龙贝格积分公式2
- 格式:doc
- 大小:31.50 KB
- 文档页数:2
#include 积公式的代数精度积公式是数学中常用的工具,它可以用来求解多项式的积分。 在代数中,积公式是指一类特定的公式,它们能够将多项式函数的积分转化为更简洁的形式。 本文将详细介绍积公式的代数精度,以及它在数学计算中的应用。 积公式的代数精度是指积分公式的准确程度。 通常,积分公式的代数精度越高,计算结果的精确度也就越高。 代数精度常用符号P表示,表示积分公式能够精确计算多高次的多项式函数。 例如,P=1表示积分公式可以准确计算一次多项式函数的积分,P=2表示可以计算二次多项式函数的积分,以此类推。 在代数中,常见的积分公式有梯形公式、辛普森公式和龙贝格公式等。 这些公式都具有不同的代数精度。 例如,梯形公式的代数精度为P=1,辛普森公式的代数精度为P=2,龙贝格公式的代数精度可以达到任意高。 这些公式的精度不仅与公式本身有关,还与所采用的积分节点数有关。 通常情况下,节点数越多,代数精度也就越高。 积公式在数学计算中有着广泛的应用。 在数值计算中,常常需要计算函数的积分。 由于很多函数的原函数无法用初等函数表示,因此只能采用数值积分的方法来求解。 积公式提供了一种有效的数值积分方法,可以将复杂的积分问题转化为简单的代数运算。 通过选择适当的积分公式和节点数,可以在保证计算精度的同时,提高计算效率。 除了在数值计算中的应用,积公式还在微积分中具有重要的意义。 微积分是数学中的重要分支,研究函数的变化率和积分运算。 积公式是微积分中的重要工具,可以帮助我们求解各种函数的积分。 通过积公式,我们可以将复杂的积分问题转化为简单的代数运算,从而简化计算过程。 积公式是数学中一类重要的工具,它可以将多项式函数的积分转化为更简洁的形式。 积公式的代数精度决定了计算结果的准确程度,不同的积分公式具有不同的代数精度。 积公式在数值计算和微积分中有着广泛的应用,可以帮助我们求解各种复杂的积分问题。 通过选择适当的积分公式和节点数,我们可以在保证计算精度的同时提高计算效率。 数值分析复习资料一、重点公式第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠ (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。 6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。 机械求积法数值积分与微分代数精度基本定义,只要满足∫ a b X m + 1 d x ≠ ∑ k = 0 n A k X k m + 1\int_a^bX^{m+1}dx\neq\sum_{k=0}^nA_kX_k^{m+1} ∫ab Xm+1dx=k=0∑n AkXkm+1在m次以内都是相等的那么就称求积公式具有m次的代数精度。 注:代数精度与特殊函数没有关系,只和选取的点以及这些点的权值有关插值型求积公式插值型求积函数其权系数A i = ∫ a b l i d xA_i=\int_{a}^{b}l_idx Ai=∫ab lidx插值型求积公式就是利用拉个朗日或者牛顿插值多项式构造插值函数,而且我们知道拉格朗日和牛顿插值多项的余项可以表示为R n ( x ) = f n + 1 ( ξ ) ( n + 1 ) ! ω n + 1 ( x ) ω n+ 1 ( x ) = ( x − x 0 ) ( x − x 1 ) . . . ( x − x n )R_n(x)=\frac{f^{n+1}(\xi)}{(n+1)!}\omega_{n+1}(x)\\[10pt]\omega_{n+1}(x)=(x-x_0)(x-x_1)...(x-x_n) Rn(x)=(n+1)!fn+1(ξ)ωn+1(x)ωn+1(x)=(x−x0)(x−x1)...(x−xn)。 有这个表达式可以推出,插值型求积公式的余项:R [ f ] = ∫ a b f n + 1 ( ξ ) ( n + 1 ) ! ω n + 1 ( x ) d x R[f]=\int_a^b\frac{f^{n+1}(\xi)}{(n+1)!}\omega_{n+1}(x)dxR[f]=∫ab(n+1)!fn+1(ξ)ωn+1(x)dx对于 f ( x ) f(x) f(x)我们很容易得出当 f ( x ) f(x) f(x)的次数等于n的时候我们经过n+1次求导积分内的表达式为0,故插值型求积公式至少具有n次代数精度。 倾斜卧式储油罐油量标定的实用方法摘要储油罐长期使用会产生变位,从而使罐容表的标定值与理论值存在误差。 因此,需要进行识别变位并对罐容表进行重新标定。 首先,对小椭圆形储油罐进行研究:利用微积分知识建立了平头罐无变位情况下罐内油量和油位高度关系的数学模型,并在此基础上建立了纵向倾角时罐内油量和油位高度关系的 理论模型,利用用龙贝格积分公式求解不同油位高度时储油量的数值解,进而进行罐容表的标定。 4.1α= 其次,对实际储油罐进行研究:将油位高度分成三种情况,在每种情况下,对球冠、筒身的油量与油位高度的函数关系进行了分别推导。 在计算球冠内油量与油位高度的关系时采用了拆补法,边缘情况使用了近似计算。 对于最终建立的储油量和油位高度关系理论模型,利用最小二乘法和单目标优化的的方法进行参数估计,求得:α=2.14°β=4.6°得到α和β后,对罐容量进行重新标定。 检验模型时利用相对标准偏差的思想,构造评价函数δ,得到结果δ= 0.0055%,误差极其微小,说明了所建模型的正确性和可靠性。 所建模型充分利用了附表中的数据,并合理地筛选了有效数据,适于推广到运输,化工,储藏行业。 关键词:龙贝格积分法,最小二乘法,单目标优化,误差分析^_^---目录1.问题重述---------------------------------------------------------22.问题分析---------------------------------------------------------23.模型假设---------------------------------------------------------24.符号说明---------------------------------------------------------35.模型建立与求解---------------------------------------------------45.1小椭圆型储油罐的罐容表标定----------------------------------45.1.1罐体无变位时的罐容表标定-----------------------------45.1.2纵向变位倾斜角α=4.1°时的罐容表标定-----------------55.2实际储油罐的罐容表标定-------------------------------------105.2.1油罐内油料体积的计算--------------------------------105.2.2利用最小二乘法对α、β进行估计----------------------145.2.3误差分析及模型检验----------------------------------156.模型分析---------------------------------------------------------167.参考文献---------------------------------------------------------178.附录-------------------------------------------------------------178.1 附录一 龙贝格积分matlab程序-------------------------------178.2 附录二 参数估计的C++程序---------------------------------- 18^_^1.问题重述通常加油站都有若干地下储油罐,许多储油罐在使用一段时间后,罐体的位置会发生纵向倾斜和横向偏转等变化,需要定期对罐容表重新标定。 定积分的近似计算方法摘要 本文主要讨论了一元函数常见的数值积分方法,例如插值型求积公式、龙贝格求积公式、高斯求积公式等近似计算方法,在用这些方法计算定积分时,会产生一些误差,为了减少误差, 可以利用复化求积公式、复化高斯公式等.本文围绕这些方法,系统介绍它们的计算公式以及截断误差,并用例题分析它们产生误差的大小、计算量等.关键词 插值型积分 龙贝格积分 高斯积分 误差分析 近似计算1引言在计算定积分的值()b aI f x dx =⎰时,常常根据微积分学基本定理求出)(x f 的一个原函数)(x F ,再用牛顿-莱布尼茨公式求的积分,()()()baI f x dx F b F a ==-⎰.但在实际应用中,这种方法只限于解决一小部分定积分的求值问题.当函数没有具体表达式,只是一些实验测得数据形成的表格或图形或者是()F x 无法用初等函数表示,例如,2bx ae dx ⎰,2sin ba x dx ⎰等等,这就需要我们用一些近似方法求的积分值.与数值积分一样,把积分区间细分,在每个小区间上,找到简单函数)(x ϕ来近似代替()f x ,且()b a x dx ϕ⎰的值容易求的.这样就把计算复杂的()ba f x dx ⎰转化为求简单的积分值()bax dx ϕ⎰.因此,定积分的近似计算实质上是就是被积函数的近似计算问题.2常见数值方法 2.1牛顿-科茨数值方法牛顿-科茨求积公式是求积节点等距离分布的插值型求积公式.利用插值多项式来构造数值积分公式是最常用、最基本的方法,具体做法是:给定区间[,]a b 上一组节点01...n a x x x b =<<<=,以及节点处函数()(0,1,2,i f x i n =,作()f x 的n 次拉格朗日多项式()()()nn i i i x f x l x ϕ==∑,其中 011011()()()()()()()()()i i n i i i i i i i n x x L x x x x L x x l x x x L x x x x L x x -+-+----=----,将插值公式(1)1()()()()(1)!n n n f f x x x n ξϕω++=++.其中1012()()()()()n n x x x x x x x L x x ω+=----,[,]a b ξ∈,依赖于变量x , 上式积分得(1)1()()()()(1)!n bb bn n aa af f x dx x dx x dx n ξϕω++=++⎰⎰⎰(1)(1)0()()()()(1)!n nb biiin aai f f x l x dx x dx n ξω++==++∑⎰⎰(1)(1)0()()()()(1)!n nbbi i n aai f f x b l x dx x dxn ξω++==++∑⎰⎰若记 (),(0,1,2,bi ia A l x dx i ==⎰….. )n (1)(1)1()[]()(1)!n bn af R f x dxn ξω++=+⎰, (2)则有()()[]nbi i ai f x dx A f x R f ==+∑⎰(3)称式(3)为插值求型公式,其中(0,1,2,i A i =…. )n 与()f x 无关,叫求积系数, i x 为求积节点,[]R f 为求积公式余项,其中求积系数由(1)决定.2.1.1梯形求积公式1梯形公式当插值节点01,x x 分别选取区间端点,a b 时,由式(3)分别求出求积系数10012bb aa x x xb b aA dx dx x x a b ---===--⎰⎰,01102bb aa x x x ab a A dx dx x x b a ---===--⎰⎰.从而的求积公式()[()()]2bab a f x dx f a f b -≈+⎰. (4) 称求积公式(4)为梯形求积公式,简称梯形公式.2梯形公式截断误差: 3*()[](),12b a R f f ξ-''=- *[,]a b ξ∈. (5) 3梯形求积公式的代数精度:1 当()1f x =时,式(5)中 1(1)2bab adx b a x b a -=-=+=-⎰. 精确成立.2.1.2 辛普森求积公式1辛普森求积公式当选取节点为012,,2a bx a x x b +===时,由式(1)求下列求积系数 1200102()()()()2()()6()()2b b a a a b x x b x x x x b a A dx dx a b x x x x a a b +-----===+----⎰⎰,0211002()()()()2()()()3()()22bb aa x x x x x a xb b a A dx dx a b a b x x x x a b -----===++----⎰⎰.0122021()()()()2()()6()()22b b a a a bx a x x x x x b a A dx dx a b a b x x x x a b +-----===++----⎰⎰ .从而求积公式()[()4()()]62bab a a bf x dx f a f f b -+≈++⎰. (6)称式(6)为抛物线积分公式或辛普森积分公式.2抛物线求积公式误差估计定理1.若()f x 在[,]a b 上有四阶连续导数,则抛物线公式(6)的余项为:5(4)**()[](),[,]2880b a R f f a b ξξ--=∈. (7) 3抛物线公式的代数精度为3.易验证,当23()1,,,f x x x x =时,式(6)精确成立,而当4()f x x =时,式(6)不能精确成立.2.1.3 牛顿-科茨公式1牛顿-科茨公式在等距离节点i x a ih =+下,其中(0,1,2b ah i n-==…. )n .作为变量替换x a th =+,那么由求积公式(1),得系数:10(1)(1)(1)()!(1)(1)!ni n t t t i t i t n A h dt i n ---+---==--⎰10(1)(1)...(1)(1)...()(0,1,2,...)!(1)!n nb a t t t i t i t n dt i n n i n -----+---=-⎰ (8)则 ()()n i i A b a C =- (9) 于是差值求积公式为:()0()()()[]nbn i i ai f x dx b a C f x R f ==-+∑⎰(10)称公式(10)为牛顿-科茨求积公式,其中()n iC 称为科茨系数.显然,科茨系数与被积函数()f x 及积分区间[,]a b 无关,它指依赖于n ,且为多项式积分.因此,只要给出n ,就能看出i A ,并写出相应地牛顿-科茨公式.2牛顿-科茨公式的截断误差与代数精度.当1n =与2n =情况分析牛顿-科茨公式的截断误差为(1)()[]()()()(1)!n b b bn aaaf R f f x dx x dx x dxn ξϕω+=-=+⎰⎰⎰牛顿-科茨公式的截断误差还可以写成(2)*1()[]()((2)!n bn a f R f x dx n n ξω++=+⎰为偶数)(1)*1()[]()(1)!n bn a f R f x dx n ξω++=+⎰ (n 为奇数) (11) 其中*[,]a b ξ∈,且不依赖于x ,101()()()...()n n x x x x x x x ω+=---,对()f x 为任何并不超过n 次多项式,均有(1)()0n fx +≡,因而[]0R f ≡,即0()()nbi i ai f x dx A f x ==∑⎰精确成立,也就是说,牛顿-科茨公式的代数精度至少为n ,牛顿-科茨公式在n 为偶数时,至少具有1n +次代数精度,在n 为奇数情况时,至少具有n 次代数精度.2.1.4复化梯形求积公式将区间[,]a b 等分,节点为i x a ih =+ (步长b ah n-=),0,1,2...,i n =)在每个小区间1[,]i i x x -上采用梯形公式(4)得11111()()[(()()]2ii nnbx i i i i ax i i x x f x dx f x dx f x f x ---==-=≈+=∑∑⎰⎰11[()()]2ni i i hf x f x +=+=∑11[()2()()]2n i n i hf a f x f b T -=++=∑ (12)称式(12)为复化梯形公式. 复化梯形公式余项为()2()()()12i n b a R f h f η-''=-(13) 2.1.5复化辛普森求积公式在每个小区间],[1+i i x x 上,辛普森公式(6)得11102()[()4()()]6n bi i ai i hf x dx f x f x f x -++==++∑⎰(14)111012[()4()2((6)]6n n i i i i hf a f x f x f --+===+++∑∑记 )]()(2)(4)([6111021b f x f x f a f hS n i i n i i n +++=∑∑-=-=+ (15)式中,21+i x为],[1+i i x x 的中点,即h x x i i 2121+=+.式(15)称为复化辛普森公式,其余项为∑-=-=-=10)4(4)()2(180)()(n i i n n f h h S f I f R η, 1(,).i i i x x η+∈故 ),(),()2(180)(R )4(4b a f h a b f n ∈--=ηη (16) 为复化辛普森的截断误差. 2.1.6复化科茨求积公式将区间[,]a b n 等分, 4n m =,m 为正整数,在每个子区间444[,]k k x x -上用科茨求积公式得到复化求积公式:412()[7()7()32()45mbk ak hf x dx f a f b f x -≈++∑⎰14241411112()32()14()mmm k k k N k k k f xf x f x C ---===+++=∑∑∑ (17)其中 4b a b a h n m--==, k x a kh =+ 其截断误差为6(6)2()[,](),()945n b a R f C h f a b ηη-=-<. 2.1.7 变步长复化求积方法复化求积公式虽然计算简单,也达到了提高精度的目的,但为了满足精度要求必须顾及误差,利用误差公式往往很困难,因为误差表达式中含有未知函数的导数,而估计各阶导数的最大值不太容易.我们可以采取把积分的区间[,]a b 细分的办法,在计算积分时将步长逐步折半,利用前后两次结果进行误差估计,如此继续,直到相邻两次结果相差不大,取最小的步长算出的结果为积分值,这种方法称为变步长积分法.以复化梯形公式为例,把区间[,]a b 分成n 等分,设复化梯形公式的近似值为n T ,原积分值为I ,由复化梯形公式误差公式(14)知:2"11()()()n b a b a I T f a b N N ηη--=-<<再把区间[,]a b 分成2n 等分,得近似值2n T ,则2222()()()122k b a b a I T f a b nηη--''=-<< 假定()f x ''在[,]a b 上变化不大,既有12()()f f ηη''''≈. 由上式得 .24kkI T I T -≈-于是 222211()()341n n n n n n I T T T T T T ≈+-=+-- (18) 式(18)表明若用2n T 作为I 的近似值,其截断误差约为2()3n n T T - (19)2.2 龙贝格求积公式龙贝格积分法的基本思想是采用复化梯形求积方法不断折半步长过程中,在积分结果中加入时候误差估计值进行补偿,使积分计算的收敛性加速,就可以加工出,,,...n n n S C R 精度较高的积分结果.由式(19), 2n T 的误差大致为23n nT T -,因此,可用这个误差值作为2n T 的一种补偿,加到2n T 上,则可得到积分准确值I ,比2n T 的更好近似值~T .222141()333n n n n nT T T T T T =+-=- 2221(2)21n n T T =-- (20)式(20)左端1n =时 记122121141()333S T T T T T =+-=- 112()()332a b T b a f +=+- [()4()()]62b a a b f a f f b -+=++恰好为[,]a b 上应用辛普生公式(16)的结果.在每个小区间应用辛普生公式:11[()2()()]2n n k k hT f a f x f b -==++∑121()112[()2()()2()]4n n n k k k k hT f a f x f b f x --===+++∑∑代入式(20)的左端得11111[()2()()2()32n nk k k k h f a f x f b f x -==+++--∑∑ 11[()2()()]2n k k h f a f x f b -++∑11111[()4()2()()]62n n k k k k f a f x f x f b -===+-++∑∑n S =从而复化辛普森公式与复化梯形公式公式有以下关系式2441n nn T T S -=- (21)类似也可以推证,在辛普森序列基础上,利用以下关系式22242161151541n n n n n S S C S S -=-=- (22)可以造出收敛速度更快的科茨序列12,...,...n C C C 将此推行下去,在科茨序列基础上,通过243431n nn C C R -=- (23)构造出收敛速度比科茨序列更快的龙贝格序列12,,......n R R R .以上这种通过逐步构造龙贝格序列的积分近似值法就称为龙贝格积分法.2.3高斯求积公式由定理()()()baf x F b F a =-⎰知,插值型求积公式的代数精度与求积节点的个数有关,具有1n +个节点的插值型求积公式至少具有n 次代数精度.不仅如此,代数精度与节点的选取有关,在构造牛顿-科茨求积公式时,为了简化处理过程,限定用等分节点作为求积节点,这样做,虽然公式确实得到简化,但同时也限制了公式的代数精度. 设积分,1,1=-=b a 本段讨论如下求积公式11()()ni i i f x A f x -==∑⎰(24)对任意积分区间[,]a b ,通过变 22ba t ab x ++-= 可以转换到区间]1,1[-上,这时11()()222bab a b a a bf x dx f t dt ---+=+⎰⎰ 此时,求积公式写为0()()222n bii ai b a a b b af x dx A f t =-+-=+∑⎰若一组节点]1,1[.....,10-∈n x x x 使插值型求积公式(24)具有21n +次代数精度,则称此组节点为高斯点,并称相应求积公式(24)为高斯求积公式.2.3.1 高斯求积公式的余项(2)2()[]()()()(22)!n nbb k k aa k f R f f x dx A f x x dx n ηω+==-=+∑⎰⎰ 其中01()()()...(),[,]n x x x x x x x a b ωη=---∈,且不依赖于x .2.3.2 复化高斯求积公式复化高斯求积公式的基本思想是:将积分区间[,]a b 分成n 个等长小区间1[,](1,...)i i t t i m -=,然后在低阶(2n =)高斯求积公式算出近似值,最后将他们相加的积分()baf t dt ⎰的近似值m G ,即11111111()()[]222ii mmbt i i i i i i at i i t t t t t t f t dt f t dt dt -----==-+-==+∑∑⎰⎰⎰1111[()]222m i h ha i h x dx-==+-+∑⎰101[()]222m n j j mi j h hA f a i h x G ==≈+-+≈∑∑ (25)其中mab h -=,j A 与(0,1,2,...,)j t j n =可由书中表中查出. 3 应用3.1插值型积分的应用例1 用牛顿-科茨公式(1,2,4n =)计算积分12211I x =+⎰. 解 1n =时2210112[]0.4512101()2I -≈+=++2n =时22211112[4]0.463725116101()1()42I -≈++=+++4n =时2222111112[7321232]0.46363311390101()1()1()848I =++++≈++++例2 利用复化梯形求积公式计算积分 12211I dx x =+⎰解 设211)(xx f +=,分点个数为n =1,2,4,5时,求出相应积分n T , 111[(()())],21,2(),.n n i i i i i T f a f b f h b a h n n f x f x a ih ih -=⎧=++⎪⎪-⎪==⎨⎪=⎪⎪=+=⎩∑列表如下:n =1的计算结果见表1-1所列 n h0x 1x 0f1f1T10.50.00.51.00.80.45n =2的表格如下 n h0x1x2x0f1f 2f 2T20.250.000.250.501.000.941765 0.800.460294n =4时计算结果如下表 n h 0x1x2x3x4x40.1250.000.1250.250.3750.500f1f2f3f4f4T1.000.98461540.94117650.8767120.800.462813n = 5时计算结果如下 n h0x1x2x3x4x5x50.10.00.10.20.30.40.50f1f2f3f4f5f5T1.00.9900990.96153850.917430.8620690.80.463114例3 利用复化求积公式120x e dx ⎰,问积分区间为多少等分才能得证有5位有效数字?解 由式(14)知322()[],()()1212n b a b a R f h f n f n n--''''=-=- 有1(),(),2x xf x e f x e b a ''==-=,当]21,0[∈x 时,在12|()|f x e ''≤,所以122|[]|96n eR f n≤ 由于120x e dx ⎰的准确值具有一位整数,所以要使近似值具有5位有效数字,n 必须满足4242211048,102196⨯≥⨯≤-e n n e 或 取对数有 19=n .即将区间]21,0[19等分可满足给定的精度要求.例4 利用复化抛物线求积公式计算 120211I dx x =+⎰. 解 设11)(2+=x x f ,取m =1,2, 3时,公式()⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++=+=====-=+++=+---=-=+∑∑.)12(,2),(),(),(,,242[31221212221111,1222h i a x ih a x x f f x f f b f f a f f m a b n f f f f h S i i i i i i b a m i m i i b a m当m =1,2,3时结果如下表所示 当m =1时m h(0.0)f )25.0(f )5.0(f2S1 0.25 1.0 0.9411765 0.80 0.463725当m =2时mh(0.0)f(0.125)f (0.025)f (0.35)f )5.0(f4S20.125 1.0 0.9846154 0.9411765 0.8767123 0.80 0.463653当m =3时mh(0.0)f(0.08333)f (0.16667)f (0.35)f(0.33333)f (0.14166667)f )5.0(f4S30.83331.00.99310340.9729730.9411760.90.852070.80.4636例5 用复化梯形公式,辛普森公式和科茨公式计算积分10sin xdx x ⎰的近似值.解按精度要求确定]1,0[分多少等分,即确定步长,要使6441021)1(28801|],[|-⨯≤≤M m S f R n ,只需.4642880102M m ⨯≥令10sin ()cos xf x txdt x==⎰, 则1()0sin ()()(cos )k kk k k d xd fx tx dt dx xdx ==⎰1cos().2k t tx kdt π=+⎰dt ktx t x f k k |)2cos(|max )(|max 10)(π+≤⎰11.1k t d t t≤=+⎰)10(≤≤x (4)1max |()| 5.f x ≤所以只要,9.13831288010264=⨯⨯≥-m 取m =4即可, 当4n =时,在每个子区间上用式(25),或(14),或(17),结果.9460829.0,9460833.0,9456911.0888===C S T3.2 龙贝格积分公式应用例6 用龙贝格算法计算积分1241I dx x=+⎰的近似值,要求误差小于510-. 解 .3,0,14)(2==+=b a x x f 步骤如下:2)1(,4)0()1(==f f 得.3)]1()0([211=+=f f T )2(计算,1.3)]21([21,516)21(12=+==f T T f 由此得 301333334121=-=T T S . (3)算出),(43),41(f f 从而,3013118)]43()41([412124=++=f f T T,14157.334242=-=T T S.30142121516121=-=S S C (4)计算),87(),85(),83(),81(f f f f 从而得到:13899.3)]87()85()83()81([812148=++++=f f f f T T ,,14159.334482=-=T T S,14059.31516242=-=S S C .1458.36364121=-=C C R(5)再计算),1615(),1613(),1611(),169(),167(),165(),163(),161(f f f f f f f f从而得到: 14094.316=T30141598=S ,,14159.3,14159.324==R C 51210||-≤-R R , 所以12043.14159.1dx x ≈+⎰3.3高斯求积公式的应用例7 用两点复化高斯求积公式计算10,x I e dx =⎰要求允许误差.106-=ε解 在本算法中取21=+n 时,,110==A A 其中;,)(mab h e x f x -== =++--=∑=)22(2201j jj b a x a b f A a b G.87189637800.1][21)32121()32121(=++-eem =2时, h =21, ]4121)21([4120202j i j j x i f A G +⨯-=∑∑==.57182571650.1)(41341333413341333413=+++=++--eeee m =3时, h =31. .37182769352.1]631)21([6130203=+⨯-=∑∑==j i j j x i f A G .101027.71||||56323--<⨯≈+-G G G3.4 几种方法的比较分析例8 计算积分211ln 2dx x =⎰,精确到0.001.(1)利用矩形公式计算, 因为对于x x f 1)(=,有320()2f x x''<=<(如果1<x <2),所以按照公式0)2(S =+-dx b a x ba . 0<n R <2112n . 如果取n =10,则我们公式的余项的余数得31010.84101200R -<<⨯,我们还必须加进由于在计算函数值实行四舍五入所产生的误差的界限相差于0.16⨯310-,为了这个目的只要计算1x的值到四位小数精确到0.00005就够了.我们有1232527292132152172192 1.051.151.251.351.551.651.751.851.95x x x x x x x x x =========5128.05405.05714.06061.06897.07407.08.08696.09524.02192172152132927252321=========y y y y y y y y y 和6.928469284.0109284.6=(2) 按照梯形公式作同样的计算,在这种情况下,作公式 210,||6n n R R n<<在这儿也试一试取n =10,虽然此时仅可以证3107.16001||-⨯<<n R ,纵坐标是9.18.17.16.15.14.13.12.11.1987654321=========x x x x x x x x x 5263.05556.05882.06250.06667.07143.07692.08333.09091.0987654321=========y y y y y y y y y和1877.669377.01877.621500101=+)( (3) 用辛普森公式做同样的计算作公式 .0))(()2(180)()4(45<≤≤⨯--=n n R b a f n a b R ξξ 并且n =5时有55104.1||-⨯<R .实行计算到五位数字,精确到0.0000058.16.14.12.14321====x x x x 45636.555556.062500.071429.083333.04321和====y y y y 9.17.15.13.11.12927252321=====x x x x x83820.1352632.058824.066667.076923.090909.029********和=====y y y y y.20.150==x x 50000.150000.060000.150和==y y6931525.083820.345636.550000.1301=++)(. 由此可见,用辛普森公式计算得到的值误差最小,计算量相对一般;而用矩形公式计算得到的值误差较大,计算量也比较大;用梯形公式计算的值误差比用矩形公式得到的值要误差小,计算量也是如此.所以我们计算定积分时用辛普森公式往往得到的值误差小,而对没有要求误差大小的,则可以选择辛普森或者是梯形公式,因为这两种方法计算量相对较小.结 束 语本文只讨论了一些一维数值积分方法及其它们的应用,误差分析等有关内容.其中最常用的方法是插值型积分以及复化方法、龙贝格积分方法和高斯积分方法,并讨论了相关求积方法的代数精度和误差分析,并给出了一些例题,分析各种方法的近似值,得出误差分析最小的近似方法.由于篇幅有限,对于高维数值积分方法本文便不再讨论.参考文献[1] 华东师范大学数学系,数学分析(第一版)[M],北京:高等教育出版社,2001. [2] 李庆阳,关治,白峰杉,数值计算原理(第二版)[M],北京: 清华大学出版社, 2008. [3] 肖筱南,现代数值计算方法(第一版)[M],北京: 北京大学出版社, 1999.[4] 菲赫金格尔茨,微积分学教程(第三版)[M],北京: 高等教育出版社, 2005. [5] 裴礼文,数学分析中的典型问题与方法(第一版)[M] ,北京: 北京大学出版社,2004. [6] 李桂成,计算方法(第三版)[M],北京: 高等教育出版社,2010.[7] Yin Y uezhu ,Yang Zhonglian.Calculating Skillfully the Curve Integral and Surface Integral Type 2 bySymmetry, SCIENCE & TECHNOLOGY INFORMATION ,2008(30)The Approximate Numerical Method of the Definite IntegralAbstract This paper mainly discusses common numerical methods of unary function, such as approximate calculation method of interpolation integral, Lebesgue integral and Gauss integration. With these methods in calculating the integral, it will produce some error. In order to reduce the error, we can use after the formula for product and after the Gauss formula. This paper focus on these methods introducing formula of introduction and truncation errors .In addition they can provide examples to analysis size of the error and computation.Keywords interpolation integral Lebesgue integral Gauss integral error analysis approximate computation。 博士研究生入学考试《数值分析(机电院)》考试大纲第一部分考试形式和试卷结构一、考试方式:考试采用闭卷笔试方式,试卷满分为100分。 二、考试时间:180分钟。 三、试卷内容结构:约占 60%,主观题约占 40%。 四、试卷题型结构:试卷由三部分组成:选择/判断、填空、分析/计算。 其中:1、选择/判断题,约占20%。 测试考生对本课程基本概念、基本知识和数值计算常用算法设计与分析方法的掌握程度。 2、填空题,约占40%。 测试考生运用数值计算相关基础知识和基本方法,开展计算、简要分析以及求解实际问题的能力。 3、分析、计算题,约占40%。 测试考生综合运用数值计算理论、典型方法解决综合问题,并开展相关计算方法收敛性以及误差分析等能力。 第二部分考察的知识及范围1.误差度量与数值算法设计误差基本概念:误差来源与分类,截断误差、舍入误差、绝对误差、相对误差,有效数字以及数值稳定性。 函数计算误差分析:一元函数误差估计,四则运算误差估计。 数值算法设计原则:简化计算步骤以节省计算量(秦九韶算法)、减少有效数字损失,选择数值稳定的算法。 2.函数的插值方法以及误差估计插值问题的基本概念:插值问题的描述,插值多项式的存在和唯一性,差商、差分的概念以及性质。 拉格朗日插值:线性插值与抛物插值,n次拉格朗日插值,插值余项公式。 牛顿插值:均差的概念与性质,牛顿插值公式及其余项,差分的概念与性质。 埃尔米特插值:两点三次埃尔米特插值及其余项,n点埃尔米特插值,非标准埃尔米特插值及其余项。 分段低次插值:分段线性插值,分段三次埃尔米特插值。 三次样条插值:三次样条函数建立,三次样条插值方法。 3.函数逼近与曲线拟合正交多项式:函数内积、欧几里德范数,正交函数序列,正交多项式,勒德让多项式,切比雪夫多项式。 最佳平方逼近:最佳平方逼近问题及解法,基于正交函数、勒德让多项式、切比雪夫多项式的最佳平方逼近。 最小二乘法:最小二乘曲线拟合问题的提出和解法,最小二乘计算,最小二乘法的应用(算术平均、超定方程组)。 1.经典四阶龙格库塔法解一阶微分方程组1.1运用四阶龙格库塔法解一阶微分方程组算法分析(1-1),(1-2)(1-3)(1-4)(1-5)(1-6)(1-7)(1-8)(1-9)(1-10)经过循环计算由推得……每个龙格-库塔方法都是由一个合适的泰勒方法推导而来,使得其最终全局误差为,一种折中方法是每次进行若干次函数求值,从而省去高阶导数计算。 4阶龙格-库塔方法(RK4)是最常用的,它适用于一般的应用,因为它非常精准,稳定,且易于编程。 1.2经典四阶龙格库塔法解一阶微分方程流程图图1-1 经典四阶龙格库塔法解一阶微分方程流程图1.3经典四阶龙格库塔法解一阶微分方程程序代码:#include <iostream>#include <iomanip>using namespace std;void RK4( double (*f)(double t,double x, double y),double (*g)(double t,double x, double y) ,double initial[3], double resu[3],double h){double f1,f2,f3,f4,g1,g2,g3,g4,t0,x0,y0,x1,y1;t0=initial[0];x0=initial[1];y0=initial[2];f1=f(t0,x0,y0); g1=g(t0,x0,y0);f2=f(t0+h/2, x0+h*f1/2,y0+h*g1/2); g2=g(t0+h/2, x0+h*f1/2,y0+h*g1/2);f3=f(t0+h/2, x0+h*f2/2,y0+h*g2/2); g3=g(t0+h/2, x0+h*f2/2,y0+h*g2/2);f4=f(t0+h, x0+h*f3,y0+h*g3); g4=g(t0+h, x0+h*f3,y0+h*g3); x1=x0+h*(f1+2*f2+2*f3+f4)/6; y1=y0+h*(g1+2*g2+2*g3+g4)/6; resu[0]=t0+h;resu[1]=x1;resu[2]=y1;}int main(){double f(double t,double x, double y);double g(double t,double x, double y);double initial[3],resu[3];double a,b,H;double t,step;int i;cout<<"输入所求微分方程组的初值t0,x0,y0:";cin>>initial[0]>>initial[1]>>initial[2];cout<<"输入所求微分方程组的微分区间[a,b]:";cin>>a>>b;cout<<"输入所求微分方程组所分解子区间的个数step:";cin>>step;cout<<setiosflags(ios::right)<<setiosflags(ios::fixed)<<setprecision(10); H=(b-a)/step;cout<< initial[0]<<setw(18)<<initial[1]<<setw(18)<<initial[2]<<endl;for(i=0;i<step;i++){ RK4( f,g ,initial, resu,H);cout<<resu[0]<<setw(20)<<resu[1]<<setw(20)<<resu[2]<<endl;initial[0]=resu[0];initial[1]=resu[1];initial[2]=resu[2];}return(0);}double f(double t,double x, double y){double dx;dx=x+2*y;return(dx);}double g(double t,double x, double y){double dy;dy=3*x+2*y;return(dy);}1.4经典四阶龙格库塔法解一阶微分方程程序调试结果图示:应用所编写程序计算所给例题:其中初值为求解区间为[0,0.2]。 // 龙贝格积分公式(2).cpp : 定义控制台应用程序的入口点。 #define f(x) (4.0/(1+x*x))//举例函数 double Romberg(double aa, double bb) //迭代初值 //迭代计算 //求第m行元素,根据Romberg计算表本行的前一个元素(p指示), system("pause"); 合集下载
积公式的代数精度
积分的数值方法
b b
作为平均高度 f() 的近似值而获得的一种数值 积分方法。
中矩形公式是把 [a,b] 的中点处的函数值: a b f ( ) 2 作为平均高度f()的近似值而获得的一种数值积分 方法。 Simpson公式是以函数 f(x) 在 a, b, (a+b)/2 这三点的 函数值 f(a), f(b),
Pn ( x) f ( xk )lk ( x)
k 0 n
式中 这里
( x) lk ( x ) ( x xk )( xk ) j 0 xk x j
n j k
x xj
( x) ( x x0 )(x x1 )( x xn )
的近似值,即:
多项式Pn(x)易于求积,所以可取
b
y=f(x)
图3-1 数值积分 的几何意义
a
b
建立数值积分公式的途径比较多, 其中最常用的
有两种:
(1)由积分中值定理可知,对于连续函数f(x),在
积分区间[a,b]内存在一点ξ,使得:
因而
b
a
f ( x)dx (b a) f ( )
a, b
即所求的曲边梯形的面积恰好等于底为(b-a),高为
R( f ) f ( x) P( x)dx
b a
b
a
f ( n 1) ( ) ( x)dx (n 1)!
其中
a, b
当f(x)是次数不高于n的多项式时,有 f ( n1) ( x) 0 R ( f ) =0,求积公式(3-10)能成为准确的等式。由于 闭区间[a,b]上的连续函数可用多项式逼近,所以
x4
ex
6.40 6.389计算方法_数值积分
f
(b)]
其中xk=a+kh
(k=0,1,2,…,N),
h
ba N
2.复合Simpson公式
如果在每个子区间上使用Simpson公式,就得到复
合Simpson公式。将N等分后的每个子区间再对分一次,
于是共有2N+1个节点,xk 在每个N等分的子区间[x2k ,
ak x2k+2]
h (k=0,1,2,…,2N), (2k=0,1,2,…,N-1)上应
这个问题有明显的答案
I*
4 a rc tg
x
|
1 0
3 .1 4 1 5 9 2 6
取n = 8用复合梯形公式
T8
1 8
1 2
f
(0)
2
f
1 8
2
f
1 4
2
f
3 8
2
f
1 2
2
f
5 8
5.1 牛顿 ― 柯特斯(Newton―Cotes) 公式
建立数值积分公式最基本的思想是选取一个既简单又 有足够精度的函数φ(x),用φ(x)代替被积函数f(x),于是有
b
b
a f (x)dx a (x)dx
现用第四章介绍的插值多项式Pn(x)来代替被积函数f(x),即有
b
b
a
算的结果进行比较。
解 计算结果列于表5-2中。
函数f (x) 梯形值 Simpson值 Cotes值 准确值数值分析复习资料
机械求积法
倾斜卧式储油罐油量标定的使用方法
定积分近似计算方法
博士研究生入学考试《数值分析(机电院)》考试大纲
经典四阶龙格库塔法解一阶微分方程组
化工计算方法-5-数值微分与积分
辛普生积分(三点公式)
S ba f (a ) 4 f (c ) f (b) 6
y
f(a)
f(b)
• 几何意义:用三点构造 的抛物线L2(x) 代替被积 函数f(x)构成曲边梯形面 积 近 似 原 曲 边 梯 形 面积 。
#
I
L ( x)dx
b a 2
a
c
b
11
x
5.2.3 牛顿-科特斯(Newton-Cotes)公式(n等分) •对区间n等分,过n+1个点时的拉格朗日(Lagrange) n次插 值多项式为
解 先求 x=0.8处 导数 df/dx • 一阶精度格式
f ( xi 1 ) f ( xi ) df O( x ) dx x xi x
df f (0.9) f (0.8) 0.29 0.35 0.06 dx x 0.8 0.9 0.8 0.1
f ( x i 1 ) f ( x i 1 ) df O( x 2 ) • 二阶精度格式 dx 2x x xi
Ln ( x )
( x
k 0 j 0 jk
n
n
x xj
k
xj
) yk
b a
j , k 0, 1, , n
b a
f ( x )dx
Ln ( x )dx
b a
( x
b a k 0 j 0 j k
n
n
x xj
k
xj
) f ( xk )dx
n
b
•梯形公式
ba ba ba f (a ) f (b) T f (a ) f (b) 2 2 2 • 几何意义:直线代替曲线,斜边梯形近似曲边梯形。#
//
#include "stdafx.h"
#include
#include
using namespace std;
#define epsilon 0.0000000001 //精度
#define MAXREPT 10 //迭代次数,到最后仍达不到精度要求,则输出T(m=10).
{
//aa,bb 积分上下限
int m, n;//m控制迭代次数, 而n控制复化梯形积分的分点数. n=2^m
double h, x;
double s, q;
double ep;//精度要求
double *y = new double[MAXREPT];//为节省空间,只需一维数组
//每次循环依次存储Romberg计算表的每行元素,以供计算下一行,算完后更新
double p;//p总是指示待计算元素的前一个元素(同一行)
h = bb - aa;
y[0] = h*(f(aa) + f(bb))/2.0;
m = 1;
n = 1;
ep = epsilon + 1.0;
while ((ep >= epsilon) && (m < MAXREPT))
{
//复化积分公式求T2n(Romberg计算表中的第一列),n初始为,以后倍增
p = 0.0;
for (int i=0; i
x = aa + (i+0.5)*h;
p = p + f(x);
}
p = (y[0] + h*p)/2.0;//求T2n = 1/2(Tn+Hn),用p指示
//和上一行左上角元素(y[k-1]指示)求得.
s = 1.0;
for (int k=1; k<=m; k++)
{
s = 4.0*s;
q = (s*p - y[k-1])/(s - 1.0);
y[k-1] = p;
p = q;
}
p = fabs(q - y[m-1]);
m = m + 1;
y[m-1] = q;
n = n + n; h = h/2.0;
}
return (q);
}
int main()
{
double a,b;
cout<<"Romberg积分,请输入积分范围a,b:"<
cout<<"积分结果:"<
return 0;
}文档推荐