当前位置:文档之家› 操作系统实验三报告预防进程死锁的银行家算法

操作系统实验三报告预防进程死锁的银行家算法

操作系统实验三报告预防进程死锁的银行家算法
操作系统实验三报告预防进程死锁的银行家算法

操作系统实验报告

实验三

预防进程死锁的银行家算法

学号:

班级:

姓名:

【实验目的】

通过这次实验,加深对进程死锁的理解,进一步掌握进程资源的分配、死锁的检测和安全序列的生成方法。

【实验内容】

问题描述:

设计程序模拟预防进程死锁的银行家算法的工作过程。假设有系统中有n个进程P1, …,P n,有m类可分配的资源R1, …,R m,在T0时刻,进程P i分配到的j 类资源为Allocation ij个,它还需要j类资源Need ij个,系统目前剩余j类资源Work j 个,现采用银行家算法进行进程资源分配预防死锁的发生。

程序要求如下:

1)判断当前状态是否安全,如果安全,给出安全序列;如果不安全给出理由。

2)对于下一个时刻T1,某个进程P k会提出请求Request(R1, …,R m),判断分配给P k进程请求的资源之后。

3)输入:进程个数n,资源种类m,T0时刻各个进程的资源分配情况(可以运行输入,也可以在程序中设置);

4)输出:如果安全输出安全的进程序列,不安全提示信息。

实现提示:

用C++语言实现提示:

1)程序中进程调度时间变量描述如下:

int Available[MaxNumber];

int Max[MaxNumber][MaxNumber];

int Allocation[MaxNumber][MaxNumber];

int Need[MaxNumber][MaxNumber];

int Request[MaxNumber];

int SafeOrder[MaxNumber];

2)进程调度的实现过程如下:

变量初始化;

接收用户输入n,m,(输入或者默认的)Allocation ij,Need ij;

按照银行家算法判断当前状态安全与否,安全给出安全序列,不安全给出提示;

如果安全,提示用户输入下一时刻进程P k的资源请求Request(R1, … ,R m);

如果不安全或者无新请求则退出。

实验要求:

1)上机前认真复习银行家算法,熟悉资源分配和安全检查过程;

2)上机时独立编程、调试程序;

3)根据具体实验要求,完成好实验报告(包括实验的目的、内容、要求、源程序、实例运行结果截图)。

【源程序】

头文件Safe.h

#include

#include

#include

#include

#define MaxNumber 100

//定义进程控制块

struct Process_struct{

int Available[MaxNumber]; //可利用资源数组

int Max[MaxNumber][MaxNumber]; //最大需求矩陈

int Allocation[MaxNumber][MaxNumber]; //分配矩陈

int Need[MaxNumber][MaxNumber]; //需求矩陈

int Request[MaxNumber][MaxNumber]; //M个进程还需要N类资源的资源量

int Finish[MaxNumber];

int p[MaxNumber];

}Process;

int M,N; //M个进程,N类资源

int i,j,k,l=0;

int Work[MaxNumber]; //可利用资源

int Pinput();

int Safe();

int Peques();

//进程输入

int Pinput()

{

int i,j;

cout<<"输入进程的数目:\n";

cin>>M;

cout<<"输入资源的种类:\n";

cin>>N;

cout<<"输入每个进程最多所需的各类资源数,按照"<

for(i=0;i

for(j=0;j

cin>>Process.Max[i][j];

cout<<"输入每个进程已经分配的各类资源数,按照"<

for(i=0;i

{

for(j=0;j

{

cin>>Process.Allocation[i][j];

Process.Need[i][j] = Process.Max[i][j] - Process.Allocation[i][j];

银行家算法实验报告

操作系统 (实验报告) 银行家算法姓名:***** 学号:***** 专业班级:***** 学验日期:2011/11/22 指导老师:***

一、实验名称: 利用银行家算法避免死锁 二、实验内容: 需要利用到银行家算法,来模拟避免死锁:设计M个进程共享N类资源,M个进程可以动态的申请资源,并可以判断系统的安全性,进行打印出,相应的安全序列和分配表,以及最后可用的各资源的数量。 三、实验目的: 银行家算法是一种最有代表性的避免死锁的算法,在避免死锁的方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。 为实现银行家算法,系统必须设置若干数据结构,所以通过编写一个模拟动态资源分配的银行家算法程序,进一步深入理解死锁,产生死锁的必要条件,安全状态等重要的概念,并掌握避免死锁的具体实施方法。 四、实验过程 1.基本思想: 我们可以把操作系统看成是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程申请到资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过再测试系统现资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。 安全状态就是如果存在一个由系统中所有进程构成的安全序列P1……则系统处于安全状态。安全状态是没有死锁发生。而不安全状态则是不存在这样一个安全序列,从而一定会导致死锁。 2.主要数据结构: (1)可利用资源向量Available.这是一个含有m个元素的数组,其中的每一个 元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类的资源的分配和回收而动态地改变,如果Available[j]=K,则表示系统中现有Rj类资源K个。 (2)最大需求矩阵Max.这是一个n*m的矩阵,定义了系统中n 个进程中的每 一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K. (3)分配矩阵Allocation.这也是一个n*m的矩阵,它定义了系统中每一类资源

实验二 银行家算法报告

昆明理工大学信息工程与自动化学院学生实验报告 (2011 —2012 学年第二学期) 一、实验目的和要求 银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 二、实验内容 1.设计进程对各类资源最大申请表示及初值确定。 2.设定系统提供资源初始状况。 3.设定每次某个进程对各类资源的申请表示。 4.编制程序,依据银行家算法,决定其申请是否得到满足。 三、实验说明 1.数据结构 假设有M个进程N类资源,则有如下数据结构: MAX[M*N] M个进程对N类资源的最大需求量 AVAILABLE[N] 系统可用资源数 ALLOCATION[M*N] M个进程已经得到N类资源的资源量 NEED[M*N] M个进程还需要N类资源的资源量 2.银行家算法 设进程I提出请求Request[N],则银行家算法按如下规则进行判断。 (1)如果Request[N]<=NEED[I,N],则转(2);否则,出错。 (2)如果Request[N]<=AVAILABLE,则转(3);否则,出错。 (3)系统试探分配资源,修改相关数据: AVAILABLE=AVAILABLE-REQUEST ALLOCATION=ALLOCATION+REQUEST

NEED=NEED-REQUEST (4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废,系统恢复原状,进程等待。 3.安全性检查 (1)设置两个工作向量WORK=AVAILABLE;FINISH[M]=FALSE (2)从进程集合中找到一个满足下述条件的进程, FINISH[i]=FALSE NEED<=WORK 如找到,执行(3);否则,执行(4) (3)设进程获得资源,可顺利执行,直至完成,从而释放资源。 WORK=WORK+ALLOCATION FINISH=TRUE GO TO 2 (4)如所有的进程Finish[M]=true,则表示安全;否则系统不安全。 四、程序流程图 初始化算法流程图:

银行家算法例题——四步走解题

银行家算法例题 系统中原有三类资源A、B、C和五个进程P1、P2、P3、P4、P5,A资源17,B资源5,C资源20。当前(T0时刻)系统资源分配和进程最大需求如下表。 1、现在系统T0时刻是否处于安全状态? 2、是否可以允许以下请求? (1)T1时刻:P2 Request2=(0,3,4) (2)T2时刻:P4 Request4=(2,0,1) (3)T3时刻:P1 Request1=(0,2,0) 注:T0 T1 T2 T3时刻是前后顺序,后一时刻是建立在前一时刻的基础上。

解:由题设可知Need=Max-Allocation AvailableA=17-(2+4+4+2+3)=2(原有-分配) 同理AvailableB=3,AvailableC=3 可得T0时刻资源分配表如下所示(表中数据顺序均为A B C): 1、判断T0时刻是否安全,需要执行安全算法找安全序列,过程如下表: T0时刻能找到一个安全序列{P4,P3,P2,P5,P1},故T0时刻系统处于安全状态。

2、判断T1 T2 T3时刻是否满足进程请求进行资源分配。 (1)T1时刻,P2 Request2=(0,3,4) //第一步判断条件 ①满足Request2=(0,3,4)<=Need2(1,3,4) ②不满足Request2=(0,3,4)<=Available(2,3,3) 故系统不能将资源分配给它,此时P2必须等待。 (2)T2时刻,P4 Request4=(2,0,1) //第一步判断条件①满足Request4=(2,0,1)<=Need4(2,2,1) ②满足Request4=(2,0,1)<=Available(2,3,3) //第二步修改Need、Available、Allocation的值 Available=Available-Request4= (0,3,2) Allocation4=Allocation4+Request4=(4,0,5) Need4=Need4-Request4=(0,2,0) //第三步执行安全算法,找安全序列 (注解:先写上work,其初值是系统当前进行试分配后的Available(0,3,2) ,找五个进程中Need小于work的进程,比如Need4<=Work满足,则将P4写在第一行的最前面,同时写出P4的Need和Allocation,以此类推)

操作系统实验报告死锁的避免

操作系统实验(二)死锁的避免 1. 实验内容 使用C++实现模拟随机算法和银行家算法 2. 实验目的 (1)了解死锁的产生原因(随机算法) (2)理解死锁的解决办法(银行家算 法) 3?实验题目 使用随机算法和银行家算法设计程序

操作系统实验(二)死锁的避免4?程序流程图

银行家算法流程图 安全性算法流程图

5?程序代码和运行结果 #i nclude #i nclude typedef struct { int A; int B; int C; }RES; #defi ne false 0 #defi ne true 1

〃系统中所有进程数量 #defi ne PNUMBER 3 //最大需求矩阵 RES Max[PNUMBER]; //已分配资源数矩阵 RES Allocatio n[ PNUMBER]; //需求矩阵 RES Need[PNUMBER]; 〃可用资源向量 RES Available={0,0,0}; //安全序列 int safe[PNUMBER]; void setCo nfig() { int i=0,j=0; prin tf("================开始手动配置资源==================\n"); 〃可分配资源 printf("输入可分配资源\n"); sca nf("%d%d%d",&Available.A,&Available.B,&Available.C); //最大需求矩阵MAX printf("输入最大需求矩阵%dx%d\n",PNUMBER,PNUMBER ); for (i=0;i

银行家算法-实验报告

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理》 题目:银行家算法 班级: 学号: 姓名:

一、实验目的 银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。 实验环境 Turbo C 2.0/3.0或VC++6.0 实验学时 4学时,必做实验。 二、实验内容 用C语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。程序能模拟多个进程共享多种资源的情形。进程可动态地申请资源,系统按各进程的申请动态地分配资源。要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。 三、实验说明 实验中进程的数量、资源的种类以及每种资源的总量Total[j]最好允许动态指定。初始时每个进程运行过程中的最大资源需求量Max[i,j]和系统已分配给该进程的资源量Allocation[i,j]均为已知(这些数值可以在程序运行时动态输入),而算法中其他数据结构的值(包括Need[i,j]、Available[j])则需要由程序根据已知量的值计算产生。 四、实验步骤 1、理解本实验中关于两种调度算法的说明。 2、根据调度算法的说明,画出相应的程序流程图。 3、按照程序流程图,用C语言编程并实现。 五、分析与思考 1.要找出某一状态下所有可能的安全序列,程序该如何实现? 答:要找出这个状态下的所有可能的安全序列,前提是要是使这个系统先处于安全状态,而系统的状态可通过以下来描述: 进程剩余申请数=最大申请数-占有数;可分配资源数=总数-占有数之和; 通过这个描述来算出系统是否安全,从而找出所有的安全序列。 2.银行家算法的局限性有哪些?

操作系统之调度算法和死锁中的银行家算法习题答案

操作系统之调度算法和死锁中的银行家算法习 题答案 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1. 有三个批处理作业,第一个作业 10:00 到达,需要执行 2 小时;第二个作业在10:10到达,需要执行 1 小时;第三个作业在 10:25 到达,需要执行 25 分钟。分别采用先来先服 务,短作业优先和最高响应比优先三种调度算法,各自的平均周转时间是多少?解: 先来先服务: (结束时间=上一个作业的结束时间+执行时间 周转时间=结束时间-到达时间=等待时间+执行时间) 按到达先后,执行顺序:1->2->3 短作业优先: 1)初始只有作业1,所以先执行作业1,结束时间是12:00,此时有作业2和3; 2)作业3需要时间短,所以先执行; 3)最后执行作业2 最高响应比优先:

高响应比优先调度算法既考虑作业的执行时间也考虑作业的等待时间,综合了先来先服务和最短作业优先两种算法的特点。 1)10:00只有作业1到达,所以先执行作业1; 2)12:00时有作业2和3, 作业2:等待时间=12:00-10:10=110m;响应比=1+110/60=2.8; 作业3:等待时间=12:00-10:25=95m,响应比=1+95/25=4.8; 所以先执行作业3 3)执行作业2 2. 在一单道批处理系统中,一组作业的提交时刻和运行时间如下表所示。试计算一下三种 作业调度算法的平均周转时间 T 和平均带权周转时间 W。 ( 1)先来先服务;( 2)短作业优先( 3)高响应比优先 解: 先来先服务: 作业顺序:1,2,3,4 短作业优先: 作业顺序:

操作系统实验报告利用银行家算法避免死锁

计算机操作系统实验报告 题目利用银行家算法避免死锁 一、实验目的: 1、加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 2、要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。 二、实验内容: 用银行家算法实现资源分配: 设计五个进程{p0,p1,p2,p3,p4}共享三类资源{A,B,C}的系统,例如,{A,B,C}的资源数量分别为10,5,7。进程可动态地申请资源和释放资源,系统按进程的申请动态地分配资源,要求程序具有显示和打印各进程的某一个时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。 三、问题分析与设计: 1、算法思路: 先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。 2、银行家算法步骤: (1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因

为它所需要的资源数已超过它所宣布的最大值。 (2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。 (3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值: Available=Available-Request[i]; Allocation=Allocation+Request; Need=Need-Request; (4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。 3、安全性算法步骤: (1)设置两个向量 ①工作向量Work。它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation; ②布尔向量Finish。它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。 (2)从进程集合中找到一个能满足下述条件的进程: ①Finish[i]=false ②Need

银行家算法例题

银行家算法例题 假定系统中有五个进程{P0,P1,P2,P3,P4} 和三类资源{A ,B,C},各种资源的数量分别为10、5、7,在T0 时刻的资源分配情况 (1)T0时刻的安全性 利用安全性算法对T0时刻的资源分配情况进行分析 (2)P1请求资源:P1发出请求向量Request1(1,0,2),系统按银行家算法进行检查 ①Request1(1,0,2)≤Need1(1,2,2) ②Request1(1,0,2)≤Available1(3,3,2) ③系统先假定可为P1分配资源,并修改Available ,Allocation1和Need1向量,由此形成 资源情况 进程 Max Allocation Need Available A B C A B C A B C A B C P0 7 5 3 0 1 0 7 4 3 3 3 2 P1 3 2 2 2 0 0 1 2 2 P2 9 0 2 3 0 2 6 0 0 P3 2 2 2 2 1 1 0 1 1 P4 4 3 3 0 0 2 4 3 1 资源情况 进程 Work A B C Need A B C Allocation A B C Work+Allocatio n A B C Finish P1 3 3 2 1 2 2 2 0 0 5 3 2 TRUE P3 5 3 2 0 1 1 2 1 1 7 4 3 TRUE P4 7 4 3 4 3 1 0 0 2 7 4 5 TRUE P2 7 4 5 6 0 0 3 0 2 10 4 7 TRUE P0 10 4 7 7 4 3 0 1 0 10 5 7 TRUE

操作系统实验报告-死锁的避免

操作系统实验报告-死锁的避免

操作系统实验(二)死锁的避免 1.实验内容 使用C++实现模拟随机算法和银行家算法 2.实验目的 (1)了解死锁的产生原因(随机算法) (2)理解死锁的解决办法(银行家算法) 3.实验题目 使用随机算法和银行家算法设计程序 4.程序流程图 主要过程流程图

银行家算法流程图

安全性算法流程图

5.程序代码和运行结果#include #include typedef struct { int A; int B; int C; }RES; #define false 0

#define true 1 //系统中所有进程数量 #define PNUMBER 3 //最大需求矩阵 RES Max[PNUMBER]; //已分配资源数矩阵 RES Allocation[PNUMBER]; //需求矩阵 RES Need[PNUMBER]; //可用资源向量 RES Available={0,0,0}; //安全序列 int safe[PNUMBER]; void setConfig() { int i=0,j=0; printf("================开始手动配置资源==================\n"); //可分配资源 printf("输入可分配资源\n"); scanf("%d%d%d",&Available.A,&Available.B,&Available.C); //最大需求矩阵MAX printf("输入最大需求矩阵%dx%d\n",PNUMBER,PNUMBER ); for (i=0;i

银行家算法_实验报告

课程设计报告课程设计名称共享资源分配与银行家算法 系(部) 专业班级 姓名 学号 指导教师 年月日

目录 一、课程设计目的和意义 (3) 二、方案设计及开发过程 (3) 1.课题设计背景 (3) 2.算法描述 (3) 3.数据结构 (4) 4.主要函数说明 (4) 5.算法流程图 (5) 三、调试记录与分析 四、运行结果及说明 (6) 1.执行结果 (6) 2.结果分析 (7) 五、课程设计总结 (8)

一、程设计目的和意义 计算机科学与技术专业学生学习完《计算机操作系统》课程后,进行的一次全面的综合训练,其目的在于加深催操作系统基础理论和基本知识的理解,加强学生的动手能力.银行家算法是避免死锁的一种重要方法。通过编写一个模拟动态资源分配的银行家算法程序,进一步深入理解死锁、产生死锁的必要条件、安全状态等重要概念,并掌握避免死锁的具体实施方法 二、方案设计及开发过程 1.课题设计背景 银行家算法又称“资源分配拒绝”法,其基本思想是,系统中的所有进程放入进程集合,在安全状态下系统受到进程的请求后试探性的把资源分配给他,现在系统将剩下的资源和进程集合中其他进程还需要的资源数做比较,找出剩余资源能满足最大需求量的进程,从而保证进程运行完成后还回全部资源。这时系统将该进程从进程集合中将其清除。此时系统中的资源就更多了。反复执行上面的步骤,最后检查进程的集合为空时就表明本次申请可行,系统处于安全状态,可以实施本次分配,否则,只要进程集合非空,系统便处于不安全状态,本次不能分配给他。请进程等待 2.算法描述 1)如果Request[i] 是进程Pi的请求向量,如果Request[i,j]=K,表示进程Pi 需要K个Rj类型的资源。当Pi发出资源请求后,系统按下述步骤进行检查: 如果Requesti[j]<= Need[i,j],便转向步骤2;否则认为出错,因为它所需要的资源数已超过它所宣布的最大值。 2)如果Requesti[j]<=Available[j],便转向步骤3,否则,表示尚无足够资源,进程Pi须等待。 3)系统试探着把资源分配给进程Pi,并修改下面数据结构中的数值: Available[j]:=Available[j]-Requesti[j]; Allocation[i,j]:=Allocation[i,j]+Requesti[j]; Need[i,j]:=Need[i,j]-Requesti[j];

银行家算法实验报告

计算机操作系统实验报告 一、实验名称:银行家算法 二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写一个简 单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 三、问题分析与设计: 1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是 否大于需要的,是否大于可利用的。若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。若安全,则分配;若不安 全,则拒绝申请,恢复到原来的状态,拒绝申请。 2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步骤(2); 否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。 (2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。 (3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的 数值: Available=Available-Request[i]; Allocation=Allocation+Request; Need=Need-Request;

(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状 态。 3、安全性算法步骤: (1)设置两个向量 ①工作向量Work。它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation; ②布尔向量Finish。它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令 Finish[i]=true。 (2)从进程集合中找到一个能满足下述条件的进程: ①Finish[i]=false ②Need

(完整版)操作系统课后题答案

2.OS的作用可表现在哪几个方面? 答:(1)OS作为用户与计算机硬件系统之间的接口;(2)OS作为计算机系统资源的管理者; (3)OS实现了对计算机资源的抽象。 5.何谓脱机I/O和联机I/O? 答:脱机I/O 是指事先将装有用户程序和数据的纸带或卡片装入纸带输入机或卡片机,在外围机的控制下,把纸带或卡片上的数据或程序输入到磁带上。该方式下的输入输出由外围机控制完成,是在脱离主机的情况下进行的。而联机I/O方式是指程序和数据的输入输出都是在主机的直接控制下进行的。 11.OS有哪几大特征?其最基本的特征是什么? 答:并发性、共享性、虚拟性和异步性四个基本特征;最基本的特征是并发性。 20.试描述什么是微内核OS。 答:(1)足够小的内核;(2)基于客户/服务器模式;(3)应用机制与策略分离原理;(4)采用面向对象技术。 25.何谓微内核技术?在微内核中通常提供了哪些功能? 答:把操作系统中更多的成分和功能放到更高的层次(即用户模式)中去运行,而留下一个尽量小的内核,用它来完成操作系统最基本的核心功能,称这种技术为微内核技术。在微内核中通常提供了进程(线程)管理、低级存储器管理、中断和陷入处理等功能。 第二章进程管理 2. 画出下面四条语句的前趋图: S1=a:=x+y; S2=b:=z+1; S3=c:=a – b;S4=w:=c+1; 答:其前趋图为: 7.试说明PCB 的作用,为什么说PCB 是进程存在的惟一标志? 答:PCB 是进程实体的一部分,是操作系统中最重要的记录型数据结构。作用是使一个在多道程序环境下不能独立运行的程序,成为一个能独立运行的基本单位,成为能与其它进程并发执行的进程。OS是根据PCB对并发执行的进程进行控制和管理的。 11.试说明进程在三个基本状态之间转换的典型原因。 答:(1)就绪状态→执行状态:进程分配到CPU资源;(2)执行状态→就绪状态:时间片用完;(3)执行状态→阻塞状态:I/O请求;(4)阻塞状态→就绪状态:I/O完成. 19.为什么要在OS 中引入线程?

操作系统实验报告利用银行家算法避免死锁完整版

操作系统实验报告利用 银行家算法避免死锁 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

计算机操作系统实验报告题目利用银行家算法避免死锁 一、实验目的: 1、加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 2、要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。 二、实验内容: 用银行家算法实现资源分配: 设计五个进程{p0,p1,p2,p3,p4}共享三类资源{A,B,C}的系统,例如,{A,B,C}的资源数量分别为10,5,7。进程可动态地申请资源和释放资源,系统按进程的申请动态地分配资源,要求程序具有显示和打印各进程的某一个时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。 三、问题分析与设计: 1、算法思路: 先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。若请求合法,则进行预分配,对分配后

的状态调用安全性算法进行检查。若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。 2、银行家算法步骤: (1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。 (2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。 (3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值: Available=Available-Request[i]; Allocation=Allocation+Request; Need=Need-Request; (4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。 3、安全性算法步骤: (1)设置两个向量 ①工作向量Work。它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation; ②布尔向量Finish。它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。 (2)从进程集合中找到一个能满足下述条件的进程:

银行家算法例子+答案

1、设系统中有3种类型的资源(A , B , C )和5个进程P1、P 2、P3 P4 P5, A 资源的数量为 17, B 资源的数量为5, C 资源的数量为20。在T o 时刻系统状 态见下表(T o 时刻系统状态表)所示。系统米用银行家算法实施死锁避免策 略。(12分) T o 时刻系统状态表 T0时刻系统状态表 (1) T o 时刻是否为安全状态?若是,请给出安全序列。 (2) 在T o 时刻若进程P2请求资源(0, 3, 4),是否能实施资源分配?为 什么? 满足P5的运行,在P5运行后,系统的状态为: 2 1 2 3 4 7 4 o 2 1 3 4 A 4 o 5 C A o o 6 V' 5 4 7 2 o 4 2 2 1 o o o o o o 同样的, 在 P5运行后,V ' (5, 4, 7)也大于等于 C-A 中P4所在的行(2, 2, 1),则能满 足P4的运行。P4运行后,系统的状态为: ⑷ 在(3) 的基; 础上, 若进程 P1 请求资源(o , 2, o ),是否能实施资源 分配?为什么 ,? 答: 当前 的系 统状态描述为: 5 5 9 2 1 2 3 4 7 5 3 6 4 o 2 1 3 4 C 4 o 11 A 4 o 5 C A o o 6 4 2 5 2 o 4 2 2 1 4 2 4 3 1 4 1 1 o R 17 5 2o V 2 3 3 (3)在(2)的基础上,若进程 分配?为什么? P4请求资源(2, o , 1),是否能实施资源 (1) 在To 时刻,由于V (2, 3, 3)大于等于(C-A )中P5所在行的向量(1 , 1 ,。),因此V 能

操作系统实验报告-利用银行家算法避免死锁

计算机操作系统实验报告题目利用银行家算法避免死锁 一、实验目得: 1、加深了解有关资源申请、避免死锁等概念,并体会与了解死锁与避免死锁得具体实施方法。 2、要求编写与调试一个系统动态分配资源得简单模拟程序,观察死锁产生得条件,并采用银行家算法,有效得防止与避免死锁得发生。 二、实验内容: 用银行家算法实现资源分配: 设计五个进程{p0,p1,p2,p3,p4}共享三类资源{A,B,C}得系统,例如,{A,B,C}得资源数量分别为10,5,7。进程可动态地申请资源与释放资源,系统按进程得申请动态地分配资源,要求程序具有显示与打印各进程得某一个时刻得资源分配表与安全序列;显示与打印各进程依次要求申请得资源号以及为某进程分配资源后得有关资源数据。 三、问题分析与设计: 1、算法思路: 先对用户提出得请求进行合法性检查,即检查请求就是否大于需要得,就是否大于可利用得。若请求合法,则进行预分配,对分配后得状态调用安全性算法进行检查。若安全,则分配;若不安全,则拒绝申请,恢复到原来得状态,拒绝申请。

2、银行家算法步骤: (1)如果Requesti

操作系统之调度算法和死锁中的银行家算法习题答案

1.有三个批处理作业,第一个作业10:00 到达,需要执行2 小时;第二个作业在10:10 到达,需要执行1 小时;第三个作业在10:25 到达,需要执行25 分钟。分别采用先来先服务,短作业优先和最高响应比优先三种调度算法,各自的平均周转时间是多少? 解: 先来先服务: (结束时间=上一个作业的结束时间+执行时间 周转时间=结束时间-到达时间=等待时间+执行时间) 短作业优先: 1)初始只有作业1,所以先执行作业1,结束时间是12:00,此时有作业2和3; 2)作业3需要时间短,所以先执行; 最高响应比优先: 高响应比优先调度算法既考虑作业的执行时间也考虑作业的等待时间,综合了先来先服务和最短作业优先两种算法的特点。 1)10:00只有作业1到达,所以先执行作业1; 2)12:00时有作业2和3, 作业2:等待时间=12:00-10:10=110m;响应比=1+110/60=2.8; 作业3:等待时间=12:00-10:25=95m,响应比=1+95/25=4.8; 所以先执行作业3 2.在一单道批处理系统中,一组作业的提交时刻和运行时间如下表所示。试计算一下三种作业调度算法的平均周转时间T 和平均带权周转时间W。 (1)先来先服务;(2)短作业优先(3)高响应比优先

解: 先来先服务: 短作业优先: 作业顺序: 1)8:00只有作业1,所以执行作业1; 2)9:00有作业2和3,作业3短,所以先执行3; 3)9:12有作业2和4,作业4短,所以先执行4; 高响应比优先: 作业顺序: 1)8:00只有作业1,所以执行作业1; 2)9:00有作业2和3 作业2等待时间=9:00-8:30=30m,响应比=1+30/30=2; 作业3等待时间=9:00-9:00=0m,响应比=1+0/12=1; 所以执行作业2; 3)9:30有作业3和4 作业3等待时间=9:30-9:00=30m,响应比=1+30/12=3.5; 作业4等待时间=9:30-9:06=24m,响应比=1+24/6=5;

操作系统实验报告记录利用银行家算法避免死锁

操作系统实验报告记录利用银行家算法避免死锁

————————————————————————————————作者:————————————————————————————————日期:

计算机操作系统实验报告题目利用银行家算法避免死锁 一、实验目的: 1、加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 2、要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。

二、实验内容: 用银行家算法实现资源分配: 设计五个进程{p0,p1,p2,p3,p4}共享三类资源{A,B,C}的系统,例如,{A,B,C}的资源数量分别为10,5,7。进程可动态地申请资源和释放资源,系统按进程的申请动态地分配资源,要求程序具有显示和打印各进程的某一个时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。 三、问题分析与设计: 1、算法思路: 先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。 2、银行家算法步骤: (1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。 (2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。 (3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值: Available=Available-Request[i];

操作系统课程设计实验报告用C实现银行家算法

操作系统课程设计实验报告用C实现银行家算 法 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

操作系统 实 验 报 告 (2) 学院:计算机科学与技术学院 班级:计091 学号:姓名:

时间:2011/12/30 目录 1.实验名称 (3) 2.实验目的 (3) 3.实验内容 (3) 4.实验要求 (3) 5.实验原理 (3) 6.实验环境 (4) 7.实验设计 (4) 数据结构设计 (4) 算法设计 (6) 功能模块设计 (7) 8.实验运行结果 (8) 9.实验心得 (9) 附录:源代码(部分) (9) 一、实验名称: 用C++实现银行家算法 二、实验目的: 通过自己编程来实现银行家算法,进一步理解银行家算法的概念及含义,提高对银行家算法的认识,同时提高自己的动手实践能力。 各种死锁防止方法能够阻止发生死锁,但必然会降低系统的并发性并导致低效的资源利用率。死锁避免却与此相反,通过合适的资源分配算法确保不会出现进程循环等

待链,从而避免死锁。本实验旨在了解死锁产生的条件和原因,并采用银行家算法有效地防止死锁的发生。 三、实验内容: 利用C++,实现银行家算法 四、实验要求: 1.完成银行家算法的设计 2.设计有n个进程共享m个系统资源的系统,进程可动态的申请和释放资源,系统按各进程的申请动态的分配资源。 五、实验原理: 系统中的所有进程放入进程集合,在安全状态下系统收到进程的资源请求后,先把资源试探性的分配给它。之后,系统将剩下的可用资源和进程集合中的其他进程还需要的资源数作比较,找出剩余资源能够满足的最大需求量的进程,从而保证进程运行完毕并归还全部资源。这时,把这个进程从进程集合中删除,归还其所占用的所有资源,系统的剩余资源则更多,反复执行上述步骤。最后,检查进程集合,若为空则表明本次申请可行,系统处于安全状态,可以真正执行本次分配,否则,本次资源分配暂不实施,让申请资源的进程等待。 银行家算法是一种最有代表性的避免的算法。在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。为实现银行家算法,系统必须设置若干。要解释银行家算法,必须先解释操作系统安全状态和不安全状态。安全序列是指一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i )当前占有资源量之和。

银行家算法实验报告

xx大学操作系统实验报告 姓名:学号:班级: 实验日期:实验名称:预防进程死锁的银行家算法 实验三预防进程死锁的银行家算法 1.实验目的:通过编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁地发生。理解银行家算法的运行原理,进一步掌握预防进程死锁的策略及对系统性能的评价方法。: 2. 需求分析 (1) 输入的形式和输入值的范围; 输入:首先输入系统可供资源种类的数量n 范围:0[Max]: 输入个进程已经申请的资源量[Allocation]: (2) 输出的形式 系统目前可用的资源[Avaliable]:

(显示系统是否安全) 分配序列: (3)程序所能达到的功能 通过手动输入资源种类数量和各进程的最大需求量、已经申请的资源量,运用银行家算法检测系统是否安全,若安全则给出安全序列,并且当用户继续输入某进程的资源请求时,能够继续判断系统的安全性。 (4) 测试数据,包括正确的输入及其输出结果和含有错误的输入及其输出结果。 正确输入

输入参数(已申请资源数)错误 3、概要设计 所有抽象数据类型的定义: int Max[100][100]; //各进程所需各类资源的最大需求int Avaliable[100]; //系统可用资源 char name[100] };//资源的名称 int Allocation[100][100]; //系统已分配资源 int Need[100][100] }; //还需要资源 int Request[100]; //请求资源向量 int temp[100]; //存放安全序列 int Work[100];//存放系统可提供资源 int M=100; //作业的最大数为100 int N=100; //资源的最大数为100 主程序的流程: * 变量初始化;

操作系统作业第三章1,第四章的答案

第三章操作系统的答案 1. 高级调度与低级调度的主要任务是什么为什么要引入中级调度 a. 作业调度又称宏观调度或高级调度,其主要任务是按一定的原则对外存上处于后备状态的作业进行选择,给选中的作业分配内存,输入输出设备等必要的资源,并建立相应的进程,以使该作业的进程获得竞争处理机的权利. b. 进程调度又称微观调度或低级调度,其主要任务是按照某种策略和方法选取一个处于就绪状态的进程,将处理机分配给它. c. 为了提高内存利用 6.在抢占调度方式中,抢占的原则是什么 a. 优先权原则 b. 短作业(进程)优先原则 c.时间片原则 7. 选择调度方式和调度算法时,应遵循的准则是什么 a. 面向用户的准则有周转时间短,响应时间快,截止时间的保证,以及优先权准则. b. 面向系统的准则有系统吞吐量高,处理机利用率好,各类资源的平衡利用. 18.何谓死锁产生死锁的原因和必要条件是什么 a. 死锁是指多个进程因竞争资源而造成的一种僵局,若无外力作用,这些进程都将永远不能再向前推进; b. 产生死锁的原因有二,一是竞争资源,二是进程推进顺序非法; c. 必要条件是: 互斥条件,请求和保持条件,不剥夺条件和环路等待条件. 19.在解决死锁问题的几个方法中,哪种方法最容易实现哪种方法使资源的利用率最高 a. 解决死锁可归纳为四种方法: 预防死锁,避免死锁,检测死锁和解除死锁; b. 其中,预防死锁是最容易实现的; c. 避免死锁使资源的利用率最高. 21.在银行家算法的例子中,如果P0发出的请求向量由Request0(0,2,0)改为Request0(0,1,0),问系统可否将资源分配给它

相关主题
文本预览
相关文档 最新文档