当前位置:文档之家› Heisenberg群上几类偏微分方程解的性质

Heisenberg群上几类偏微分方程解的性质

Heisenberg群上几类偏微分方程解的性质
Heisenberg群上几类偏微分方程解的性质

Heisenberg群上几类偏微分方程解的性质次黎曼流形(Sub-Riemannian manifold),粗略地讲,就是被赋予了一个分布及此分布上的一个纤维内积的流形,当考虑的分布为整个切丛时,次黎曼流形就成为黎曼流形.次黎曼流形研究的主要来源之一是控制论;同时,次黎曼流形也被用来研究力学中的非完整系统.近些年来,众多学者对次黎曼流形作了大量研究,内容涉及分析、方程、代数、几何等领域.而Heisenberg群是一类最简单的、非平凡的次黎曼流形;同时,由于平移映射族和伸缩映射族的存在,Heisenberg群具有丰富的内蕴结构,而且其几何结构与欧氏空间有本质的区别,因此开展Heisenberg群上的几何和分析问题的研究具有很重要的理论意义和实际价值.

本论文主要研究三方面内容:一是讨论Heisenberg群上H-调和函数的增长性;二是讨论Heisenberg群上一类含有奇异位势项的散度型变系数次椭圆方程弱解的唯一延拓性;三是研究Heisenberg群上次p-Laplace方程及抛物型次

p-Laplace方程的粘性解的渐近平均值公式.在H-调和函数增长性方面,我们首先讨论Heisenberg群上H-调和函数的Almgren频率的性质,得到了H-调和函数的Almgren频率与其在原点消失阶的内在关系;然后证明了H-调和函数一种新的Liouville型定理:全空间上频率有界的H-调和函数必是多项式;最后应用H-调和多项式的正交性讨论其局部增长性,证明当频率为常数时,一类具有旋转不变性的H-调和函数是齐次多项式.在次椭圆方程解的唯一延拓性方面,我们讨论Heisenberg群上一类含有奇异位势项的散度型变系数次椭圆方程弱解的唯一延拓性.首先定义这类方程弱解的频率函数,证明频率函数的单调性,然后利用频率函数单调性证明双倍条件,最后证明当方程系数、位势函数满足一定条件时解具有唯一延拓性.在渐近平均值公式方面,我们首先证明Heisenberg群上函数水平

最大(最小)增长方向与水平导数之间的关系,这个关系正是Heisenberg群区别于欧氏空间的集中表现;之后研究次p-Laplace方程粘性解的渐近平均值公式,证明了粘性解和渐近平均值公式的等价性,并举反例说明这类渐近平均值公式在非渐近情形下是不成立的;最后我们讨论Heisenberg群上抛物型次p-Laplace 方程,证明抛物型次p-Laplace方程粘性解的一个等价定理,在其基础上用渐近平均值公式刻画抛物型次p-Laplace方程的粘性解.

偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程); (2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性. 椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史 摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。这些特殊的方法和问题,将有助于我们解决很多问题。 引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征。比如,我们可以 试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。最后再通过微分方程求出未知函数。 关键字:微分方程起源发展史 一、微分方程的思想萌芽 微分方程就是联系着自变量,未知函数以及其导数的关系式。微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。 1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布 尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。 1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根 据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。只有一个自变量的微分方程称为常微分方程,简称微分方程。 例1 传染病模型 传染病(瘟疫)经常在全世界各地流行,假设传染病传播期间其他地区的总 x,在t时的健康人数为)(t y,染病人数不变,为常数n,最开始的染病人数为 人数为)(t x。 因为总人数为常数n

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

(高等数学) 偏微分方程

第十四章 偏微分方程 物理、力学、工程技术和其他自然科学经常提出大量的偏微分方程问题.由于实践的需要和一些数学学科(如泛函分析,计算技术)的发展,促进了偏微分方程理论的发展,使它形成一门内容十分丰富的数学学科. 本章主要介绍一阶偏微分方程、线性方程组及二阶线性偏微分方程的理论.在二阶方程中,叙述了极值原理、能量积分及惟一性定理.阐明了一些解的性质和物理意义,介绍典型椭圆型、双曲型、抛物型方程的常用解法:分离变量法,基本解,格林方法,黎曼方法,势位方法及积分变换法.最后,扼要地介绍了有实用意义的数值解法:差分方法和变分方法. §1 偏微分方程的一般概念与定解问题 [偏微分方程及其阶数] 一个包含未知函数的偏导数的等式称为偏微分方程.如果等式不止一个,就称为偏微分方程组.出现在方程或方程组中的最高阶偏导数的阶数称为方程或方程组的阶数. [方程的解与积分曲面] 设函数u 在区域D 内具有方程中所出现的各阶的连续偏导数,如果将u 代入方程后,能使它在区域D 内成为恒等式,就称u 为方程在区域D 中的解,或称正规解. ),,,(21n x x x u u = 在n +1维空间),,,,(21n x x x u 中是一曲面,称它为方程的积分曲面. [齐次线性偏微分方程与非齐次线性偏微分方程] 对于未知函数和它的各阶偏导数都是线性的方程称为线性偏微分方程.如 ()()()()y x f u y x c y u y x b x u y x a ,,,,=+??+?? 就是线性方程.在线性方程中,不含未知函数及其偏导数的项称为自由项,如上式的f (x,y ).若自由项不为零,称方程为非齐次的.若自由项为零,则称方程为齐次的. [拟线性方程与半线性方程] 如果一个方程,对于未知函数的最高阶偏导数是线性的,称它为拟线性方程.如 ()()()()()()0,,,,,,,,,,,,22222122211=+??+??+??+???+??u y x c y u u y x b x u u y x a y u u y x a y x u u y x a x u u y x a 就是拟线性方程,在拟线性方程中,由最高阶偏导数所组成的部分称为方程的主部.上面方程的主部为 ()()()22222122211,,,,,,y u u y x a y x u u y x a x u u y x a ??+???+?? 如果方程的主部的各项系数不含未知函数,就称它为半线性方程.如 ()()()()0,,,,,,2222=??+??+??+??y y u y x d x y u y x c y u y x b x u y x a 就是半线性方程. [非线性方程] 不是线性也不是拟线性的方程称为非线性方程.如 1)()1(222=??+??+y u x u u 就是一阶非线性偏微分方程. [定解条件] 给定一个方程,一般只能描写某种运动的一般规律,还不能确定具体的运动状态,所以把这个方程称为泛定方程.如果附加一些条件(如已知开始运动的情况或在边界上受到外界的约束)后,就能完全确定具体运动状态,称这样的条件为定解条件.表示开始情况的附加条件称为初始条件,表示在边界上受到约束的条件称为边界条件. [定解问题] 给定了泛定方程(在区域D 内)和相应的定解条件的数学物理问题称为定解问题.根据不同定解条件,定解问题分为三类.

非线性偏微分方程在金融衍生品定价中的应用

非线性偏微分方程在金融衍生品定价中的应用Black-Scholes期权定价公式对金融衍生品的发展起了不可估量的作用,是 金融衍生品的定价的基础。然而BS方程是建立在六大假设的基础上得到的,现实中不可能全部满足这些假设,后来许多研究者对于方程的假设做了一些修改,其中一些结果是应用了非线性偏微分方程对金融衍生品定价。本文主要介绍这方面的成果。 关键词:非线性偏微分方程金融衍生品定价 一般认为Black-Scholes期权定价公式是现代金融的基础,是现代金融产品定价的核心,以后的金融定价理论都是在此基础上发展起来的,从数学角度来讲,这个方程是一个比较简单的二阶线性抛物方程,通过简单的变形容易得到解析解。Willmott(2000)的著作中就用相似解的方法得到解的表达式。但BS方程是建立在六个假设的基础上的,金融市场上变化因素很多,往往很难同时满足BS 模型的这些假设条件,比如现实交易中应该考虑交易成本的问题,波动率不可能是一个常数,股价并不一定服从对数正态分布等等,为了解决这些问题,一些研究者提出了完全非线性方程。大概有两种,本文就此进行了论述。 两阶模型 第一种是两阶模型,这种方法主要是对于BS公式的假设进行改进,主要有: (一)加入证券的交易成本 现实市场中,证券的交易是要有成本的,然而BS模型的假设中没有考虑到交易成本,对于此,Leland(1985)考虑交易成本的期权的定价模型时,他认为不管每一个时间间隔是否是最优,都要进行Delta 对冲,来求算考虑交易成本的期权定价的模型,这样所得出的模型只要将BS模型中的设为常数的波动率进行修改就可以了,比较简单。而后,Hoggard,Whalley&Willmott(1992)中利用Taylor 展开得到了完全非线性方程: ,k为交易费率。 从上式可以看出,对于单个看涨或者看跌期权,因为其Gamma值都为正,通过变形可以得到其BS模型对应的波动率,这和Leland所得到的结果类似。不过这个模型还可以用来处理Gamma值不是单符号的期权组合的定价问题,还讨

基于偏微分方程

数学物理方程论文 ——基于偏微分方程在PKMK型几何积分方法中的应用研究

基于偏微分方程在PKMK型几何积分方法中的应用研究 摘要: 人类的发展历史表明科学的理论总是从简单到复杂,从特殊到一般,从粗糙到 精确,逐渐深化的。因此,以数学为工具,以物理学开路的严密自然科学在初期阶 段总是力图把描述简单化、近似化,在数学方面采取的一个重要办法就是线性化。 但是随着科学的发展和人类向更完美的目标的持续追求,复杂的自然界不断促使我 们把一个个线性理论发展为非线性理论。非线性化是科学发展的必由之路。一些学 者已将非线性科学誉为上世纪继相对论和量子力学之后自然科学的“第三次革命”。 正如一位物理学家所说:“相对论的建立排除了对绝对空间和时间的牛顿幻觉;量 子力学的建立则排除了对可控空间和时间的牛顿幻觉;非线性科学的建立排除了拉 普拉斯决定论的可预见性狂想。”非线性科学的建立是研究非线性现象共性的一门 学问。 关键词:偏微分方程 PKMK型几何积分函数商的零点 正文: 在数学、物理、化学以及生物等领域中,人们遇到大量的非线性现象,这些现 象的表现形式虽然千差万别,但其运动规律却具有相似的数学模型。一般地,它们 可以用常微分方程和偏微分方程的数学模型来描述。许多偏微分方程通过空间离散 化可以化为常微分方程的初值问题。 传统上,人们从两个极端不同的出发点来理解和掌握常微分方程问题。纯数学 家对问题认识深刻,推导严密,并采用大范围整体化的定性知识;而数值分析家通 过构造富有技巧的算法,以获得只有很小的误差的离散解,他们一般不考虑整体的 定性性质。孰优孰劣?这要视具体问题具体分析。如果要问到:“局部误差多大?” 这个问题大可以由传统的数值分析方法来解决。事实上,真实的物理过程都不是极 端的。在数学物理问题的研究中,问题所属的物理学、力学和工程技术本身的特殊 规律,常常会在问题进行严格数学处理之前,提示求解问题定性的思想和方法,并 促使具体问题的解决。本文强调应将微分方程的几何性质等定性信息与数值计算有 机地结合起来,进而处理实际问题。 大部分在物理学中显示巨大威力的新的数学思想均来自于几何与分析的交叉。 我们可以简单地回顾微分方程与几何学不可分割的历史渊源。18世纪以前的物理学 家和自然哲学家,如Copemies,Galileo,Kepler,Newton等都对几何学非常熟悉,他们常用几何概念来表达其物理思想。在19世纪,Descartes对Euclid几何引入坐标后,将几何学的研究看成是代数和分析的应用,这引起了几何学的革命,促进了在 几何学中各种分析工具的应用。与此同时,在物理学中利用坐标概念将自然定律表 示成微分方程,促进了物理学的发展。在此阶段,多数物理学家主要注意对物理体 系局域运动性质的探讨,对运动实体的内部对称性及大范围整体性质往往注意不 足。拓扑学与微分几何在物理学的重要性常被忽视。19世纪中叶,Maxwell从实验 观察总结出电磁现象的运动方程,注意到Maxwell方程组的共性不变性。Lorentz。Minkowski之后,直到20世纪初,Einstein提出了狭义相对论,人们才进一步深入 认识到了时空的基本几何特性的重要性。这时主要应用的数学工具是微分方程及群 论分析等。长期以来,微分方程在自然现象的数学研究中起到了决定性的作用,人 们充分认识到,通过研究微分方程的几何性质,可以获知它的真解的关键性的定性

偏微分方程与特征线

偏微分方程与特征线 1函数空间的矢量场 给定一个矢量场i x i v ?=)(x v ,就在空间定义了曲线簇。比如,经过0x 点的积分曲线就可以描述为下列常微分方程的初值问题 )(x i i v x = ,n i ,...,1= 0)0(x x = 这些积分曲线就构成了曲线簇。如果形式地写出这个曲线来就是 x vt x t v t v vt t x t x t x x t x )exp(...)! 3!21(...!3!2)(33223 2=++++=++++= 此处x 是0时刻位置,v 是作用于x 的微分算符。 这些曲线,将空间点分成了类,也就是说每条曲线上的点属于一类。曲线集合的维数是n-1维。 矢量场的可积性 那么给定两个矢量场,就会产生两簇曲线,这两簇曲线能否组成面簇呢?我们先 看看从一点出发的曲线是否在一个曲面上的条件:从x 点出发的依此沿两簇直线运动的点若能回到来,就可以认为可以组成面。即 x x vd uc vb ua =)exp()exp()exp()(exp 如果a,b,c,d 都是1级以上的小量,这个表达式有二级以上的精度,就可以找到这样的a,b,c,d,使得方程精确满足。 按照各级展开,有 一级 0a 1111=+=+d b c 二级 v d b u c a vu uv b a )()()(222211+++=- … 由此,得到条件 v u vu uv v u βα+=-=],[

这就是两个矢量能够构成2维子空间(曲面)的条件,著名的Frobenius 定理。 n 个矢量积分形成n 维积分只空间的条件是,任意两个矢量的对易可以写成这n 个矢量组合。 可以按照下图进行直观理解 给定m 个矢量场,他们线性组合能够形成新的矢量场。组成的矢量场空间一般称为分布。 },{是任意函数i i i i a v a ∑=? 这个分布中任意两个矢量场对易仍然在这个分布之内,这样满足Frobenius 定理的分布称为闭分布, ????],[ 他们积分可以给出m 维积分子流形。 单参数李群 一个矢量场可以构造单参数李群,一个闭分布可以构造李群。 我们先看一下单参数李群的表现,它将1维参数空间(物理上经常是时间),映射为群空间。群元素可以形式地写为算符形式 )exp(vt g t = 在表示空间中也可以写为函数变换 ),(t x x g t ?= 这个函数变换是常微分方程的初值问题的解 x x t x v t x t ==?)0,() ,(),(??? 当然这个函数满足如下关系

第三章-行波法与积分变换法Word版

第三章 行波法与积分变换法 分离变量法,它是求解有限区域内定解问题常用的一种方法。 行波法,是一种针对无界域的一维波动方程的求解方法。 积分变换法,一个无界域上不受方程类型限制的方法。 §3.1 一维波动方程的达朗贝尔(D ’alembert )公式 一、达朗贝尔公式 考察如下Cauchy 问题: .- ),(u ),(u 0, ,- ,0t 02 2 222+∞<<∞==>+∞<<∞??=??==x x x t x x u a t u t t ψ? (1) 作如下代换; ? ? ?-=+=at x at x ηξ, (2) 利用复合函数求导法则可得 22 2 2 2 22 2))((,ηηξξηξηξη ξηηξξ??+???+??=??+????+??=????+??=????+????=??u u u u u x u u u x u x u x u 同理可得 ),2(2 2222222ηηξξ ??+???-??=??u u u a t u 代入(1)可得 η ξ???u 2=0。 先对η求积分,再对ξ求积分,可得),(t x u d 的一般形式 )()()()(),(at x G at x F G F t x u -++=+=ηξ 这里G F ,为二阶连续可微的函数。再由初始条件可知

). ()()(),()()(' ' x x aG x aF x x G x F ψ?=-=+ (3) 由(3)第二式积分可得 C dt t a x G x F x += -?0)(1)()(ψ, 利用(3)第一式可得 .2 )(21)(21)(,2 )(21)(21)(00C dt t a x x G C dt t a x x F x x --=++=??ψ?ψ? 所以,我们有 ?+-+-++=at x at x dt t a at x at x t x u )(21)]()([21),(ψ?? (4) 此式称为无限弦长自由振动的达朗贝尔公式。 二、特征方程、特征线及其应用 考虑一般的二阶偏微分方程 02=+++++Fu Eu Du Cu Bu Au y x yy xy xx 称下常微分方程为其特征方程 0)(2)(22=+-dx C Bdxdy dy A 。 由前面讨论知道,直线常数=±at x 为波动方程对应特征方程的积分曲线,称为特征线。已知,左行波)(at x F +在特征线1C at x =+上取值为常数值)(1C F ,右行波)(at x G -在特征线2C at x =-上取值为常数值)(2C G ,且这两个值随着特征线的移动而变化,实际上,波是沿着特征线方向传播的。称变换(2)为特征变换,因此行波法又称特征线法。 注:此方法可以推广的其他类型的问题。 三、公式的物理意义 由 )()(),(at x G at x F t x u -++= 其中)(at x F +表示一个沿x 轴负方向传播的行波, )(at x G -表示一个沿x 轴正方向传播的行波。达朗贝尔公式表明:弦上的任意扰动总是以行波形式分别向两个 方向传播出去,其传播速度为a 。因此此法称为行波法。

有限差分法求解偏微分方程MATLAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

偏微分方程与图像处理.

偏微分方程与图像处理 (曲线的演化)

实验名称: 平面曲线的演化 实验内容: 1.用水平集方法对曲线进行演化; 2.用离散中值滤波方法进行演化。 理论分析: 我们已知道:曲线演化方程式(平均曲率运动方程MCM ) c k N t ?=?; 1. 曲线演化水平集方法 平面封闭曲线可以表达为一个二维函数u(x,y)的水平(线)集 (,,){(,,):(,,)}c L x y t x y t u x y t c == 这样就可将曲线演化问题嵌入到函u(x,y,t)的演化问题。即转化为水平集演化问题 曲线演化水平集方法的基本方程式如下: ||u k u t ?=?? 其中,||u ?=() 22 3/2 222xx y x y xy yy x x y u u u u u u u k u u -+= + 进而推得:22 22 2xx y x y xy yy x x y u u u u u u u u t u u -+?=?+;其中x u ,xy u ,xx u 可采用中心差分近似 () () 1,1,1,,1,2 1,11,11,11,1 2 (,)22(,)(,)4i j i j x i j i j i j xx i j i j i j i j xy u u u i j x u u u u i j x u u u u u i j x +-+-++--+--+-=?-+=?+--= ? 对于y u ,yy u 有类似的表达式。x ?表示相邻几个点。 从而完整的演化公式为: 22 1 ,,2 2 2xx y x y xy yy x n n i j i j x y u u u u u u u u u t u u +-+=+?+ (1) 其中,t ?为演化步长,在本程序中取为1。 这样就涉及到两个问题: (1).嵌入函数的选用 嵌入函数为—令u(x,y)表示平面上(x,y)点到曲线C 的带有符号的距离(见 课本)。 因此研究的曲线总对应于零水平集,这样只要检测过零点条件 ,1,.0i j i j u u +< 或 ,,1.0i j i j u u +<

变分方法及其在非线性偏微分方程应用方面的进展和未决问题

第42卷第2期2018年3月 江西师范大学学报(自然科学版) Journal of Jiangxi Normal University(Natural Science) Yol.42 No.2 Mar.2018 文章编号=1000-5862(2018)02-0111-19 变分方法及其在非线性偏微分方程 应用方面的进展和未决问题 邹文明 (清华大学数学科学系,北京100084) 摘要:先介绍变分法发展的简单历史以及将来的发展趋势.然后综述变分法应用于非线性偏微分方程的 基本思想和最新成果.通俗介绍环绕理论、变号临界点理论及应用,其中包括对称扰动方程和Rabinowitz 公开问题、Brezis-Nirenberg 临界指数方程、Li-Lin 公开问题、Bose-Einstein 凝聚、Berestycki-Caffarelli-Niren- berg猜测和Lane-Emden方程及猜想. 关键词:变分法;非线性偏微分方程;环绕理论;临界指数;变号临界点理论;薛定谔方程 中图分类号:〇176;0 175.29 文献标志码:A D O I:10.16357/j. cnki. issnlOOO-5862.2018.02.01 〇变分法简史和将来的发展趋势 变分的思想可以追溯到法国科学家费马(Pierre de Fermat,1601 _1665)时代.他在 1662 年提出了现 在被称为的极小作用原理:光传播的路径是光程取 极值的路径.这个极值可能是最大值(或最小值),甚至可以是函数的拐点.在最初提出时,又被人们称 为“最短时间原理”,即光线传播的路径是需时最少 的路径.此时,微积分还没有产生! 17世纪后半叶,更多的非线性问题需要更加严 密的理论工具,这就促使了微积分的产生.当时,许 多科学家,如法国的费马、笛卡尔,英国的巴罗、瓦里 士,德国的开普勒等,都为微积分的产生做了大量的 前期研究工作,为微积分的创立做出了启蒙的贡献. 英国的数学家牛顿(1643—1727)在1684—1685年 写《自然哲学的数学原理》,于1687年正式出版.德 国数学家莱布尼茨(1646—1716)于1684年在《博 学学报》(Acta Eruditorum)发表了《一种求极大极小 和切线的新方法,它也适用于分式和无理量,以及这 种新方法的奇妙类型的计算》.这2个工作标志着 微积分的诞生.牛顿-莱布尼茨发明微积分后,有了 系统且严谨的办法来研究变分问题.但围绕着微积 分的发明权之争,引发了欧洲大陆学派如德国(莱布尼茨学派)和英国(牛顿学派)的数学家们之间的 互相挑战[1]. 约翰?贝努利(Johann Beinoulli,瑞士数学家,I667—1748)在1696年6月提出一个作为向欧洲数 学家(甚至包括他哥哥Jakob Bernoulli,瑞士数学家,1654—1705)挑战的数学问题,即现在被称为的“最 速下降线问题问题提出半年后,仍然未解决.于 是Johann Beinoulli在1697年元旦发表著名的“公 告”(Programma),再次向“全世界最聪明的数学家”(意指牛顿)挑战,1月29日牛顿从英国造币局下班 回到住处,看到了转达Johann Beinoulli挑战的信 件,随后他利用一个晚上的时间解决了这个问题,并 将结果匿名(这是他常用的办法)发表.Johann Bei-nm illi读到这篇文章后惊叹“终于看见了雄狮的利 爪”,意指是牛顿所为.“最速下降线问题”现在被认 为是变分法的起源.瑞士数学家Leonhard Euler (1707—1783)作为 Johann Beinoulli 的学生,也对变 分法做出了极大贡献.例如,Leonhard Euler在1734 年推广了最速降线问题,寻找这类问题的更一般方 法.1744年,Leonhard E uler的《寻求具有某种极大 或极小性质的曲线的方法》一书出版[1].这是变分 学史上的里程碑,它标志着变分法作为一个新的数 学分支的诞生.在这个数学分支中,函数本身就是自 变量,因此比微积分的极值问题更加抽象和复杂. 收稿日期:2018<01-20 基金项目:国家自然科学基金(11771234)资助项目. 作者简介:部文明(1966-),男,江西宁都人,教授,博士生导师,国家杰出青年基金获得者,主要从事变分法和非线性微 分方程的研究.E-mails :zou-wm@ mail, tsinghua. edu. cn

偏微分方程数值解法

“十二五”国家重点图书出版规划项目 信息与计算科学丛书 67 偏微分方程数值解法 陈艳萍鲁祖亮刘利斌编著

内 容 简 介 本书试图用较少的篇幅描述偏微分方程的几种数值方法. 主要内容包括:Sobolev空间初步, 椭圆边值问题的变分问题, 椭圆问题的有限差分方法, 抛物型方程的有限差分方法, 双曲型方程的有限差分方法, 椭圆型方程的有限元方法, 抛物及双曲方程的有限元方法, 椭圆型方程的混合有限元方法, 谱方法等. 本书内容丰富, 深入浅出, 尽可能地用简单的方法来描述一些理论结果, 并根据作者对有限差分、有限元、混合有限元、谱方法的理解和研究生教学要求, 全面、客观地评价各种数值计算方法,并列举一些数值计算的例子, 阐述许多新的学术观点. 本书可作为高等学校数学系高年级本科生和研究生的教材或参考书, 也可作为计算数学工作者和从事科学与工程计算的科研人员的参考书. 图书在版编目(CIP)数据 偏微分方程数值解法/陈艳萍, 鲁祖亮, 刘利斌编著. —北京:科学出版社, 2015.1 (信息与计算科学丛书67) ISBN 978-7-03-000000-0 Ⅰ. ①偏… Ⅱ. ①陈… ②鲁… ③刘… Ⅲ. ① Ⅳ.① 中国版本图书馆CIP数据核字(2014) 第000000号 责任编辑: 王丽平/责任校对: 彭涛 责任印制: 肖钦/封面设计: 陈敬 出版 北京东黄城根北街16号 邮政编码: 100717 https://www.doczj.com/doc/fa18458736.html, 印刷 科学出版社发行 各地新华书店经销 * 2015年1月第一版开本: 720×1000 1/16 2015年1月第一次印刷印张: 14 字数: 280 000 定价: 88.00元 (如有印装质量问题, 我社负责调换)

偏微分方程课程大纲

《偏微分方程》课程大纲 一、课程简介 教学目标: “偏微分方程”是重要的数学基础课程,它在数学的其它分支和自然科学与工程技术中的广泛应用是众所周知的。本课程将尽可能地结合物理背景,系统地对几类典型方程数学结构、求解方法、解的性质以及物理意义进行详细阐述,为学生日后的学习和工作打下坚实的基础,提供强有力的工具,并为进一步了解和应用现代偏微分方程的有关内容提供重要帮助。 主要内容: 1. 了解几类典型方程及其定解条件的物理背景 2.掌握方程的分类及其化简方法 3. 熟练掌握各类方程的求解方法(包括具有普适性的方法,如分离变量法,Fourier变换法和 Green函数法等,以及针对某类方程的特定方法,如特征线法) 4. 会用一些基本方法(如能量积分法、极值原理等)讨论解的性质并掌握解的重要性质 二、教学内容(其中带*的部分可能随堂调整) 第一章引论 主要内容: 1、偏微分方程简介 a)偏微分方程的历史、现状和用途 b)什么是偏微分方程?介绍有关偏微分方程基本概念和研究内容 c)例子:简单而多样的例子帮助学生初步了解偏微分方程 2、二阶线性偏微分方程的分类和特征理论 a)两个自变量的二阶线性偏微分方程的分类与化简,椭圆型、双曲型和抛物型的 标准形式与典型例子,混合型方程 b)多个自变量的二阶线性偏微分方程方程的分类及其例子 c)二阶线性方程的特征理论* 3、四类典型方程的数学模型:包括波动方程、热传导方程、调和方程、和一阶方程 4、其他预备知识:线性方程的叠加原理、Sturm-Liouville原理* 重点与难点:通过化标准型将二阶方程进行分类、特征的概念(这是偏微分方程中最基本也是最重要的概念)、各类方程及其定解条件的物理意义 第二章波动方程 主要内容: 1、弦振动方程Cauchy问题的存在性:D’Alembert求解公式,传播波,依赖区域、决 定区域和影响区域,特征线法(行波法)的其他应用和例子,Duhamel齐次化原理 及其物理解释 2、弦振动方程初边值问题的存在性:分离变量法求解齐次问题及解的存在性讨论,分 离变量法求解的物理意义,多种边界条件的例子,非齐次方程的情形,非齐次边界 条件的情形,高维波动方程分离变量法的例子 3、高维波动方程Cauchy问题的求解:三维波动方程的球平均法,二维波动方程的降 维法

偏微分方程理论的归纳与总结

偏微分方程理论的归纳与 总结 Prepared on 22 November 2020

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显着差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程);

(2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性.

非线性偏微分方程 偏微分方程数值方法

非线性偏微分方程偏微分方程数值方法非线性偏微分方程偏微分方程数值方 法 非线性偏微分方程定义:各阶微分项有次数高于一的,该微分方程即为非线性微分方程 (一)主要研究内容 非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。 1.非线性偏微分方程的研究:我们主要研究偏微分方程解的存在唯一性(和多解性)及稳定性;偏微分方程的初值问题、初边值问题的整体解(包括周期解和概周期解)的存在性及渐近性;平衡解的存在性,尤其是当问题依赖于某些参数时平衡解的分叉结构,以及平衡解的稳定性问题;非线性方程的数值解。 2.H-半变分不等式的研究:建立具有极大单调算子扰动的多值(S)型和伪单调型映象的广义度理论,广义不动点指标理论和具有非凸、不可微泛函的非线性发展型H-半变分不等式理论,由此来研究含间断项的非线性偏微分方程。 3.最优控制系统的微分方程理论及其在电力系统的应用:主要研究与电力生产有关的控制系统的理论和应用。首先提出了对Banach空间中抽象非线性发展方程所描述的最优控制系统的研究。引进非光滑分析,研究最优控制系统的微分方程,利用变分不等式理论研究多值问题、数值计算等,所获理论成果应用于电力系统的

许多最优控制问题(如:电力系统励磁调节器传递函数的辨识、牛顿最优潮流的数学模型等)。 (二)研究方向的特色 1.变分不等式理论与能量泛函的凸性密切相关,由于现代科学技术的需要,特别是研究自由边界和固体力学问题的需要,传统的方法往往都无法解决这类问题,人们对H-半变分不等式进行研究,研究涉及现代分析及应用、偏微分方程以及科学计算等众多领域中亟待解决和发展的重要课题。 2.该研究是现代数学与电力生产的交叉学科研究课题,它对电力生产及管理有着十分重要的理论指导意义和实际应用价值,为控制系统设计、分析和计算都可提供一些重要的理论依据。在应用数学学科的这一研究领域中本课题属于国内外前沿性研究工作。 (三)可取得的突破 1.深入研究空间、时间、时滞对解的性质的影响,诸如静态解、周期解的存在性、解的存在性、渐近性等问题;寻求它们在含间断项的非线性偏微分方程方面的突破。 2.寻求和发现新的处理非单调、非凸不可微能量泛函的方法(如建立Ishikawa 迭代序列收敛准则),建立发展型方程G-收敛准则,寻求可行的光滑方法将算子方程光滑化,创建新的先验估计方法。 3.应用现代数学所获得的理论,研究最有控制系统的微分方程,为控制系统设计、分析和计算提供一些重要的理论依据和方法。 1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。 1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。 随机微分方程数值解

偏微分方程求解方法及其比较

偏微分方程求解方法及其比较 发表时间:2008-12-11T09:32:01.530Z 来源:《科海故事博览科教创新》2008年第10期供稿作者:曹海洋吕淑娟王淑芬 [导读] 近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注. 摘要:近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注. 关键词:谱方法;偏微分;收敛;逼近; 1偏微分方程及其谱方法的介绍 偏微分方程主要借助于未知函数及其导数来刻画客观世界的物理量的一般变化规律。理论上,对偏微分方程解法的研究已经有很长的历史了。最初的研究工作主要集中在物理,力学,几何学等方面的具体问题,其经典代表是波动方程,热传导方程和位势方程(调和方程)。通过对这些问题的研究,形成了至今仍然使用的有效方法,例如,分离变量法,fourier变换法等。早期的偏微分方程研究主要集中在理论上,而在实际操作中其研究方法和研究结果都难以得到广泛的应用。求解的主要方法为:有限差分法,有限元法,谱方法。 谱方法起源于Ritz-Galerkin方法,它是以正交多项式(三角多项式,切比雪夫多项式,勒让得多项式等)作为基函数的Galerkin方法、Tau 方法或配置法,它们分别称为谱方法、Tau方法或拟谱方法(配点法),通称为谱方法。谱方法是以正交函数或固有函数为近似函数的计算方法。从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。前者适用于周期性问题,后两者适用于非周期性问题。而这些方法的基础就是建立空间基函数。 下面介绍几种正交多项式各种节点的取值方法及权重。 1) Chebyshev-Gauss: 2) Chebyshev-Gauss-Radau: x0 =1, 3) Chebyshev-Gauss-Lobatto: x0 =1, xN =1, 4)Legendre-Gauss: xj 是的零点且 5) Legendre-Gauss-Radau: xj 是的N+1个零点且 6) Legendre-Gauss-Lobatto: x0=-1,xN=1其它N-1个点是的零点且 下面介绍谱方法中最重要的Jacobi正交多项式其迭代公式为: 其中: Jacobi正交多项式满足正交性: 而Chebyshev多项式是令时Jacobi多项式的特殊形式,另外Legendre多项式是令时Jacobi多项式的特殊形式。 2 几种典型的谱方法 谱方法是以正交函数或固有函数为近似函数的计算方法。谱近似可以分为函数近似和方程近似两种近似方式。从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。前者适用于周期性问题,后两者适用于非周期性问题。从方程近似角度看,谱方法可分为在物理空间离散求解的Collocation法、在谱空间进行离散求解的Galerkin法,以及先在物理空间离散求积,再变换到谱空间求解的Pseudo-spectral法。Collocation法适用于非线性问题.Galerkin法适用于线性问题,而Pseudo-spectral法适用于展开方程时的非线性项的处理。谱方法的特点是对光滑函数指数性逼近的谱精度;以较少的网格点得到较高的精度;无相位误差;适合多尺度的波动性问题;计算精度高于其他方法。快速傅立叶变化的提出大大促进了谱方法的发展,迄今已有各种的谱方法计算格式被提出.并被应用于天文学、电磁学、地理学等各种问题的计算。 下面介绍一下应用于各个区域的几种谱方法: 1)以Fourier谱方法为例介绍谱方法解方程的主要过程 以一阶波动方程为例: 其中u(x,t)为方程的解,L是包含u和u关于空间变量的导数的算子,除了方程以有初始条件和适当的边界条件。 故可设其中为试探空间的基函数,ak(t)为展开系数,对于傅立叶谱方法中的共轭有: 其中从而利用其正交性和周期性可以减少工作量,另外再结合边界条件就可以求出来。 2) Galerkin方法是谱方法中十分经典的解偏微分方程的方法,但还有其局限性,而利用Hermite谱方法中依赖时间的权函数对经典的Galerkin方法进行拓展后的新的方法能适用范围扩大了很多。它能很好的应用在微分方程最优控制问题有限元方法的分析中,并且如果能够灵活运用利用Chebyshev方法、Galerkin方法和配置方法,则会形成更强的计算方法。如将Tau方法的思想成功地应用于奇数阶微分方程Petrov-Galerkin谱方法。 3)在无界区域上谱方法和拟谱方法发展了以Hermite函数和Laguerre函数为基函数的正交逼近和插值理论,在这些结果的基础上发展了全空间和半空间上数理方程的谱方法和拟谱方法,从而形成一种新的能更好解决误解区域问题的方法,此种方法被很好的应用于统计物理、量子力学和流体力学中。 4) 我们利用非一致带权Sobolev空间中的Jacobi多项式正交逼近和Jacobi-Gauss型插值理论,提出以Jacobi多项式为基函数的Jacobi谱方法和拟谱方法用来解决一些奇异问题和计算某些特定的无界区域问题。 5)有限谱方法是基于有限点、有限项的局域谱方法。这种方法要求近似函数应具有等同隔网格和非周期性的性质。有限谱方法分为基于非

相关主题
文本预览
相关文档 最新文档