当前位置:文档之家› 受弯构件的强度、整体稳定和局部稳定计算要点

受弯构件的强度、整体稳定和局部稳定计算要点

受弯构件的强度、整体稳定和局部稳定计算要点
受弯构件的强度、整体稳定和局部稳定计算要点

《钢结构》网上辅导材料

受弯构件的强度、整体稳定和局部稳定计算钢梁的设计应进行强度、整体稳定、局部稳定和刚度四个方面的计算。

一、强度和刚度计算

1.强度计算

强度包括抗弯强度、抗剪强度、局部承压强度和折算应力。

(1)抗弯强度

荷载不断增加时正应力的发展过程分为三个阶段,以双轴对称工字形截面为例说明如下:

图1 梁正应力的分布

f,荷载继续增1)弹性工作阶段荷载较小时,截面上各点的弯曲应力均小于屈服点

y

f(图1b)。

加,直至边缘纤维应力达到

y

2)弹塑性工作阶段荷载继续增加,截面上、下各有一个高度为a的区域,其应力f。截面的中间部分区域仍保持弹性(图1c),此时梁处于弹塑性工作阶段。

σ为屈服应力

y

3)塑性工作阶段当荷载再继续增加,梁截面的塑性区便不断向内发展,弹性核心不断变小。当弹性核心完全消失(图1d)时,荷载不再增加,而变形却继续发展,形成“塑性铰”,梁的承载能力达到极限。

计算抗弯强度时,需要计算疲劳的梁,常采用弹性设计。若按截面形成塑性铰进行设计,可能使梁产生的挠度过大。因此规范规定有限制地利用塑性。

梁的抗弯强度按下列公式计算:

单向弯曲时

f W M nx x x ≤=γσ (1)

双向弯曲时

f W M W M ny y y nx x x ≤+=γγσ (2)

式中 M x 、M y —绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);

W nx 、W ny —梁对x 轴和y 轴的净截面模量;

y x γγ,—截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,

05.1==y x γγ;

f —钢材的抗弯强度设计值。

当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y

f /23515时,取0.1=x γ。

需要计算疲劳的梁,宜取0.1==y x γγ。

(2)抗剪强度

主平面受弯的实腹梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状

态。

v w f It VS ≤=τ (3)

式中 V —计算截面沿腹板平面作用的剪力设计值;

S —中和轴以上毛截面对中和轴的面积矩;

I —毛截面惯性矩;

t w —腹板厚度;

f v —钢材的抗剪强度设计值。

当抗剪强度不满足设计要求时,常采用加大腹板厚度的办法来增大梁的抗剪强度。

型钢腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需

进行剪应力的计算。

(3)局部承压强度

图2局部压应力

当梁的翼缘受有沿腹板平面作用的固定集中荷载且该荷载处又未设置支承加劲肋,或受

有移动的集中荷载时,应验算腹板计算高度边缘的局部承压强度。

假定集中荷载从作用处以1∶2.5(在h y 高度范围)和1∶1(在h R 高度范围)扩散,均

匀分布于腹板计算高度边缘。梁的局部承压强度可按下式计算

f l t F

z w c ≤=ψσ (4)

式中 F —集中荷载,对动力荷载应考虑动力系数;

ψ—集中荷载增大系数:对重级工作制吊车轮压,ψ=1.35;对其他荷载,ψ=1.0;

z l —集中荷载在腹板计算高度边缘的假定分布长度,其计算方法如下

跨中集中荷载 z l =a +5h y +2h R

梁端支反力 z l =a +2.5h y +a 1

a —集中荷载沿梁跨度方向的支承长度,对吊车轮压可取为50mm ;

h y —自梁承载的边缘到腹板计算高度边缘的距离;

h R —轨道的高度,计算处无轨道时h R =0;

a 1—梁端到支座板外边缘的距离,按实际取,但不得大于2.5h y 。

当计算不能满足式(4)时,在固定集中荷载处,应设置支承加劲肋予以加强,并对支

承加劲肋进行计算。对移动集中荷载,则应加大腹板厚度。

(4)折算应力

在组合梁的腹板计算高度边缘处,当同时受有较大的正应力σ、剪应力τ和局部压应力

σc 时,或同时受有较大的正应力σ和剪应力τ时,应按下式验算该处的折算应力

f c c 12223βτσσσσ≤+-+ (5)

式中 c στσ,,——腹板计算高度边缘同一点上的弯曲正应力、剪应力和局部压应力。τ按式(3)计算,c σ按式(4)计算, σ按下式计算

nx I My =σ (6)

nx I —净截面惯性矩;

y —计算点至中和轴的距离;

c σσ,均以拉应力为正值,压应力为负值;

1β—折算应力的强度设计值增大系数。当c σσ,异号时,取1β=1.2;当c σσ,同号或c

σ=0取1β=1.1。

2.刚度

刚度验算即为梁的挠度验算。按下式验算梁的刚度

][v v ≤ (7)

式中 v —荷载标准值作用下梁的最大挠度;

[v ]—梁的容许挠度值,规范规定的容许挠度值。

二、整体稳定

1. 整体失稳现象

如图3所示的工字形截面梁,荷载作用在最大刚度平面内,当荷载较小时,仅在弯矩作

用平面内弯曲,当荷载增大到某一数值后,梁在弯矩作用平面内弯曲的同时,将突然发生侧向弯曲和扭转,并丧失继续承载的能力,这种现象称为梁的弯扭屈曲或整体失稳。

图3 梁的整体失稳

2. 整体稳定系数

梁的整体稳定临界应力为cr σ,梁的整体稳定应满足下式

f f f W M σb R

y y cr R cr x x ?γσγσ==≤= 式中 b ?—梁的整体稳定系数

y cr

b f σ?= (8)

规范规定等截面焊接工字形和轧制H 型钢简支梁的整体稳定系数?b 应按下式计算

?b =βb y

b y x y f h t W Ah 235])4.4(1[4320212ηλλ++? (9) 式中 βb ──梁整体稳定的等效弯矩系数;

λy ──梁在侧向支承点间对截面弱轴y -y 的长细比;

A ──梁毛截面面积;

h ──梁截面的全高;

t 1──受压翼缘厚度。

ηb ──截面不对称影响系数:

对双轴对称截面 ηb =0

对单轴对称工字形截面

加强受压翼缘 ηb =0.8(2αb -1)

加强受拉翼缘 ηb =2αb -1

αb =2

11I I I +──I 1和I 2分别为受压翼缘和受拉翼缘对y 轴的惯性矩。 当b ?大于0.6时,梁己进入非弹性工作阶段,必须对b ?进行修正。当按式(9)确定的

b ?>0.6时,用下式求得的b ?′代替b ?进行梁的整体稳定计算

b ?′=1.07-b

?282.0 (10) 但b ?不得大于1.0

3.整体稳定的计算

整体稳定计算公式

f W M x

b x ≤? (11) 式中 M x —绕强轴作用的最大弯矩;

W x —按受压纤维确定的梁毛截面模量;

b ?—梁的整体稳定系数。

当梁的整体稳定承载力不足时,可采用加大梁的截面尺寸或增加侧向支撑的办法予以解

决,前一种办法中以增大受压翼缘的宽度最有效。

三、局部稳定和腹板加劲肋设计

组合梁一般由翼缘和腹板焊接而成,如果采用的板件宽(高)而薄,板中压应力或剪应

力达到某数值后,腹板或受压翼缘有可能偏离其平面位置,出现波形凸曲,这种现象称为梁局部失稳。

热轧型钢板件宽厚比较小,能满足局部稳定要求,不需要计算。

图4 梁局部失稳

1.受压翼缘的局部稳定

一般采用限制宽厚比的办法保证梁受压翼缘板的稳定性。

工字形截面梁,由腹板局部稳定临界应力y cr f ≥σ得

y f t b 23513≤ (12)

当按弹性设计,b /t 值可放宽为

y f t b 23515≤ (13)

箱形梁翼缘板在两腹板之间的部分,由y cr f ≥σ得

y

f t b 23540≤ (14)

2.腹板的局部稳定 对于直接承受动力荷载的或其他不考虑屈曲后强度的组合梁,以腹板的屈曲为承载能力的极限状态。对于承受静力荷载和间接承受动力荷载的组合梁,允许腹板在构件整体失稳之前屈曲,并利用其屈曲后强度。

图5腹板加劲肋的配置

(1) 腹板配置加劲肋的原则

为了提高腹板的稳定性,可增加腹板的厚度,也可设置加劲肋,设置加劲肋更经济。对于由剪应力和局部压应力引起的受剪屈曲,应设置横向加劲肋,对于由弯曲应力引起的受弯屈曲,应设置纵向加劲肋,局部压应力很大的梁,必要时尚宜在受压区配置短加劲肋。

组合梁腹板配置加劲肋的规定:

1)当h 0/t w ≤80y f /235时,对有局部压应力(σc ≠0)的梁,应按构造配置横向加劲肋;但对无局部压应力(σc =0)的梁,可不配置加劲肋。

2)当h 0/t w >80y f /235时,应配置横向加劲肋。其中,当h 0/t w >170y f /235(受压翼缘扭转受到约束)或h 0/t w >150y f /235(受压翼缘扭转未受到约束时),或按计算需要时,应在弯曲应力较大区格的受压区增加配置纵向加劲肋。局部压应力很大的梁,必要时

尚宜在受压区配置短加劲肋。

任何情况下,h 0/t w 均不应超过250y f /235。

此处h 0为腹板的计算高度(对单轴对称梁,当确定是否要配置纵向加劲肋时,h 0应取为腹板受压区高度h c 的2倍),t w 为腹板的厚度。

3)梁的支座处和上翼缘受有较大固定集中荷载处,宜设置支承加劲肋。

(2)临界应力的计算

1)弯曲临界应力

用于抗弯计算腹板的通用高厚比

当梁受压翼缘扭转受到约束时

235177/2y

w c b f t h =λ

(15a ) 当梁受压翼缘扭转未受到约束时

235153/2

y

w c b f t h =λ

(15b ) 根据通用高厚比b λ的范围不同,弯曲临界应力的计算公式如下:

当85.0b ≤λ时 f =cr σ

(16a ) 当25.185.0b ≤<λ时 ()[]f 85.075.01b cr --=λσ

(16b ) 当25.1b >λ时 2

b cr /1.1λσf =

(16c ) 式中 f —钢材的抗弯强度设计值。

式(16)的三个公式分别属于塑性、弹塑性和弹性范围。

2)剪切临界应力

用于抗剪计算腹板的通用高厚比为

23541/y

s w 0s f k t h =λ

(17) 根据通用高厚比s λ的范围不同,剪切临界应力的计算公式如下:

当8.0s ≤λ时 v cr f =τ

(18a ) 当2.18.0s ≤<λ时 []v s cr )8.0(59.01f --=λτ

18b )

当2.1s >λ时 2s v cr /1.1λf =τ (18c )

式中 v f —钢材的抗剪切强度设计值。

3)局部压力作用下的临界应力

用于腹板抗局部压力作用时的通用高厚比为

当5.1/5.00≤≤h a 时 235)/83.1(4.139.1028/y 30w

0c f h a t h -+=λ (19a )

当0.2/5.10≤

0c f h a t h -=λ (19b )

根据通用高厚比c λ的范围不同,计算临界应力r c c,σ的公式如下:

当9.0c ≤λ时 f =cr c,σ (20a )

当2.19.0c ≤<λ时 []f )9.0(79.01c cr c,--=λσ (21b )

当2.1c >λ时 2

c cr c,/1.1λσf = (21c )

(3) 腹板局部稳定的计算

1) 配置横向加劲肋的腹板

仅配置横向加劲肋的腹板,其各区格的局部稳定应按下式计算

cr

c c cr cr ,22)()(σσττσσ++≤1 (22) 2) 同时配置横向加劲肋和纵向加劲肋的腹板

同时配置横向加劲肋和纵向加劲肋的腹板,一般纵向加劲肋设置在距离板上边缘

1/4~1/5高度处,把腹板划分为上、下两个区格。

① 上区格

0.1)()(21

21,1≤++cr cr c c cr ττσσσσ (23) ②下区格 0.1)()(2

,222222≤++cr c c cr cr σσττσσ (24) 3) 受压翼缘与纵向加劲肋之间配置短加劲肋的区格

0.1)()(21

21,1≤++cr cr c c cr ττσσσσ (25) 3.加劲肋的构造和截面尺寸

一般采用钢板制成的加劲肋,并在腹板两侧成对布置。对非吊车梁的中间加劲肋,为了省工省料,也可单侧布置。

横向加劲肋的间距a 不得小于0.5 h 0,也不得大于2 h 0

(对c σ=0的梁,100/0≤w t h 时,可采用2.5 h 0)。

加劲肋的截面尺寸和截面惯性矩应有一定要求。

双侧布置的钢板横向加劲肋的外伸宽度应满足下式

40300+≥h b s (mm ) (26)

单侧布置时,外伸宽度应比上式增大20%。

加劲肋的厚度 15

s s b t ≥ (27) 图6 加劲肋

当腹板同时用横向加劲肋和纵向加劲肋加强时,应在其相交处切断纵向肋而使横向肋保持连续。此时,横向肋的断面尺寸除应符合上述规定外,其截面惯性矩(对z —z 轴),尚应满足下列要求:

303w z t h I ≥ (28)

纵向加劲肋的截面惯性矩(对y —y 轴),应满足下列公式的要求:

当85.0/0≤h a 时

305.1w y t h I ≥ (29) 当85.0/0>h a 时 30200))(45.05.2(w y t h h a h a I -≥ (30)

计算加劲肋截面惯性矩的y 轴和z 轴,双侧加劲肋为腹板轴线;单侧加劲肋为与加劲肋

相连的腹板边缘。

大型梁可采用以肢尖焊于腹板的角钢加劲肋,其截面惯性矩不得小于相应钢板加劲肋的

惯性矩。

为了避免焊缝交叉,在加劲肋端部应切去宽约b s /3高约b s /2的斜角。对直接承受动力荷

载的梁(如吊车梁),中间横向加劲肋下端不应与受拉翼缘焊接,一般在距受拉翼缘50~100mm 处断开。

4.支承加劲肋的计算

支承加劲肋系指承受固定集中荷载或者支座反力的横向加劲肋。此种加劲肋应在腹板两

侧成对设置,并应进行整体稳定和端面承压计算,其截面往往比中间横向加劲肋大。

(1)按轴心压杆计算支承加劲肋在腹板平面外的稳定性。此压杆的截面包括加劲肋以及每侧各y w f t /23515范围内的腹板面积(图7中阴影部分),其计算长度近似取为0h 。

(2)支承加劲肋一般刨平抵紧于梁的翼缘(图7a )或柱项(图7b ),其端面承压强度

按下式计算:

ce ce ce f A F ≤≤σ (31)

式中 F ——集中荷载或支座反力;

A ce ——端面承压面积;

f ce ——钢材端面承压强度设计值。

突缘支座(图7b )的伸出长度不应大于加劲肋厚度的2倍。

(3)支承加劲肋与腹板的连接焊缝,应按承受全部集中力或支反力进行计算。度均匀

分布。计算时假定应力沿焊缝长度均匀分布。

图7 支承加劲肋

型钢梁和组合梁的设计

一、考虑腹板屈曲后强度的组合梁设计

腹板受压屈曲和受剪屈曲后都存在继续承载的能力,称为屈曲后强度。

承受静力荷载和间接承受动力荷载的组合梁,宜考虑腹板屈曲后强度,则腹板高厚比达

到250时也不必设置纵向加劲肋。

1. 受剪腹板的极限承载力

腹板极限剪力设计值 V u 应按下列公式计算:

当8.0s ≤λ时 v w w u f t h V = (1a )

当2.18.0s ≤<λ时 [])8.0(5.01v w w u --=s f t h V λ (1b )

当2.1s >λ时 2.1v w w u

/s f t h V λ= (1c ) 式中 λs ──用于腹板受剪计算时的通用高厚比。

2.受弯腹板的极限承载力

腹板高厚比较大而不设纵向加劲肋时,在弯矩作用下腹板的受压区可能屈曲。屈曲后的

弯矩还可继续增大,但受压区的应力分布不再是线性的,其边缘应力达到y f 时即认为达到承载力的极限。

图1 受弯矩时腹板的有效宽度

假定腹板受压区有效高度为ρh c ,等分在h c 的两端,中部则扣去(1-ρ)h c 的高度,梁的

中和轴也有下降。为计算简便,假定腹板受拉区与受压区同样扣去此高度,这样中和轴可不变动。

梁截面惯性矩为(忽略孔洞绕本身轴惯性矩) w c x c w c x xe t h I h t h I I 32)1(2

1)2(

)1(2ρρ--=--= (2) 梁截面模量折减系数为 x

w c x xe x xe e I t h I I W W 2)1(13ρα--=== (3) 腹板受压区有效高度系数ρ按下列原则确定:

当85.0≤b λ时 ρ=1.0

(4a ) 当25.185.0≤

(4b ) 当25.1>b λ时 b b λλρ/)/2.01(-= (4c )

梁的抗弯承载力设计值为

f W M x e x eu αγ= (5)

以上式中的梁截面模量W x 和截面惯性矩I x 以及腹板受压区高度均按截面全部有效计

算。

3.弯矩和剪力共同作用下梁的极限承载力

图2 弯矩与剪力相关曲线

梁腹板同时承受弯矩和剪力的共同作用,承载力采用弯矩M 和剪力V 的相关关系曲线

确定。

假定弯矩不超过翼缘所提供的弯矩f M 时,腹板不参与承担弯矩作用,即在f M M ≤的

范围内相关关系为一水平线,0.1/=u V V 。

当截面全部有效而腹板边缘屈服时,腹板可以承受剪应力的平均值约为vy f 65.0左右。

对于薄腹板梁,腹板也同样可以负担剪力,可偏安全地取为仅承受剪力最大值u V 的0.5倍,即当5.0/≤u V V 时,取0.1/=eu M M 。

在图2所示相关曲线A 点(eu f M M /,1)和B 点(1,0.5)之间的曲线可用抛物线

表达,由此抛物线确定的验算式为

115.02≤--+???

? ??-f eu f u M M M M V V 这样,在弯矩和剪力共同作用下梁的承载力为

当≤f M M / 1.0时 u V V ≤

(6a ) 当5.0/≤u V V 时

eu M M ≤ (6b ) 其他情况 0.1)15.0(2≤--+-f eu f u M M M M V V (6c )

f h A h h A M f f f )(222

211+?= (7) 式中 M ,V ──梁的同一截面处同时产生的弯矩和剪力设计值;当V <0.5V u ,

取V =0.5V u ;当M

M f ——梁两翼缘所承担的弯矩设计值;

A f1、h 1——较大翼缘的截面积及其形心至梁中和轴的距离;

A f2、h 2——较小翼缘的截面积及其形心至梁中和轴的距离;

M eu ,V u ──梁抗弯和抗剪承载力设计值。

4.考虑腹板屈曲后强度的梁的加劲肋的设计

当仅配置支承加劲肋不能满足式(6)的要求时,应在两侧成对配置中间横向加劲肋。

(1)腹板高厚比超过170y f /235(受压翼缘扭转受到约束时)或超过150y f /235(受压翼缘扭转未受到约束时)也可只设置横向加劲肋,其间距一般采用0)5.1~0.1(h a =。

(2)中间横向加劲肋 梁腹板在剪力作用下屈曲后以斜向张力场的形式继续承受剪力,梁的受力类似桁架,张力场的水平分力在相邻区格腹板之间传递和平衡,而竖向分力则由加劲肋承担,为此,横向加劲肋应按轴心压杆计算其在腹板平面外的稳定,其轴力为

cr w u s t h V N τ0-= (8)

若中间横向加劲肋还承受固定集中荷载F ,则

F t h V N cr w u s +-=τ0 (9)

(3)支座加劲肋 支座加劲肋除承受梁支座反力R 外,还承受张力场斜拉力的水平分力H t 。

200)/(1)(h a t h V H cr w a t +-=τ (10) H t 的作用点可取为距上翼缘h 0/4处(图3a )。

图3 梁端构造

为了增加抗弯能力,还应在梁外延的端部加设封头板。可采用下列方法之一进行计算:①将封头板与支座加劲肋之间视为竖向压弯构件,简支于梁上下翼缘,计算其强度和稳定;②将支座加劲肋按承受支座反力R 的轴心压杆计算,封头板截面积则不小于)16/(30ef H h A t c =,式中e 为支座加劲肋与封头板的距离;f 为钢材强度设计值。

梁端构造还有另一方案:即缩小支座加劲肋和第一道中间加劲肋的距离a 1(图3b ),

使范围内的8.0≤s λ,此种情况的支座加劲肋就不会受到H t 的作用。

二、型钢梁的设计

型钢梁中应用最广泛的是工字钢和H 型钢。

型钢梁设计一般应满足强度、整体稳定和刚度的要求。型钢梁腹板和翼缘的宽厚比都不

太大,局部稳定常可得到保证,不需进行验算。

首先按抗弯强度(当梁的整体稳定有保证时)求出需要的截面模量

)/(max f M W x nx γ= (11)

由截面模量选择合适的型钢,然后验算其他项目。由于型钢截面的翼缘和腹板厚度较大,不必验算局部稳定;端部无大的削弱时,也不必验算剪应力。而局部压应力也只在有较大集中荷载或支座反力处才验算。

三、梁的拼接和连接

1.梁的拼接

梁的拼接分为工厂拼接和工地拼接两种。由于钢材规格和现有钢材尺寸的限制,必须将

钢材接长,这种拼接常在工厂中进行,称为工厂拼接。由于运输或安装条件的限制,梁必须分段运输,然后在工地进行拼装连接,称为工地拼接。

型钢梁的拼接可采用对接焊缝连接(图4a ),但由于翼缘与腹板连接处不易焊透,故

有时采用拼接板拼接(图4b )。拼接位置均宜设在弯矩较小处。

图4 型钢梁的拼接

焊接组合梁的工厂拼接,翼缘和腹板的拼接位置最好错开并用直对接焊缝相连。腹板的

拼接焊缝与横向加劲肋之间至少应相距10w t (图5)。对接焊缝施焊时宜加引弧板,并采用一级或二级焊缝,这样焊缝可与主体金属等强。

图5 组合梁的工厂拼接

梁的工地拼接应使翼缘和腹板基本上在同一截面处断开,以便分段运输。高大的梁在工

地施焊时应将上、下翼缘的拼接边缘均做成向上开口的V 形坡口,以便俯焊(图6)。有时将翼缘和腹板的接头略为错开一些(图6b )。

图6 组合梁的工地拼接 图7 采用高强度螺栓的工地拼接 较重要或受动力荷载的大型梁,其工地拼接宜采用高强度螺栓(图7)。

当梁拼接处的对接焊缝采用三级焊缝时,应对受拉区翼缘焊缝进行验算。对用拼接板的

接头,应按下列规定的内力进行计算的内力进行计算:翼缘拼接板及其连接所承受的内力1N 为翼缘板的最大承载力

f A N fn ?=1 (12)

式中 fn A ——被拼接的翼缘板净截面积。

腹板拼接板及其连接,主要承受梁截面上的全部剪力V ,以及按刚度分配到腹板上的弯

矩I I M M w w /?=,式中w I 为腹板截面惯性矩;I 为整个梁截面的惯性矩。

2.次梁与主梁的连接

次梁与主梁的连接型式有叠接和平接两种。

叠接将次梁直接搁在主梁上面,用螺栓或焊缝连接,构造简单,但需要的结构高度大,其使用常受到限制。图8a 是次梁为简支梁时与主梁连接的构造,而图8b 是次梁为连续梁时与主梁连接的构造示例。如次梁截面较大时,应另采取构造措施防止支承处截面的扭转。

图8 次梁与主梁的叠接

平接(图9)是使次梁顶面与主梁相平或略高、略低于主梁顶面,从侧面与主梁的加劲肋或在腹板上专没的短角钢或支托相连接。图9a 、b 、c 是次梁为简支梁时与主梁连接的构造,图8d 是次梁为连续梁时与主梁连接的构造。平接虽构造复杂,但可降低结构高度,在实际工程中应用较广泛。

图9 次梁与主梁的平接

四、组合梁的设计

1.截面选择

组合梁截面应满足强度、整体稳定、局部稳定和刚度的要求。设计组合梁时,首先需要

初步估计梁的截面高度、腹板厚度和翼缘尺寸。

(1)梁的截面高度

确定梁的截面高度应考虑建筑高度、刚度和经济三个方面的要求。

.

建筑高度是指梁的底面到铺板顶面之间的高度,通常由生产工艺和使用要求决定。确定了建筑高度也就确定了梁的最大高度m ax h 。

刚度要求确定了梁的最小高度m in h 。刚度条件要求梁在全部荷载标准值作用下的挠度v 不大于容许挠度[]T v 。

梁的经济高度,梁用钢量最少的高度。经验公式为

)mm (30073-=x e W h (13)

式中x W 的单位为mm 3, e h 的单位为mm 。

实际采用的梁高,应介于建筑高度和最小高度之间,并接近经济高度。梁的腹板高度w h 可稍小于梁的高度,一般取腹板高度w h 为50mm 的倍数。

(2)腹板厚度

腹板厚度应满足抗剪强度的要求。初选截面时,可近似的假定最大剪应力为腹板平均剪应力的1.2倍,根据腹板的抗剪强度计算公式

v

w w f h V t m ax 2.1≥ (14) 由式(14)确定的w t 值往往偏小。为了考虑局部稳定和构造等因素,腹板厚度一般用下列经验公式进行估算

5.3w

w h t = (15)

式(15)中,w t 和w h 的单位均为mm 。实际采用的腹板厚度应考虑钢板的现有规格,

一般为2mm 的倍数。对于非吊车梁,腹板厚度取值宜比式(15)的计算值略小;对考虑腹板屈曲后强度的梁,腹板厚度可更小,但腹板高厚比不宜超过250y f /235。

(3)翼缘尺寸

图10 组合梁截面

已知腹板尺寸,可求得需要的翼缘截面积f A 。

已知 2221212

130h W h A h t I x f w x =??

? ??+= 由此得每个翼缘的面积

2132161h h t h h W A w w x f -= 近似取01h h h ≈≈,则翼缘面积为

06

1h t h W A w w x f -= (16) 翼缘板的宽度通常为1b =(1/6~l/2.5)h ,厚度t =f A /1b 。翼缘板常用单层板做成,

当厚度过大时,可采用双层板。

确定翼缘板的尺寸时,应注意满足局部稳定要求,使受压翼缘的外伸宽度b 与其厚度t

之比b /t ≤15y f /235(弹性设计)或13y f /235(考虑塑性发展)。选择翼缘尺寸时,同样应符合钢板规格,宽度取10mm 的倍数,厚度取2mm 的倍数。

2.截面验算

根据初选的截面尺寸,求出截面的几何特性,然后进行验算。梁的截面验算包括强度、刚度、整体稳定和局部稳定四个方面。

3.组合梁截面沿长度的改变

梁的弯矩是沿梁的长度变化的,因此,梁的截面如能随弯矩的变化而变化,则可节约钢

材。对跨度较小的梁,加工量的增加,不宜改变截面。为了便于制造,一般只改变一次截面。

钢结构之受弯构件的强度

受弯构件的强度、整体稳定和局部稳定计算 钢梁的设计应进行强度、整体稳定、局部稳定和刚度四个方面的计算。 一、强度和刚度计算 1.强度计算 强度包括抗弯强度、抗剪强度、局部承压强度和折算应力。 (1) 抗弯强度 荷载不断增加时正应力的发展过程分为三个阶段,以双轴对称工字形截面为例说明如下: 图1 梁正应力的分布 1)弹性工作阶段 荷载较小时,截面上各点的弯曲应力均小于屈服点y f ,荷载继续增加,直至边缘纤维应力达到y f (图1b )。 2)弹塑性工作阶段 荷载继续增加,截面上、下各有一个高度为a 的区域,其应力 σ为屈服应力y f 。截面的中间部分区域仍保持弹性(图1c ),此时梁处于弹塑性工作阶段。 3)塑性工作阶段 当荷载再继续增加,梁截面的塑性区便不断向内发展,弹性核心不断变小。当弹性核心完全消失(图1d )时,荷载不再增加,而变形却继续发展,形成“塑性铰”,梁的承载能力达到极限。 计算抗弯强度时,需要计算疲劳的梁,常采用弹性设计。若按截面形成塑性铰进行设计,可能使梁产生的挠度过大。因此规范规定有限制地利用塑性。 梁的抗弯强度按下列公式计算: 单向弯曲时 f W M nx x x ≤= γσ (1)

双向弯曲时 f W M W M ny y y nx x x ≤+= γγσ (2) 式中 M x 、M y —绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴); W nx 、W ny —梁对x 轴和y 轴的净截面模量; y x γγ,—截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面, 05.1==y x γγ; f —钢材的抗弯强度设计值。 当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,取0.1=x γ。 需要计算疲劳的梁,宜取0.1==y x γγ。 (2)抗剪强度 主平面受弯的实腹梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。 v w f It VS ≤= τ (3) 式中 V —计算截面沿腹板平面作用的剪力设计值; S —中和轴以上毛截面对中和轴的面积矩; I —毛截面惯性矩; t w —腹板厚度; f v —钢材的抗剪强度设计值。 当抗剪强度不满足设计要求时,常采用加大腹板厚度的办法来增大梁的抗剪强度。 型钢腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。 (3)局部承压强度

附录C 受弯构件的整体稳定系数

附录C 受弯构件的整体稳定系数 受弯构件的整体稳定系数应按下式计算: 22 22 2 212121b b b b b b b b λλληλλη?-??? ? ? ?++++= (C-1) 式中 b η—— 构件的几何缺陷系数,应按下式计算: ()b b b 0b ηαλλ=- (C-2) 对于T6类合金:20.0=α,3600.=b λ; 对于非T6类合金:25.0=α,3000.=b λ。 b λ—— 整体稳定相对长细比,应按下式计算: b λ= (C-3) cr M —— 基于毛截面的弯扭稳定临界弯矩(N ·mm ) ,应按下式计算: () ??? ? ??? ? ???? ? ?+ ++++=ω22ω t y ω2 y 3a 2y 3a 22 y y 21 cr 1EI l GI I I e e l EI M πββββββπβ (C-4) 式中 y I —— 绕弱轴y 轴的毛截面惯性矩; ωI —— 毛截面扇性惯性矩,对于T 形截面、十字形截面、角形截面可近似 取0ω=I ; t I —— 毛截面扭转惯性矩,若截面是由长度为i h 和厚度为i t 的n 个矩形 块组成则可 取t I 为:3 t i t i i 1113====∑∑n n i i I I b t ; ωl —— 扭转屈曲计算长度,取决于构件端部的约束条件,l l ωωμ=,ωμ为 扭转屈曲 计算长度系数,按表C-1取用。 y l —— 梁的侧向计算长度,l l b y μ=,b μ侧向计算长度系数;在跨间无侧向支撑时 取1;跨中设一道侧向支撑或跨间有不少于两个等距布置的侧向支撑时取0.5; a e —— 横向荷载作用点至剪心的距离,如图C-1所示;当横向荷载作用在剪心时 0a =e ;当荷载不作用在剪心且荷载方向指向剪心时a e 为负,离开剪心时a e 为正; y β—— 截面不对称系数,应按下式计算: () 0x A 22 y 2y I dA y x y -+= ?β (C-5)

压弯构件稳定计算

压弯构件稳定计算 (1)概述 压弯构件实际上就是轴力与弯矩共同作用的构件,也就是轴心受力构件与受弯构件的组合,典型的两种压弯构件如图所示。 同其他构件一样,压弯构件也需同时满足正常使用及承载能力两种极限状态的要求,即 正常使用极限状态:刚度条件; 承载能力极限状态:强度、整体稳定、局部稳定. (2) 类型与截面形式

?单向压弯构件: 只绕截面一个形心主轴受弯; ?双向压弯构件: 绕两个形心主轴均有弯矩作用。 ?弯矩由偏心轴力引起的压弯构件也称作偏压构件。 ?截面形式: 同轴心受力构件一样,分实腹式截面与格构式截面。 ?实腹式:型钢截面与组合截面 ?格构式:缀条式与缀板式 ?按截面组成方式分为型钢(a、b),钢板焊接组合截面型钢(c、g),组合截面(d、e、f、h、i) ?按截面几何特征分为开口截面,闭口截面(g、h、i、j)

?按截面对称性分为单轴对称截面(d、e、f、n、p),双轴对称截面(其余各图) ?按截面分布连续性分为实腹式截面(a~j)格构式截面(k~p) (3)破坏形式 强度破坏、整体失稳破坏和局部失稳破坏。

强度破坏:截面的一部分或全部应力都达到甚至超过钢材屈服点的状况。 整体失稳破坏: ?单向压弯构件: 弯矩平面失稳:极值失稳,应考虑 效应(二阶效应)。 弯矩平面外失稳:弯扭变形,分岔失稳。 ?双向压弯构件:一定伴随扭转变形,为分岔失稳。 7.2.1 强度计算 ?两个工作阶段,两个特征点。 ?弹性工作阶段:以边缘屈服为特征点(弹性承载力); ?弹塑性工作阶段:以塑性铰弯矩为特征点(极限承载力)。

7.2.2 极限承载力与相关条件 联立以上两式,消去η,则有如下相关方程

受弯构件的强度整体稳定和局部稳定计算.

《钢结构》网上辅导材料五 受弯构件的强度、整体稳定和局部稳定计算钢梁的设计应进行强度、整体稳定、局部稳定和刚度四个方面的计算。 一、强度和刚度计算 1.强度计算 强度包括抗弯强度、抗剪强度、局部承压强度和折算应力。 (1)抗弯强度 荷载不断增加时正应力的发展过程分为三个阶段,以双轴对称工字形截面为例说明如下: 图1 梁正应力的分布 f,荷载继续增1)弹性工作阶段荷载较小时,截面上各点的弯曲应力均小于屈服点 y f(图1b)。 加,直至边缘纤维应力达到 y 2)弹塑性工作阶段荷载继续增加,截面上、下各有一个高度为a的区域,其应力f。截面的中间部分区域仍保持弹性(图1c),此时梁处于弹塑性工作阶段。 σ为屈服应力 y 3)塑性工作阶段当荷载再继续增加,梁截面的塑性区便不断向内发展,弹性核心不断变小。当弹性核心完全消失(图1d)时,荷载不再增加,而变形却继续发展,形成“塑性铰”,梁的承载能力达到极限。 计算抗弯强度时,需要计算疲劳的梁,常采用弹性设计。若按截面形成塑性铰进行设计,可能使梁产生的挠度过大。因此规范规定有限制地利用塑性。 梁的抗弯强度按下列公式计算: 单向弯曲时

f W M nx x x ≤= γσ (1) 双向弯曲时 f W M W M ny y y nx x x ≤+=γγσ (2) 式中 M x 、M y —绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴); W nx 、W ny —梁对x 轴和y 轴的净截面模量; y x γγ,—截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面, 05.1==y x γγ; f —钢材的抗弯强度设计值。 当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,取0.1=x γ。 需要计算疲劳的梁,宜取0.1==y x γγ。 (2)抗剪强度 主平面受弯的实腹梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。 v w f It VS ≤= τ (3) 式中 V —计算截面沿腹板平面作用的剪力设计值; S —中和轴以上毛截面对中和轴的面积矩; I —毛截面惯性矩; t w —腹板厚度; f v —钢材的抗剪强度设计值。 当抗剪强度不满足设计要求时,常采用加大腹板厚度的办法来增大梁的抗剪强度。 型钢腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。

受压构件的整体稳定系数

屋面能阻止檩条侧向失稳和扭转。在风吸力作用下计算檩条的稳定性,在永久荷载和风吸力作用下使下翼缘受压,下翼缘按有侧向支撑计算。计算受弯构件的整体稳定系数,由于均布风荷载方向离开弯心,故a e 取正值。受压构件的整体 稳定系数bx ?按《冷弯薄壁型钢结构技术规范》GB50018—2002附录A 中A.2计 算 跨中设一道侧向支撑 ...μξξb 12= = =05135014 ..a o o b e =e -x +=-+=mm 704892063922 ...ξ??η2a 2e ===h 201463900895200 ωμξ2t b 2y y 4I 0.165I l =+()h I I h ....????????2244376.18100.1650.1871106000=+()=2001010200 6455050901256275627 2402560000=== y y i l λ .....?ξηξηλ??????2bx 12y y x 22Ah =(++)()f W =(++)()=0.385215443202354320898200235135008950901200895240538210 风吸力作用下使檩条下翼缘受压,按下面公式计算稳定性 21(0.638) 6.00.718kN m 32 x M =?-?=-? 21(0.051) 6.00.057kN m 32y M =?-?=-? 224 6 461N/mm 215N/mm 72.3910125.110057.010382.5385.010718.0=<=??+???=+=f W M W M ey y ex bx x ?σ 6、挠度计算 按公式计算两端简支檩条的挠度 mm l mm EI l p x ky y 30200/48.2010 3821.51006.26000574.4cos 35.138453845654 4=<=??????== υ

拉弯和压弯构件的强度与稳定计算.

拉弯和压弯构件的强度与稳定计算 1.拉弯和压弯构件的强度计算 考虑部分截面发展塑性,《规范》规定的拉弯和压弯构件的强度计算式 f W M A N nx x x n ≤+γ (6-1) 承受双向弯矩的拉弯或压弯构件,《规范》采用了与式(6-1)相衔接的线性公式 f W M W M A N ny y y nx x x n ≤++γγ (6-2) 式中:n A ——净截面面积; nx W 、ny W ——对x 轴和y 轴的净截面模量; x γ、y γ——截面塑性发展系数。 当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过y f /23515时,应取x γ=1.0。 对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即不考虑截面塑性发展,按弹性应力状态计算。 2.实腹式压弯构件在弯矩作用平面内的稳定计算 目前确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。 按边缘屈服准则推导的相关公式 y Ex x x x x f N N W M A N =???? ? ?-+??11 (6-4) 式中:x ?——在弯矩作用平面内的轴心受压构件整体稳定系数。 边缘纤维屈服准则认为当构件截面最大受压纤维刚刚屈服时构件即失去承载能力而发生破坏,更适用于格构式构件。实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。

弯矩沿杆长均匀分布的两端铰支压弯构件,《规范》采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,算出了近200条压弯构件极限承载力曲线。然后《规范》借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式 y Ex px x x f N N W M A N =???? ? ?-+8.01? (6-5) 式中:px W ——截面塑性模量。 弯矩沿杆长为非均匀分布的两端铰支压弯构件,构件的实际承载能力将比由上式算得的值高。为了应用于其他荷载作用时的压弯构件,可用等效弯矩x mx M β (x M 为最大弯矩)代替公式中的x M 来考虑这种有利因素。另外,考虑部分塑性深入截面,采用x x px W W 1γ=,并引入抗力分项系数,即得到《规范》所采用的实腹式压弯构件弯矩作用平面内的稳定计算式 f N N W M A N Ex x x x mx x ≤? ?? ? ? -+'18.01γβ? (6-6) 式中:N ——所计算构件段范围内的轴向压力设计值; x M ——所计算构件段范围内的最大弯矩设计值; x ?——弯矩作用平面内的轴心受压构件的稳定系数; x W 1——弯矩作用平面内的对受压最大纤维的毛截面模量; 'Ex N ——参数,' EX N =) 1.1/(22 x EA λπ; mx β——等效弯矩系数,《规范》按下列情况取值: (1)框架柱和两端支承的构件: ①无横向荷载作用时:mx β=0.65+0.351M /2M ,1M 和2M 为端弯矩,使构件产生同向曲率(无反弯点)时取同号,使构件产生反向曲率(有反弯点时)取异号,1M >2M ; ②有端弯矩和横向荷载同时作用时:使构件产生同向曲率时,mx β=1.0;使构件产生反向曲率时,mx β=0.85; ③无端弯矩但有横向荷载作用时:mx β=1.0。

钢筋混凝土受弯构件正截面承载力的计算

第3章钢筋混凝土受弯构件正截面承载力的计算 §1概述 1、受弯构件(梁、板)的设计内容:图3-1 ①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而 破坏,叫做正截面受弯破坏。 ②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破 坏,叫做斜截面受剪破坏。 ③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规 范规定的要求。比如最小配筋率、纵向 2 ①板 ⑴板的形状与厚度: a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观 区别是高宽比不同,有时也将板叫成扁梁。其计算与 梁计算原理一样。 b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度 通常不小于板跨度的1/35(简支)~1/40(弹性约束) 或1/12(悬臂)左右;一般民用现浇板最小厚度60mm, 并以10mm为模数(讲一下模数制);工业建筑现浇板 最小厚度70mm。 ⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向 板中两个方向均为受力钢筋。一般情况下互相垂直的

两个方向钢筋应绑扎或焊接形成钢筋网。当采用绑扎 钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm 时,不应大于200mm,当板厚度h﹥150mm时,不应大 于1.5h,且不应大于250mm。板中受力筋间距一般不 小于70mm,由板中伸入支座的下部钢筋,其间距不应 大于400mm,其截面面积不应小于跨中受力钢筋截面 面积的1/3,其锚固长度l as不应小于5d。板中弯起钢 筋的弯起角不宜小于30°。 板的受力钢筋直径一般用6、8、10mm。 对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定: a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内), 其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨 度)。 b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出 墙边的长度不应小于l1/4。 c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的 总截面面积不应小于跨中受力钢筋截面面积的1/3。 ⑶板的分布钢筋:其作用是: a.分布钢筋的作用是固定受力钢筋; b.把荷载均匀分布到各受力钢筋上; c.承担混凝土收缩及温度变化引起的应力。 当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。单位长度上分布钢筋的截面面积不应小于单位宽度上 受力钢筋截面面积的15%,且不应小于该方向板截面面积的0.15%,分布 钢筋的间距不宜大于250mm,直经不宜小于6mm,对于集中荷载较大的情 况,分布钢筋的截面面积应适当增加,其间距不宜大于200mm,当按双向 板设计时,应沿两个互相垂直的方向布置受力钢筋。 在温度和收缩应力较大的现浇板区域内尚应布置附加钢筋。附加钢筋的数量可按计算或工程经验确定,并宜沿板的上,下表面布置。沿一个方向增加的附加钢筋配筋率不宜小于0.2%,其直径不宜过大,间距宜取150~200mm,并应按受力钢筋确定该附加钢筋伸入支座的锚固长度。 ⑷板中钢筋的保护层及有效高度:保护层厚度与环境条件及混凝 土等级有关,在一般情况下,混凝土保护层取15mm,详见规范; 有效高度是指受力钢筋形心到混凝土受压区外边缘的距离,用

受弯构件的正截面承载力计算

第4章受弯构件的正截面承载力计算 1.具有正常配筋率的钢筋混凝土梁正截面受力过程可分为哪三个阶段,各有何特点? 答:第Ⅰ阶段:混凝土开裂前的未裂阶段 当荷载很小,梁内尚未出现裂缝时,正截面的受力过程处于第Ⅰ阶段。由于截面上的拉、压应力较小,钢筋和混凝土都处于弹性工作阶段,截面曲率与弯矩成正比,应变沿截面高度呈直线分布(即符合平截面假定),相应的受压区和受拉区混凝土的应力图形均为三角形。 随着荷载的增加,截面上的应力和应变逐渐增大。受拉区混凝土首先表现出塑性特征,因此应力分布由三角形逐渐变为曲线形。当截面受拉边缘纤维的应变达到混凝土的极限拉应变时,相应的拉应力也达到其抗拉强度,受拉区混凝土即将开裂,截面的受力状态便达到第Ⅰ阶段末,或称为Ⅰa阶段。此时,在截面的受压区,由于压应变还远远小于混凝土弯曲受压时的极限压应变,混凝土基本上仍处于弹性状态,故其压应力分布仍接近于三角形。 第Ⅱ阶段:混凝土开裂后至钢筋屈服前的裂缝阶段 受拉区混凝土一旦开裂,正截面的受力过程便进入第Ⅱ阶段。在裂缝截面中,已经开裂的受拉区混凝土退出工作,拉力转由钢筋承担,致使钢筋应力突然增大。随着荷载继续增加,钢筋的应力和应变不断增长,裂缝逐渐开展,中和轴随之上升;同时受压区混凝土的应力和应变也不断加大,受压区混凝土的塑性性质越来越明显,应力图形由三角形逐渐变为较平缓的曲线形。 在这一阶段,截面曲率与弯矩不再成正比,而是截面曲率比弯矩增加得更快。 还应指出,当截面的受力过程进入第Ⅱ阶段后,受压区的应变仍保持直线分布。但在受拉区由于已经出现裂缝,就裂缝所在的截面而言,原来的同一平面现已部分分裂成两个平面,钢筋与混凝土之间产生了相对滑移。这与平截面假定发生了矛盾。但是试验表明,当应变的量测标距较大,跨越几条裂缝时,就其所测得的平均应变来说,截面的应变分布大体上仍符合平截面假定,即变形规律符合“平均应变平截面假定”。因此,各受力阶段的截面应变均假定呈三角形分布。 第Ⅲ阶段:钢筋开始屈服至截面破坏的破坏阶段 随着荷载进一步增加,受拉区钢筋和受压区混凝土的应力、应变也不断增大。当裂缝截面中的钢筋拉应力达到屈服强度时,正截面的受力过程就进入第Ⅲ阶段。这时,裂缝截面处的钢筋在应力保持不变的情况下将产生明显的塑性伸长,从而使裂缝急剧开展,中和轴进一步上升,受压区高度迅速减小,压应力不断增大,直到受压区边缘纤维的压应变达到混凝土弯曲受压的极限压应变时,受压区出现纵向水平裂缝,混凝土在一个不太长的范围内被压碎,从而导致截面最终破坏。我们把截面临破坏前(即第Ⅲ阶段末)的受力状态称为Ⅲa阶段。 在第Ⅲ阶段,受压区混凝土应力图形成更丰满的曲线形。在截面临近破坏的Ⅲa阶段,受压区的最大压应力不在压应变最大的受压区边缘,而在离开受压区边缘一定距离的某一纤维层上。这和混凝土轴心受压在临近破坏时应力应变曲线具有“下降段”的性质是类似的。至于受拉钢筋,当采用具有明显流幅的普通热轧钢筋时,在整个第Ⅲ阶段,其应力均等于屈服强度。 2.钢筋混凝土梁正截面受力过程三个阶段的应力与设计有何关系? 答:Ⅰa阶段的截面应力分布图形是计算开裂弯矩M cr的依据;第Ⅱ阶段的截面应力分布图形是受弯构件在使用阶段的情况,是受弯构件计算挠度和裂缝宽度的依据;Ⅲa阶段的截面应力分布图形则是受弯构件正截面受弯承载力计算的依据。 3.何谓配筋率?配筋率对梁破坏形态有什么的影响? 答:配筋率ρ是指受拉钢筋截面面积A s与梁截面有效面积bh0之比(见图题3-1),即

受弯构件的承载力计算

第三部分受弯构件的承载力计算 一、选择题1.钢筋混凝土梁裂缝瞬间,受拉钢筋的应力S与配筋率的关系是: (A) ↑?σs↓(B) ↑,σS↑(C)σS 与关 系不大D.无法判断 2.受弯构件的纯弯曲段内,开裂前混凝土与钢筋之间的握裹应力 (A) 0 (B) 均匀分布(C)不 均匀分布D.无法判断 3.少筋截面梁破坏时, A.S>Y, C=CU 裂宽及绕度过大(B) SY,C CU 即受压区混凝土压碎 4.对适筋梁,受拉钢筋刚屈服时, A.承载力达到极限B.受压边缘混凝土达 C . S= Y, C< CU D.S

②使用阶段裂缝宽度和挠度计算以 为基础。 ③承载能力计算以 f 阶 A . ( Ⅰ ) ( C . (Ⅱ) D . (Ⅱa ) (F ) (Ⅲa) 6.受弯适筋梁,MY

受弯构件知识点

6.受弯构件 6.1 受弯构件的形式和应用 梁——承受横向荷载的实腹式受弯构件。 桁架——承受横向荷载的格构式受弯构件。 按功能分为:楼盖梁、平台梁、吊车梁、檩条、墙架梁 按制作方法分为:型钢梁、组合梁 6.2 梁的强度和刚度 一、梁的强度 1. 梁的抗弯强度 实腹梁的截面正应力发展过程分为弹性、弹塑性和塑性三个阶段 (2) 塑性设计 允许截面部分发展塑性,塑性发展区高度a 小于等于0.125h 2. 梁的抗剪强度 3. 梁的局部承压强度 当梁上翼缘受有沿腹板平面作用的集中荷载、且该荷载处又未设置支承加劲肋时,腹板计算高度上边缘的局部承压强度应按下式计算: 轴的净截面抵抗矩轴和对—、轴为强轴)轴的弯矩(轴和绕—、y x W W x y x M M ny nx y x 1.6148 ,表查截面塑性发展系数,—、P y x γγ受压翼缘的厚度。—t 。钢材的抗剪强度设计值—腹板厚度; —毛截面惯性矩;—面对中和轴的面积矩;计算剪应力处以上毛截 —用的剪力;计算截面沿腹板平面作—V w f t I S V

4. 梁在复杂应力作用下的强度计算 在梁的腹板计算高度边缘处,若同时受有较大的正应力、剪应力和局部压应力, 二、梁的刚度 梁的刚度用荷载作用下的挠度大小来衡量。 5.3 梁的整体稳定 一、梁整体稳定的概念 双轴对称工字形截面简支梁纯弯,支座为夹支座(只能绕x 轴, y 轴转动,不能绕z 轴转动,只能自由挠曲,不能扭转)。 梁整体失稳的现象: 侧向弯曲,伴随扭转——出平面的弯扭屈曲 二、梁整体稳定的保证 规范规定,当符合下列情况之一时,不必计算梁的整体稳定:p113 1.焊接工字形等截面简支梁和扎制H 型钢简支梁 2. 轧制普通工字钢简支梁 3. 轧制槽钢简支梁 4. 双轴对称工字形等截面(含H 型钢)悬臂梁 影响梁整体稳定承载力的因素 1. 荷载的类型 2. 荷载作用位置 。=时,取=同号或和当=异号时,取和当计值增大系数,验算折算应力的强度设 —为负。以拉应力为正,压应力和剪应力和局部压应力, 、点上同时产生的正应力1.102.1111βσσσβσσβσσc c c c c

钢结构受弯构件附答案

练习五 受弯构件 一、选择题(××不做要求) 1.计算梁的( A )时,应用净截面的几何参数。 A )正应力 B )剪应力 C )整体稳定 D )局部稳定 2.钢结构梁计算公式nx x x W M γσ= 中,γx ( C )。 A )与材料强度有关 B )是极限弯矩与边缘屈服弯矩之比 C )表示截面部分进人塑性 D )与梁所受荷载有关 ××3.在充分发挥材料强度的前提下,Q235钢梁的最小高度h min ( C )Q345钢梁的h min (其他条件均相同)。 A )大于 B )小于 C )等于 D )不确定 ××4.梁的最小高度是由( C )控制的。 A )强度 B )建筑要求 C )刚度 D )整体稳定 5.单向受弯梁失去整体稳定时是( C )失稳。 A )弯曲 B )扭转 C )弯扭 D )都有可能 6.为了提高梁的整体稳定,( B )是最经济有效的办法。 A )增大截面 B )增加支撑点,减小l 1 C )设置横向加劲肋 D )改变荷载作用的位置 7.当梁上有固定较大集中荷载作用时,其作用点处应( B )。 A )设置纵向加劲肋 B )设置横向加劲肋 C )减少腹板宽度 D )增加翼缘的厚度 ××8.焊接组合梁腹板中,布置横向加劲肋对防止( A )引起的局部失稳最有效,布置纵向加劲肋对防止( B )引起的局部失稳最有效。 A )剪应力 B )弯曲应力 D )复合应力 D )局部压应力 ××9.确定梁的经济高度的原则是( B )。 A )制造时间最短 B )用钢量最省 C )最便于施工 D )免于变截面的麻烦 ××10.当梁整体稳定系数φb >0.6时,用φ’b 代替φb 主要是因为( B )。 A )梁的局部稳定有影响 B )梁已进入弹塑性阶段 C )梁发生了弯扭变形 D )梁的强度降低了 ××11.分析焊接工字形钢梁腹板局部稳定时,腹板与翼缘相接处可简化为( D )。 A )自由边 B )简支边 C )固定边 D )有转动约束的支承边 ××12.梁的支承加劲肋应设置在( C )。 A )弯曲应力大的区段 B )剪应力大的区段 C )上翼缘或下翼缘有固定荷载作用的部位 D )有吊车轮压的部位 13.双轴对称工字形截面梁,经验算,其强度和刚度正好满足要求,而腹板在弯曲应力作用

压弯构件的局部稳定

1.压弯构件的局部稳定 为保证压弯构件中板件的局部稳定,《规范》采取了同轴心受压构件相同的方法,限制翼缘和腹板的宽厚比及高厚比。 (1)翼缘的宽厚比 压弯构件的受压翼缘板,其应力情况与受弯构件的受压翼缘基本相同,因此其外伸宽度与厚度之比以及箱形截面翼缘在腹板之间的宽厚比均与受弯构件的宽厚比限值相同。 (2)腹板的宽厚比 1)工字形截面的腹板 腹板高厚比0h /w t 与应力梯度0α之间的关系可近似地用直线式表示: 当0≤0α≤1.6时 y w f t h 235) 255.016(00++≤λα (6-11a ) 当1.6<0α≤2.0时 y w f t h 235) 2.265.048(00-+≤λα (6-11b ) m ax m in m ax 0σ σ σ α-= 式中:m ax σ——腹板计算高度边缘的最大压应力,计算时不考虑构件的稳定系数和截面塑性 发展系数; m in σ ——腹板计算高度另一边缘相应的应力,压应力为正,拉应力为负; λ——构件在弯矩作用平面内的长细比,当30≤λ时,取30=λ,当 100>λ时,取 100=λ。 当0α=0时,式(6-11)与轴心受压构件腹板高厚比的要求相一致,当0α=2时,式(6-11)与受弯构件中考虑了弯矩和剪力联合作用的腹板高厚比的要求相一致。

2)T 形截面的腹板 当0.10≤α(弯矩较小)时,T 形截面腹板中压应力分布不均的有利影响不大,其宽厚比限值采用与翼缘板相同;当0α>1.0(弯矩较大)时,此有利影响较大,故提高20%。 a.弯矩使腹板自由边受压 当0.10≤α时 y w f t h 23515 0≤ (6-12a ) 当0.10>α时 y w f t h 235180≤ (6-12b ) b.弯矩使腹板自由边受拉 热轧剖分T 形钢 y w f t h 235) 2.015(0λ+≤ (6-13a ) 焊接T 形钢 y w f t h 235)17.013(0λ+≤ (6-13b ) 3)箱形截面的腹板 考虑两腹板受力可能不一致,且通常翼缘与腹板的连接采用单侧角焊缝,因此翼缘与腹板的约束也不如工字形截面,因而箱形截面的宽厚比限值取为工字形截面腹板的0.8倍,即 当0≤0α≤1.6时 y w f t h 235) 255.016(8.000++≤λα (6-14a ) 当1.6<0α≤2.0时 y w f t h 235) 2.265.048(8.000-+≤λα (6-14b ) 当式(6- 14)右侧计算值小于y f 23540,取y f 23540 。 4)圆管截面一般圆管截面构件的弯矩不大,故其直径与厚度之比的限值与轴心受压构件的规定相同

最新3受弯构件承载力计算汇总

3受弯构件承载力计 算

1 、一般构造要求 受弯构件正截面承载力计算 1 、配筋率对构件破坏特征的影响及适筋受弯构件截面受力的几个阶段 受弯构件正截面破坏特征主要由纵向受拉钢筋的配筋率ρ大小确定。配筋率是指纵受受拉钢筋的截面面积与截面的有效面积之比。 (3-1) 式中As——纵向受力钢筋的截面面积,; b——截面的宽度,mm; ——截面的有效高度, ——受拉钢筋合力作用点到截面受拉边缘的距离。

根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的破坏特征不同。 (1)适筋梁 配置适量纵向受力钢筋的梁称为适筋梁。 适筋梁从开始加载到完全破坏,其应力 变化经历了三个阶段,如图3.8。 第I阶段(弹性工作阶段):荷载很小 时,混凝土的压应力及拉应力都很小, 梁截面上各个纤维的应变也很小,其应 力和应变几乎成直线关系,混凝土应力 分布图形接近三角形,如图3.8(a)。 当弯矩增大时,混凝土的拉应力、压应 力和钢筋的拉应力也随之增大。由于混 凝土抗拉强度较低,受拉区混凝土开始 表现出明显的塑性性质,应变较应力增 加快,故应力和应变不再是直线关系, 应力分布呈曲线, 当弯距增加到开裂弯距时,受拉边缘纤维的应变达到混凝土的极限拉应变,此时, 截面处于将裂未裂的极限状态,即第I阶段末,用Ia表示,如图3.13(b)所示。这时受压区塑性变形发展不明显,其应力图形仍接近三角形。Ia阶段的应力状态是抗裂验算的依据。 第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极其拉应变,受拉区 出现裂缝,截面即进入第Ⅱ阶段。裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,未开裂部分混凝土虽可继续承担部分拉力,但因靠近中和轴很近,故其作用甚小,拉力几乎全部由受拉钢筋承担,在裂缝出现的瞬间,钢筋应力突然增加很大。随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移。由于受压区应变不断增大,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.8?所示。第Ⅱ阶段的应力状态代表了受弯构件在使用时的应力状态,故本阶段的应力状态作为裂缝宽度和变形验算的依据。 当弯矩继续增加,钢筋应力不断增大,直至达到屈服强度,这时截面所能承担的弯矩称为屈服弯矩。 它标志截面即将进入破坏阶段,即为第Ⅱ阶段极限状态,以Ⅱa表示,如图3.8(d)所示。 第Ⅲ阶段(破坏阶段):弯矩继续增加,截面进入第Ⅲ阶段。这时受拉钢筋的应力保持屈服强度不变,钢筋的应变迅速增大,促使受拉区混凝土的裂缝迅速向上扩展,中和轴继续上移,受压区混凝土高度缩小,混凝土压应力迅速增大,受压区混凝土的塑性特征表现得更加充分,压应力呈显著曲线分布[图3.8(e)]。到本阶段末(即Ⅲa阶段),受压边缘混凝土压应变达到极限应变,受压区混凝土产生近乎水平的裂缝,混凝土被压碎,甚至崩脱[图3.8(a)],截面宣告破坏,此时截面所承担的弯矩即为破坏弯矩Mu,这时的应力状态作为构件承载力计算的依据[图3.8(f)]。

受弯构件的承载力计算

第三部分受弯构件的承载力计算 一、选择题 1.钢筋混凝土梁裂缝瞬间,受拉钢筋的应力Sσ与配筋率ρ的关系是: (A)ρ↑?σs↓(B) ρ↑,σS↑(C)σS 与ρ关系不大D.无法判断 2.受弯构件的纯弯曲段内,开裂前混凝土与钢筋之间的握裹应力 (A) ?0 (B) 均匀分布(C)不均匀分布D.无法判断 3.少筋截面梁破坏时, A.εS>εY, εC=εCU 裂宽及绕度过大(B) εS<εY,εC<εCU 裂宽及绕度过大 C.εS>εY,εC≥εCU 即受压区混凝土压碎 4.对适筋梁,受拉钢筋刚屈服时, A.承载力达到极限B.受压边缘混凝土达 C.εS=εY, εC<εCU D.εS<εY, εC=εCU 5.适筋梁从加载到破坏可分三个阶段,试填充: ①抗裂计算以 b 阶段为基础

②使用阶段裂缝宽度和挠度计算以 c 为基础。 ③承载能力计算以 f 阶段为依据。A.(Ⅰ)(B) (Ⅰa)C.(Ⅱ) D.(Ⅱa)(E) (Ⅲ)(F)(Ⅲa) 6.受弯适筋梁,MY

A .确定等效矩形应力图形高度x B .确定受压边混凝土应变达cu ε时,受压区合力点的 位置 C .确定界限破坏时受压区高度系数b ξ D .由cu c εε =,确定s ε值 10.提高混凝土等级与提高钢筋等级相比,对承载能力的影响(受弯构件): A . 提 高 钢 筋 等 级 效 果 较 大 B .提高混凝土等级效果较大 C .提高混凝土等级与提高钢等级是等效的 11.单筋梁m ax ρ值: (A)是个定值 B .钢筋强度高,m ax ρ小 C .混凝土等级高,m ax ρ小 12.设计双筋梁时,当求s A 、' s A 时,用钢量最小或接 近最少的方法是: A .取 b ξξ= B .取's s A A = C .使'2s a x = 13.当双筋梁已知's A 求s A 时,)('0''1 s s y a h A f M -=,1 2M M M -=按2 M 计算发现0 h x b ξ>,则: A .''01s y y y c b s A f f bh f f A + =αξ求 (B)按's A 未知,令==b ξξ求's A s A

受弯构件计算例题

1.单筋矩形截面 例4-1 已知矩形截面简支梁(见图4-19),混凝土保护层厚为20mm(一类环境),梁计算跨度l 0=5m ,梁上作用均布永久荷载(已包括梁自重)标准值g k =6kN/m ,均布可变荷载标准值q k =15kN/m 。选用混凝土强度等级C20,钢筋HRB335级。试确定该梁的截面尺寸b ×h 及配筋面积A s 。 图4-18 例题4-1图 解: (1) 设计参数 由附表2和附表6查得材料强度设计值,C20混凝土f c =9.6N/mm 2,f t =1.1N/mm 2,HRB335级钢筋f y =300N/mm 2,等效矩形图形系数α1=1.0。设该梁的箍筋选用直径为φ8的HPB300钢筋。 (2) 计算跨中截面最大弯矩设计值 22011 (1.2 1.4)(1.26 1.415)588.12588 k k M g q l KN m =+=?+??=? (3)估计截面尺寸b h ? 由跨度选择梁截面高度 450h mm =( 1 11 l ),截面宽度 b =200mm (12.25h ), 取简支梁截面尺寸 200450 b h m m m m ?=? (4)计算截面有效高度0h 先按单排钢筋布置,取受拉钢筋形心到受拉混凝土边缘的距离 a s = c+d v +d /2≈40mm ,取a s =40mm ,则梁有效高度 h 0=h -a s =450-40=410mm 。 (5)计算配筋 6 ,max 22 1088.125100.2730.3991.09.6200410 s s c M f bh ααα?===<=???

满足适筋梁的要求。 112)1120.2730.326s ξα=--=--?= 20 0.3262004109.6855300 c s y f A bh mm f ξ???=== 由附表16,选用3 20钢筋,A s =942mm 2。 (6)验算最小配筋率 min min 0.45 0.00165941 0.010******* 0.002 t s y f A f bh ρρρ>=== ==?>= 满足要求。 (7)验算配筋构造要求 钢筋净间距为 200282203 425m m d 20m 22 mm -?-?>>== 满足构造要求。 例4-2 某钢筋混凝土矩形截面梁,混凝土保护层厚为25mm(二a 类环境),b =250mm ,h =500mm ,承受弯矩设计值M =160KN m ?,采用C20级混凝土,HRB400级钢筋,箍筋直径为φ8,截面配筋如图4-19所示。复核该截面是否安全。 解: (1)计算参数 由附表2和附表6查得材料强度设计值,C20级混凝土,等效矩形图形系数 1.0α=,29.6/c f N mm =,21.1/t f N mm =,HRB400级钢筋,钢筋面积21256s A mm =,2360/y f N mm =,0.518b ξ=。 (2)计算截面有效高度0h 因混凝土保护层厚度为25mm(二a 类环境),得截面有效高度

受弯构件

第五章 受弯构件 1.选择题 (1)在主平面内受弯的工字形截面组合梁,在抗弯强度计算中,允许考虑截面部分发展塑性变形时,绕x 轴和y 轴的截面塑性发展系数x γ和y γ分别为 。 A. 1.05,1.05 B. 1.2,1.2 C. 1.15,1.15 D. 1.05,1.2 (2)计算梁的 时,应用净截面的几何参数。 A. 正应力 B. 剪应力 C. 整体稳定 D. 局部稳定 (3)钢结构梁的计算公式nx x x W M γσ= 中的x γ 。 A. 与材料强度有关 B. 是极限弯矩与边缘屈服弯矩之比 C. 表示截面部分进入塑性 D. 与梁所受荷载有关 (4)约束扭转使梁截面上 。 A. 只产生正应力 B. 只产生剪应力 C. 产生正应力,也产生剪应力 D. 不产生任何应力 (5)单向受弯梁失去整体稳定时是 形式的失稳。 A. 弯曲 B. 扭转 C. 弯扭 D. 双向弯曲 (6)焊接工字形截面简支梁,其他条件均相同的情况下,当 时,梁的整体稳定性最好。 A. 加强梁的受压翼缘宽度 B. 加强梁受拉翼缘宽度 C. 受压翼缘与受拉翼缘宽度相同 D. 在距支座l /6(l 为跨度)减小受压翼缘宽度 (7)焊接工字形等截面简支梁,在其他条件均相同的情况下,当 时,梁的整体稳定性最差(按各种情况下最大弯矩数值相同比较)。 A. 两端有相等弯矩作用(纯弯矩作用) B. 满跨均布荷载作用 C. 跨度中点有集中荷载作用 D. 在离支座l /4(l 为跨度)处个有相同一集中力 (8)一悬臂梁,焊接工字形截面,受向下垂直荷载作用,欲保证此梁的整体稳定,侧向支撑应加在 。

A. 梁的上翼缘 B. 梁的下翼缘 C. 梁的中和轴部位 D. 梁的上翼缘及中和轴部位(9)为了提高梁的整体稳定性,是最经济有效的办法。 A. 增大截面 B. 增加侧向支撑点 C. 设置横向加劲肋 D. 改变翼缘的厚度 (10)对提高工字形截面的整体稳定性作用最小。 A. 增加腹板厚度 B. 约束梁端扭转 C. 设置平面外支承 D. 加宽梁翼缘 (11)防止梁腹板发生局部失稳,常采用加劲措施,这是为了。 A. 增加梁截面的惯性矩 B. 增加截面面积 C. 改变构件的应力分布状态 D. 改变边界约束板件的宽厚比 (12)梁的支承加劲肋应设置在。 A. 弯曲应力大的区段 B. 剪应力大的区段 C. 上翼缘或下翼缘有固定荷载作用的部位 D. 有吊车轮压的部位 (13)焊接工字形截面梁腹板设置加劲肋的目的是。 A. 提高梁的抗弯强度 B. 提高梁的抗剪强度 C. 提高梁的整体稳定性 D. 提高梁的局部稳定性 (14)当梁上有固定较大集中荷载作用时,其作用点处应。 A. 设置纵向加劲肋 B. 设置支承加劲肋 C. 减少腹板宽度 D. 增加翼缘的厚度 (15)焊接组合梁腹板中,布置横向加劲肋对防止引起的局部失稳最有效,布置纵向加劲肋对防止引起的局部失稳最有效。 A. 剪应力 B. 弯曲应力 C. 复合应力 D. 局部压应力 (16)钢梁腹板局部稳定采用准则,实腹式轴心受压构件局部稳定采用准则。 A. 腹板局部屈曲应力不小于构件整体屈曲应力 B. 腹板实际应力不超过腹板屈曲应力 C. 腹板实际应力不小于板的f y D. 腹板局部临界应力不小于钢材屈服应力 (17)当无集中荷载作用时,焊接工字形截面梁翼缘与腹板的焊缝主要承受。 A. 竖向剪力 B. 竖向剪力及水平剪力联合作用

受弯构件的计算原理

第4章 受弯构件的计算原理 4.1 概述 受弯构件:承受横向荷载和弯矩的构件。 单向受弯构件——只在一个主平面内受弯。 双向受弯构件——在两个主平面内同时受弯。 钢结构受弯构件保证项目: (1)承载力极限状态 抗弯强度 抗剪强度 整体稳定性 受压翼缘的局部稳定性 不利用腹板屈曲后强度的构件,还要保证腹板的局部稳定性。 (2)正常使用极限状态 刚度 4.2 受弯构件的强度和刚度 4.2.1 弯曲强度 nx x W M = σ (4。2。1) 正应力分布见图: 单向受弯梁的抗弯强度: f W M nx x x ≤γ (4。2。2) 双向受弯梁的抗弯强度: f W M W M ny y y nx x x ≤+γγ (4。2。3) x γ——塑性发展系数。需计算疲劳的梁,不宜考虑塑性发展,取1.0。

4.2.2 抗剪强度 单向抗剪强度 t I S V x x y =τ (4。2。4) 双向抗剪强度 t I S V t I S V y y x x x y +=τ (4。2。5) 验算条件: v f ≤max τ (4。2。6) 4.2.3 局部压应力 f l t F z w c ≤=ψσ (4。2。7) 跨中集中荷载: y R z h h a l 52++= (4。2。8) 支座处: b h a l y z ++=5.2 (4。2。8) b ——梁端到支座边缘距离,如b 大于2.5h y ,取2.5h y 。 4.2.4 折算应力 第四强度理论:在复杂应力状态下,若某一点的折算应力达到钢材单向拉伸的屈服点,则该点进入塑性状态。 折算应力f c c z 12223βτσσσσσ≤+-+= (4。2。10) 1y I M x x =σ (4。2。11) 4.2.5 受弯构件的刚度 标准荷载下的挠度大小。 ][v v ≤ (4。2。12)

相关主题
文本预览
相关文档 最新文档