原码、反码、补码 定点数 浮点数什么

  • 格式:doc
  • 大小:42.00 KB
  • 文档页数:4

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原码、反码、补码定点数浮点数什么意思?有什么用?

数据在计算机中采用二进制后,用高电平和低电平分别表示0和1,正好用0,负号用1.

假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为:

00000000 00000000 00000000 00000101

5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。

现在想知道,-5在计算机中如何表示?

在计算机中,负数以其正值的补码形式表达。

什么叫补码呢?这得从原码,反码说起。

原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。

比如 00000000 00000000 00000000 00000101 是 5的原码。

反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。

取反操作指:原为1,得0;原为0,得1。(1变0; 0变1)

比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。

反码是相互的,所以也可称:

11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。

补码:反码加1称为补码。

也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。

比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。那么,补码为:

11111111 11111111 11111111 11111010 1 = 11111111 11111111 11111111 11111011

所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。转换为十六进制:0xFFFFFFFB。

再举一例,我们来看整数-1在计算机中如何表示。

假设这也是一个int类型,那么:

1、先取1的原码:00000000 00000000 00000000 00000001

2、得反码: 11111111 11111111 11111111 11111110

3、得补码: 11111111 11111111 11111111 11111111

正数的原码,补码,反码都相同,都等于它本身

负数的补码是:符号位为1,其余各位求反,末位加1

反码是:符号位为1,其余各位求反,但末位不加1

也就是说,反码末位加上1就是补码

1100110011 原

1011001100 反除符号位,按位取反

1011001101 补除符号位,按位取反再加1

正数的原反补是一样的

在计算机中,数据是以补码的形式存储的:

在n位的机器数中,最高位为符号位,该位为零表示为正,为1表示为负;

其余n-1位为数值位,各位的值可为0或1。

当真值为正时:原码、反码、补码数值位完全相同;

当真值为负时:

原码的数值位保持原样,反码的数值位是原码数值位的各位取反,

补码则是反码的最低位加一。

注意符号位不变。

如:若机器数是16位:

十进制数 17 的原码、反码与补码均为: 0000000000010001

十进制数-17 的原码、反码与补码分别为:1000000000010001、1111111111101110、1111111111101111 定点数与浮点数

1、定点数:

定点数指小数点在数中的位置是固定不变的,通常有定点整数和定点小数。在对小数点位置作出选择之后,运算中的所有数均应统一为定点整数或定点小数,在运算中不再考虑小数问题。

(1)定义:数据中小数点位置固定不变的数

(2)种类:定点整数

(3)小数点在符号位与有效位之间。

注:定点数受字长的限制,超出范围会有溢出。

2、浮点数:

浮点数中小数点的位置是不固定的,用阶码和尾数来表示。通常尾数为纯小数,阶码为整数,尾数和阶码均为带符号数。尾数的符号表示数的正负;阶码的符号则表明小数点的实际位置。

(1)形式:N=M×2E

(2)M:尾数

(3)E:阶码

(4)在计算机中M和E表示形式为

阶码尾数符号尾数

将其与数学中的科学记数法进行比较。

注:其浮点数的精度由尾数决定,数的表示范围由阶码决定。

3、定点数与浮点数区别

定点表示法运算直观,但数的表示范围较小,不同的数运算时要考虑比例因子的选取,以防止溢出。浮点表示法运算时可以不考虑溢出,但浮点运算,编程较难。要掌握定、浮点数的转换方法及浮点数规格化方法。

浮点数表示和补码表示

一个浮点数a由两个数m和e来表示:a = m × b^e。在任意一个这样的系统中,我们选择一个基数b(记数系统的基)和精度p(即使用多少位来存储)。m(即尾数)是形如±d.ddd...ddd的p位数(每一位是一个介于0到b-1之间的整数,包括0和b-1)。如果m的第一位是非0整数,m称作规格化的。有一些描述使用一个单独的符号位(s 代表+或者-)来表示正负,这样m必须是正的。

当尾数用二进制数表示时,浮点规格化数定义尾数S应满足下面关系:

(I)对于正数,S应大于等于1/2,小于1,用二进制数表示为:

S=0.1******…(其中*为0或1)

(II)对于负数,如果尾数用原码表示,S应小于等于-1/2,大于-1,表示为:

S=1.1******…(其中*为0或1)

m称作尾数,用原码表示

e称作阶数,用补码表示