A. 染色体突变 B. 细菌种属特异性决定的耐药性 C. 抗菌药物的使用 D. R 质粒介导 E. 转座因子介导 3、细菌耐药性的控制策略: A. 合理使用抗菌药物 B. 严格执行消毒隔离制度 C. 研制新抗菌药物 D. 研制质粒消除剂 E.采用抗菌药物的“轮休”措施 4、细菌耐药性产生的机制 A.抗菌药物的使用导致细菌发生耐药性基因突变 B. 药物作用靶位的改变 C. 钝化酶的产生 D. 细菌对药物的主动外排 E. 细菌细胞壁通透性的改变 二、填空题 1、细菌耐药性产生的机制主要有,,和 。 2、引起细菌耐药的钝化酶主要有,, 和。 3、细菌耐药性的控制策略有,,,, 和。 三、名词解释 1、耐药性(drug resistance); 2、固有耐药性(intrinsic resistance); 3、获得耐药性(acquired resistance); 4、R质粒(resistance plasmid)。 四、问答题

大肠埃希菌耐药机制研究进展

大肠埃希菌耐药机制研究进展 【摘要】大肠埃希菌是典型的革兰氏阴性杆菌,致病性大肠埃希菌更是临床上最常见的病原菌之一。近年来,大肠埃希菌的耐药株不断增多,特别是多重耐药株的出现增多,使临床大肠埃希菌病的预防和治疗十分困难。本文对大肠埃希菌耐药现状以及耐药性机制的研究进行了综述,为防治大肠埃希菌耐药性的产生及合理用药提供帮助。 【关键词】大肠埃希菌;耐药机制;细菌生物膜 【文章编号】1004-7484(2014)05-2897-02 大肠埃希菌是存在于人和动物肠道内的一类正常菌群,但当大肠埃希菌侵入到人体其他部位或器官时,则会导致感染。近些年,致病性大肠埃希菌特别是泛耐药大肠埃希菌临床监测率逐年升高,本文针对大肠埃希菌耐药性机制以及耐药现状的研究进行综述。 1 大肠埃希菌的生物学特性 1.1大肠埃希菌概述 大肠埃希菌(E. coli)是肠杆菌科埃希氏菌属的代表菌,于1885年被Escherichia首次发现并命名为大肠埃希菌,简称大肠埃希菌。为兼性厌氧菌,生长温度范围为15~45℃。营养要求不高。大多数大肠埃希菌能发酵多种糖类并产气。一般大小为0.4-1μm,长1.7-3μm。无芽孢,多数菌株周身有鞭毛,能运动。有菌毛。

大肠埃希菌有O、K、H、F四种抗原,抗原构造比较复杂,O抗原为脂多糖,组成细胞壁的耐热成分;K抗原位于O抗原外层,与细菌的侵袭力有关,为酸性多糖;H抗原是位于鞭毛上的蛋白质,氨基酸的含量及排列顺序决定其特异性; F 抗原与大肠埃希菌的粘附作用有关。 1.2 大肠埃希菌分类和致病机理 大肠埃希菌是肠道内重要的正常菌群,在宿主免疫力下降或细菌侵入肠道外组织器官后就可以成为条件致病菌,引起肠道外感染。根据引起疾病的不同可将病原性大肠埃希菌分为三个致病型:肠道感染/腹泻型、尿道感染型和化脓性/脑膜炎型。致病性大肠埃希菌除具有一般的毒力因子,如内毒素、荚膜、Ⅲ型分泌系统等还具有自身一些特殊的毒力因子如粘附素与外毒素,二者主要能引起泌尿道感染和肠道感染。 肠道感染/腹泻型大肠埃希菌根据携带毒力因子的不同可以分为5类:肠产毒性大肠埃希菌(ETEC)、肠致病性大肠埃希菌(EPEC)、肠出血性大肠埃希菌(EHEC)、肠粘附性大肠埃希菌(EAEC)、肠侵袭性大肠埃希菌(EIEC)。引起泌尿道感染的大肠埃希菌大多来源于结肠,污染尿道,上行至膀胱,甚至肾脏与前列腺,为上行性感染。化脓性/脑膜炎型大肠埃希菌感染则可能得大肠埃希菌败血症。常由大肠埃希菌尿道和胃肠道感染引起。据陈立涛的研究的血流感染中产ESBLs大肠埃希菌检出阳性率约60%,且多药耐药严重[1]。此外新生儿脑膜炎的主要致病因子即为大肠埃希菌与B组链球菌约75%的大肠

2017年1季度细菌耐药情况分析与对策报告

太和县人民医院2013年三季度细菌耐药情况分析与对策报告 一.标本送检及细菌检出情况 本季度细菌培养送检率为35.24%。微生物室共收到标本2068份,分离出病原菌496株,阳性率23.98%。其中革兰氏阴性菌412株、占83.06%,革兰氏阳性菌54株,占10.89%,白假丝酵母菌5株,占1.01%。科室分布前六位的是:重症医学科422例,儿科422例,肝胆外科112例,神经外科103例,呼吸内科80例,普外科62例,内分泌科59例。送检标本类型较多的依次是:痰581份、大便114份、尿液111份、渗出液111份、脓液75份、血液57份,阳性率最高的为血液,其它依次为:脓液、渗出液、痰液、尿液、大便。 标本中检出的常见菌如下:以肺炎克雷伯菌最多,其次是大肠埃希菌、产气肠杆菌、阴沟肠杆菌、铜绿假单胞菌、奇异变形杆菌。 共筛选出多重耐药菌20株,占总菌数的4.03%,其构成为:大肠埃希菌11株,占多重耐药菌菌株总数的55% 鲍曼不动杆菌3株,占多重耐药菌菌株总数的15%肺炎克雷伯菌2株,占多重耐药菌菌株总数的10%铜绿假单胞菌1 株,占多重耐药菌菌株总数的5%阴沟肠杆菌1株,占多重耐药菌菌株总数的5% 产气肠杆菌1株,占多重耐药菌菌株总数的5% 嗜麦芽寡食单胞菌1株,占多重耐药菌菌株总数的5% 第三季度主要标本类型分布情况 临床常见前几位病原菌 第三季度多重耐药菌菌株类型构成情况(%

二.常见临床分离细菌耐药情况与分析 1.革兰氏阳性菌 本次分离的革兰氏阳性菌较少,不具代表性,无法具体分析。 2.革兰氏阴性菌 本次分离出的大肠埃希菌对哌拉西林、头抱呋辛、头抱他啶耐药率高,应 暂停该类抗菌药物的临床应用;对庆大霉素、哌拉西林/他唑巴坦、头抱吡肟、 复合磺胺、环丙沙星的耐药率在50-75%之间,参照药敏实验结果选择用药;对氨苄西林/舒巴坦为中敏,提示医务人员慎重经验用药;对头抱西丁、阿米卡星耐药率在30-40%应及时将抗菌药物预警信息通报医务人员,对亚胺培南敏感性高。 本次分离的肺炎克雷伯菌对哌拉西林、头抱呋辛的耐药率高,根据细菌耐药预警机制,应暂停使用;对头抱唑林、头抱曲松、氨苄西林、氨苄西林/舒巴坦、头抱他啶、头抱吡肟、哌拉西林/他唑巴坦、复合磺胺耐药率在50-75%之间,提示医务人员参照药敏实验结果用药;对氨曲南、庆大霉素耐药率在40-50% 之间,提示医务人员慎重经验用药;对环丙沙星耐药率在30-40%应及时将抗菌 药物预警信息通报医务人员;对头抱西丁、左氧沙星、阿米卡星、亚胺培南均敏感,是肺炎克雷伯菌的治疗用药。 本次分离的产气肠杆菌对哌拉西林、头抱西丁、头抱呋辛、庆大霉素、复合磺胺耐药率在50-75%之间,提示医务人员参照药敏实验结果用药;对氨苄西林、哌拉西林/他唑巴坦耐药率在40-50%之间,提示医务人员慎重经验用药;对氨苄西林/舒巴坦耐药率在30-40%应及时将抗菌药物预警信息通报医务人员;对阿米卡星、头抱他啶、环丙沙星、头抱吡肟、头抱曲松、亚胺培南、氨曲南均敏感,是产气肠杆菌的治疗用药。 本次分离的阴沟肠杆菌对哌拉西林的耐药率高,根据细菌耐药预警机制,应暂停使用,避免耐药范围的扩大;对头抱西丁、氨苄西林、哌拉西林/他唑巴 坦耐药率大于50%提示医务人员参照药敏实验结果用药;对氨苄西林/舒巴坦、头抱他啶、庆大霉素耐药率在40-50%之间,提示医务人员慎重经验用药;对头抱吡肟、复合磺胺耐药率在30-40%之间,应及时将抗菌药物预警信息通报医务人员。对环丙沙星、阿米卡星、亚胺培南、头抱呋辛、左氧沙星、氨曲南均敏感,是阴沟肠杆菌的治疗用药。 本次分离出的铜绿假单胞菌对头抱西丁、复合磺胺、哌拉西林/他唑巴坦 的耐药率大于75%按照细菌耐药预警机制,应暂停该类抗菌药物的在铜绿假单胞菌感染中的临床应用,根据追踪细菌耐药监测结果,再决定是否恢复其的临床应用;对哌拉西林、

相关主题
文本预览
相关文档 最新文档