当前位置:文档之家› 线路设计手册

线路设计手册

线路设计手册
线路设计手册

§1 架空配电线路

设计气象条件

参照通州地区多年的运行经验,本地区线路设计气象条件取为《架空配电线路设计技术规程》(SDJ206-87)中所列的典型Ⅳ级气象区,气象参数如下:

风荷载计算

1.2.1风载体型系数c

风吹到建筑物表面引起的压力或吸力反应与原始风速算得的理论风压比值,称为风载体型系数。

导线、避雷线风载体型系数c,采用下列数值:

线径<17mm:

线径≥17mm:

:

覆冰(不论线径大小):

杆(塔)身的风载体型系数c,采用下列数值:

环形截面钢筋混凝土杆:

矩形截面钢筋混凝土杆:

角钢铁塔:(1+η)

η为空间桁架背风面的风载降低系数,一般采用表1-2-1所列数值。

表1-2-1 空间桁架背风面的降低系数η

注:F为风压方向杆(塔)身构件的投影面积(m);F k为桁架的轮廓面积(m);b为桁架前后面的距离(m);h为桁架迎风面宽度(m)。

1.2.2风荷载计算

电杆、导线的风荷载可按下式计算:

W=16

W——电杆或导线的风荷载(N);

c——风载体型系数,按1.2.1选取;

F——电杆杆身侧面的投影面积或导线直径与水平档距的乘积(m2);水平档距l h=(l1+l2)/2,式中l1、l2分别为电杆两侧的档距;

v——设计风速(m/s)。

导线

1.3.1导线设计安全系数

1.3.2导线常用参数

铝绞线、钢芯铝绞线、架空绝缘线物理特性参数及长期允许载流量可按下述表格进行选取。

表1-3-2 铝绞线的弹性系数和线膨胀系数

注:弹性系数值的精确度为±3000N/mm;

弹性系数适用于受力在15%~50%计算拉断力的铝绞线。

弹性系数适用于受力在15%~50%计算拉断力的铝绞线。

表1-3-4 铝绞线物理特性参数及长期允许载流量

·

表1-3-6 单芯架空绝缘线参考载流量(A)(环境温度30℃)

注:t0——实际空气温度,℃;

K1——PE、PVC绝缘的架空绝缘电线载流量的温度校正系数;

K2——XLPE绝缘的架空绝缘电线载流量的温度校正系数。

导线载流量现场也可按下列口诀进行估算。

导线载流量的计算口诀:(铝芯绝缘线载流量与截面倍数关系)

10下五,100上二,

25、35,四、三界,

70、95,两倍半,

穿管、温度八、九折,

裸线加一半,

铜线升级算

1.3.3导线截面选择——经济电流密度法

在进行导线截面选择时,综合考虑到各方面因素后,定出的符合经济效益最佳的导线截面,称为经济截面。对应于经济截面的电流密度,称为经济电流密度。

经济电流密度法计算公式为:

S=I L/J

式中:S——导线的经济截面,mm2;

I L——最大负荷电流,A;

J——经济电流密度,A/mm2,按表1-3-8选用。

:

2

此外,选择导线截面的方法还有发热条件,电压损耗,机械强度,电晕损耗等。

1.3.4导线与避雷线配合使用

表1-3-9 避雷线与导线配合

1.3.5线间距离

线间距离可按下列公式计算:

D≥+U/110+√f

D x≥√D p+()2

h≥

式中:D——导线水平线间距离,m;

D x——导线三角排列的等效水平线间距离,m;

D p——导线间水平投影距离,m;

D z——导线间垂直投影距离,m;

$

L k——悬垂绝缘子串长度,m;

U——线路电压,kV;

f——导线最大弧垂,m;

h——导线垂直排列的垂直线间距离,m。

配电线路导线的线间距离,应结合运行经验确定。如无可靠资料,导线的线间距离不宜小于表1-3-10所列数值。

注:表中所列数值适用于导线的各种排列方式;靠近电杆低压的两导线的水平距离不应小于0.5米。

中压架空绝缘配电线路的线间距离应不小于0.4m,采用绝缘支架紧凑型架设

不应小于0.25m。

同杆架设的双回线路或中、低压同杆架设的线路,横担间的垂直距离,不应小于表1-3-11及表1-3-12所列数值。

注:转角或分支线如为单回线,则分支线横担距主干线横担为0.6m;如为双回线,则分支线横担距上排主干线横担为0.45m,距下排主干线横担为0.6m。

%

表1-3-12 同杆架设的中低压绝缘线路横担之间的最小垂直距离

中压配电线路与35kV线路同杆架设时,两线路导线间的垂直距离不宜小于2.0m。中压架空绝缘电线与35kV线路同杆架设时,两线路导线间最小垂直距离2.0m;与60~110kV线路同杆架设时,两线路导线间最小垂直距离3.0m。

配电线路每相的过引线、引下线与邻相的过引线、引下线或导线之间的净空距离,中压不应小于0.3m,低压不应小于0.15m;中压引下线与低压线间的距离不宜小于0.2m。中压架空绝缘线路的过引线、引下线与邻相的过引线、引下线及低压线路的净空距离不应小于0.2m。

配电线路的导线与拉线、电杆或构架间的净空距离,中压不应小于0.2m,低压不应小于0.1m。中压架空绝缘电线与电杆、拉线及构架的净空距离不应小于0.2m,低压绝缘导线不应小于0.05m。

绝缘子、金具

1.4.1污秽分级

?

1.4.2安全系数

绝缘子、金具机械强度的使用安全系数,不应小于下列数值:针式绝缘子(立瓶)

悬式绝缘子(吊瓶)

蝴蝶式绝缘子(茶台)

金具

绝缘支架

绝缘子机械强度的安全系数,应按下式计算:

K=T/T max

T——针式绝缘子的受弯破坏荷载(N);

悬式绝缘子的一小时机电试验的试验荷载(N);

蝴蝶式绝缘子的破坏荷载(N);

T max——绝缘子最大使用荷载(N)。

1.4.3绝缘子主要尺寸及机电特性

表1-4-3 盘形悬式绝缘子主要尺寸及机电特性表

1.4.4配电线路常用金具选择

架空配电线路常用金具选择见下表,金具组装见附录“导线耐张串组装图”。表1-4-4 球头挂环规范

表1-4-5 球头挂环(平面接触)规范

表1-4-7 双联碗头挂板规范

表1-4-9 三腿平行挂板规范

表1-4-12 倒装式螺栓型耐张线夹规范

注:现通州地区中压配电线路常用铝合金耐张线夹型号为HD-285。

]

1.4.5防振锤

对于架设在平坦开阔地区的档距,使电线振动的风速范围与电线架设高度、档距大小之间的关系,可参考表1-4-14来确定。

表1-4-14 振动风速表

需要安装防振锤与否可参考表1-4-15。

表1-4-15 防振锤安装范围表

我国目前采用的防振锤种类为斯托克布里奇型(即FD、FG型)。防振锤型号、特点与适用导线和避雷线的规格列于表1-4-16。

耐张导线防振锤的安装距离起算点为耐张线夹销子中心处,悬垂导线防振锤安装距离起算点为悬垂线夹纵向轴心处。

防振锤安装距离可由下式计算:

b= λm /2×λM /2

λm /2+λM /2

`

式中:b ——防振锤安装距离,m ; ¥

λm /2——最小半波长,m ;

λM /2——最大半波长,m; d ——导线直径,mm ;

v M ——起振风速上限值,m/s ,见表1-4-14; v m ——起振风速下限值,m/s ,见表1-4-14; σm ——最高气温时应力,MPa ; σM ——最低气温时应力,MPa ; g ——比载取g 1,MPa/m 。

因电线张力的变化对波长的影响较之风速的变化引起的影响小多了,尤其在档距较大时,最低和最高气温条件下导线张力的变化不大,因此大多数采用平均运行张力及最大风速求波长,并按下式确定防振锤的安装距离:

λm /2= d

σm 400v M g λM /2=

d σM 400v m

g

b=~(λm/2)

!

λm/2——由最大起振风速及年平均运行应力求得的半波长,m。

安装两个防振锤时,一般第二防振锤安装距离为第一个防振锤安装距离的倍。即:

b2=

一般电线上每档每端安装防振锤的数量如表1-4-17所示。

电杆、拉线、基础、变台

1.5.1安全系数

普通钢筋混凝土杆的强度设计安全系数不应小于,预应力混凝土杆的强度设计安全系数不应小于。

拉线应采用镀锌钢绞线,其强度设计安全系数应不小于,最小规格不小于35mm2。

电杆基础的上拔及倾覆稳定安全系数不应小于下列数值:

直线杆

耐张杆

转角杆、终端杆

钢筋混凝土基础的强度设计安全系数不应小于。

1.5.2电杆

电杆的埋设深度,应进行倾覆稳定验算,单回路的配电线路,电杆最小埋设深度见表1-5-1。

表1-5-1 电杆的最小埋设深度

常用钢筋混凝土杆不同高程的直径见表1-5-2。

1.5.3横担

终端杆、耐张杆导线为70mm2时应使用抱担,导线为95mm2及以上时应采用梭形担。

转角杆的横担,应根据受力情况确定。一般情况下,15°以下转角杆,可采用单横担;15~45°转角杆,宜采用双横担(15~30°时可采用抱立,30~45°时可采用抱担);45°以上转角杆,宜采用十字横担。

^

横担应进行强度计算,铁横担的最小规格见表1-5-3。

1.5.4拉线、拉桩、戗杆

拉线应根据电杆的受力情况装设。拉线与电杆的夹角宜采用45°,如受地形限制可适当减少,但不应小于30°。

钢筋混凝土电杆的拉线从导线之间穿过时,必须装设拉线绝缘子或采取其他绝缘措施,拉线绝缘子距地面不应小于2.5米。

拉线棒的直径应根据计算确定,但其直径不应小于16mm。拉线棒应热镀锌。严重腐蚀地区,拉线棒直径应适当加大2~4mm或采取其他有效的防腐措施。

拉线与导线配合可参考表1-5-4。

拉线、拉线棍、拉线盘配置可参考表1-5-5、表1-5-6、表1-5-7。

表1-5-5 拉线、拉线棍、拉线盘配置表

注本表拉线强度安全系数、基础稳定安全系数均大于2;遇有粉砂、可塑粘性、软塑粘性土壤,选用拉线盘应另外进行稳定计算。

表1-5-6 楔型耐张线夹、楔型UT形耐张线夹与绝缘钢绞线配置表

注:拉线夹角按45°考虑。

跨越道路的拉线,对路面中心的垂直距离不应小于6m(跨越非重要道路时不低于5m),在拉桩处,拉线距地不低于4.5m,拉桩的倾斜角宜采用10~20°。

打拉线受环境限制时,可用戗杆代替,戗杆与主杆夹角为30°,埋深为300mm,土质松软或吃力较大时,应采取补强措施。

1.5.5变台、变压器

柱上配电变压器台的底部距地面高度不应低于2.5m。安装变压器后,配电变压器台的平面坡度不大于1/100。

柱上配电变压器的一、二次进出线均应采用架空绝缘线,其截面应按变压器额定容量选择,但一次侧引线铜芯不应小于16mm2,铝芯不应小于25mm2。

变压器的一、二次侧应分别装设熔断器,一次侧熔断器的底部对地面的垂直高度应不低于4.5m;二次侧熔断器的底部对地面的垂直高度应不低于3.5m。各相熔断器间的水平距离:一次侧不应小于0.5m,二次侧不应小于0.2m。

变压器保险丝容量的选择,单相变压器一次侧保险丝容量=2-3Ie,二次侧保险丝片容量=Ie;三相变压器一次侧保险丝容量,100kVA及以下为2-3Ie,100kVA以上为,二次侧保险丝片容量=Ie。其中Ie为变压器额定电流。

变压器常用参数见下表。

对地距离及交叉跨越

1.6.1导线与地面或水面的距离,不应小于下表数值。

表1-6-1 导线与地面或水面的最小距离(m)

注:居民区——工业企业地区、港口、码头、火车站、市镇、乡等人口密集地区。

非居民区——上述居民区以外的地区,均属非居民区。虽然时常有人,有车辆或农业机械到达,但未建房屋或房屋稀少的地区,亦属非居民区。

交通困难地区——主要指车辆、农业机械不能到达的地区。

表1-6-2 高压配电及输电导线与地面的最小距离

1.6.2导线与山坡、峭壁、岩石之间的净空距离,在最大计算风偏情况下,不应小于表1-6-3所列数值。

表1-6-3 导线与山坡、峭壁、岩石之间的最小距离(m)

1.6.3配电线路不应跨越屋顶为燃烧材料做成的建筑物。对耐火屋顶的建筑物,应尽量不跨越,如需跨越,导线与建筑物的垂直距离在最大计算弧垂情况下,不应小于下列数据:

低压配电——2.5m

中压配电——3.0m

35kV线路——4.0m

220kV输电线路工程设计毕业设计论文

220kV 双分裂双回路输电线路设计 学 生:阳文闯 指导教师:孟遂民 (三峡大学科技学院) 摘要:本设计讲述了某平丘区段架空输电线路设计的全部内容,主要设计步骤是按《架空输电线路设计》书中的设计步骤,和现实中的设计步骤是不一样的。本设计包括导线、地线的比载计算、临界档距、最大弧垂的判断,力学特性的计算,金具的选取,定位排杆,代表档距的计算,各种校验,杆塔荷载的计算,接地装置的设计以及基础设计等。在本次设计中,重点是线路设计,杆塔定位和基础设计。 关键词: 导线 避雷线 比载 应力 弧垂 杆塔定位 Abstract :In this text, it includes all the steps in of overhead power transmission line design, which is Accordance with 《the design of overhead power transmission line 》, but it is not the same with the reality .this article discussed the conductor and the ground wire's coMParing load critical span .the maximum arc-perpendiculer judgement .mechanics property's fixed position of shaft-tower. various checking .representative span's calculating. load ppplied on iron tower calculating. equipment used in the ground connection design. metal appliance choose .In this paper, it is the focal point of line design. iron tower design and fundament design ,at last ,it is simply introduced the iron tower erecting's design and fundament design followed with fundament construction. Key words :conductor overhead ground wire coMParing load stress arc-perpendiculer fixed position of shaft-tower (此文档为word 格式,下载后您可任意编辑修改!) 优秀论文 审核通过 未经允许 切勿外传

110kv~750kv架空输电线路设计规范(gb 50545-) 强制性条文 word整理版

GB 50545-2010 110KV~750KV架空输电线路设计规范强制性条文 1.第5.0.4条: 5.0.4 海拔不超过1000m时,距输电线路边相导线投影外20m处且离地2m高且频率为0.5MHz时的无线电干扰限值应符合表5.0.4的规定。 表5.0.4 无线电干扰限值 2.第5.0.5条: 5.0.5 海拔不超过1000m时,距输电线路边相导线投影外20m处,湿导线条件下的可听噪声值应符合表5.0.5的规定。 表5.0.5 可听噪声限值 3. 第5.0.7条: 5.0.7 导、地线在弧垂最低点的设计安全系数不应小于2.5,悬挂点的设计安全系数不应小于2.25。地线的设计安全系数不应小于导线的设计安全系数。 4. 第6.0.3条: 6.0.3 金具强度的安全系数应符合下列规定: 1 最大使用荷载情况不应小于2.5。 2 断线、断联、验算情况不应小于1.5。 5. 第7.0.2条: 7.0.2 在海拔高度1000m以下地区,操作过电压及雷电过电压要求的悬垂绝缘子串的绝缘子最少片数,应符合表7.0.2的规定。耐张绝缘子串的绝缘子片数应在表7.0.2的基础上增加,对110~330kV输电线路应增加1片,对500kV输电线路应增加2片,对750kV输电线路不需增加片数。 表7.0.2 操作过电压及雷电过电压要求悬垂绝缘子串的最少绝缘子片数

6. 第 7.0.9条: 7.0.9 在海拔不超过1000m的地区,在相应风偏条件下,带电部分与杆塔构件(包括拉线、脚钉等)的间隙,应符合表7.0.9-1和表7.0.9-2的规定。 表7.0.9-1 110~500kV带电部分与杆塔构件(包括拉线、脚钉等)的最小间隙(m) 表7.0.9-2 750kV带电部分与杆塔构件(包括拉线、脚钉等)的最小间隙(m) 注:1 按雷电过电压和操作过电压情况校验间隙时的相应气象条件,可按本规范附录A的规定取值。 2 按运行电压情况校验间隙时风速采用基本风速修正至相应导线平均高度处的值及相应气温。 3 当因高海拔而需增加绝缘子数量时,雷电过电压最小间隙也应相应增大。 4 500kV空气间隙栏,左侧数据适合于海拔高度不超过500m地区;右侧是用于超过500m但不超过1000m的地区。 7. 第7.0.10条: 7.0.10 在海拔高度1000m以下地区,带电作业时,带电部分对杆塔与接地部分的校验间隙应符合表7.0.10的规定。 表7.0.10 带电部分对杆塔与接地部分的校验间隙 注:1 对操作人员需要停留工作的部位,还应考虑人体活动范围0.5m。 2 校验带电作业的间隙时,应采用下列计算条件:气温15℃,风速10m/s。 8. 第7.0.17条: 7.0.17 中性点非直接接地系统在居民区的无地线钢筋混凝土杆和铁塔应接地,其接地电阻不应超过30Ω。 9. 第7.0.19 条: 7.0.19 钢筋混凝土杆的铁横担、地线支架、爬梯等铁附件与接地引下线应有可靠的电气连接,并应符合下列规定: 1 利用钢筋兼作接地引下线的钢筋混凝土电杆,其钢筋与接地螺母、铁横担或地线支架之间应有可靠的电气连接。 2 外敷的接地引下线可采用镀锌钢绞线,其截面应按热稳定要求选取,且不应小于25mm2。

浅谈输电线路基础设计中的一些优化措施

浅谈输电线路基础设计中的一些优化措施 摘要:本文主要从基础选型、基面处理及边坡处理等几个方面提出了输电线路基础设计中的一些保障线路安全运行的优化措施。 关键词:输电线路,基础设计,优化 前言:目前,随着我国用电负荷的强劲增长,输电线路的输电容量、规模均不断扩大,杆塔所受的荷载相应地不断增加,进而导致基础的材料耗量、施工难度也相应加大。因此,在保护环境的同时能节约工程造价、减少施工难度,一直是输电线路基础设计追求的目标。下面分别从几个方面浅谈基础设计中的一些优化措施。 1基础选型 1.1采用原状土基础 山区线路地质多为不同风化程度的岩石、岩石的残积层或硬塑、坚硬状态的粘性土覆盖层,这样的地质条件适合于做岩石基础(分为直锚式、嵌固式、承台式等)或掏挖基础(分为直柱、斜柱、全掏挖、半掏挖等)等原状土基础。这类基础能充分利用原状土的力学性能,提高基础抗拔承载力,施工方便,同时避免了基坑大开挖,减少了土石方工程量,在减少工程造价方面有很大优势,而且可以消除大开挖基础回填土质量不可靠造成的安全隐患。另外,这类基础可大大减小对周围环境的破坏,符合环境友好型的要求。 1.2铁塔采用全方位不等长接腿 输电线路经过的地形千差万别,当铁塔位于斜坡或台阶地时,各塔

腿之间会形成高差,若铁塔采用平腿设计,则降基处理的土石方量较大,且降基完成后容易形成高边坡,若不处理会危及铁塔安全运行,处理则会增加工程造价。此时,采用有全方位不等长接腿设计的铁塔具有较大优势。考虑设计的工作量及现场地形的适用性,长短腿的最小极差一般取为1.5m,最大高差则根据沿线塔位的地形合理选取。铁塔采用全方位不等长接腿与平腿相比较,虽然单基塔重、基础作用力均有不同程度的增大,但能大大减小基面开方、减少施工弃土,在环境保护、减少工程造价方面均有较大优势,而且,根据地形采用短接腿时,塔重可有部分减轻。需要注意的是,由于采用长短腿,铁塔各腿的基础力及基础根开均有变化。 1.3采用主柱加高基础 平地地形的基础主柱露头值一般取为0.2m,但若塔位处于山坡地形,按照0.2m的露头值则往往在基础保护范围内缺少抗拔土体,不能满足抗拔要求。此时可采用主柱加高基础,即将常规基础(按照露头值0.2m设计)的主柱按照需要加高适当的高度(通常取0.5m为一个级差),以此形成一个系列基础,根据塔腿地形的陡缓程度,并配合不等长接腿合理选用。采用主柱加高基础时,设计基面以上的土体实际上并不挖除,这样不仅可以减少土石方的开挖量,维持原始地形地貌,保持塔基稳定,而且可以减小塔腿基降,铁塔高程相应地提高。另外,一个系列基础的立柱宽度及底板的宽度、厚度一般也保持一致,可方便模板的加工及重复使用,而且,底板的钢筋长度、规格也大多一致,若为斜柱基础则地脚螺栓的火曲角度也一致,备料、加工时均较为方便。

架空输电线路铁塔结构与基础设计

架空输电线路铁塔结构与基础设计 发表时间:2019-09-18T16:59:35.737Z 来源:《电力设备》2019年第7期作者:侯少龙 [导读] 摘要:在我国现代经济社会发展水平不断提升的背景下,电力系统在设计与运行过程中所依赖的基础条件也发生了相应的改变。 (国网乌鲁木齐供电公司新疆维吾尔自治区乌鲁木齐新市区 830000) 摘要:在我国现代经济社会发展水平不断提升的背景下,电力系统在设计与运行过程中所依赖的基础条件也发生了相应的改变。作为我国当前电力供应的基础保障性设施,架空输电线路在电力供应系统中所发挥的作用是非常重要的。但结合我国电力行业实际情况来看,企业目前仍然是电力供应的主要对象,因此,在电力供应经济改善方面的需求仍然是非常明确的。在对架空输电线路铁塔的设计中,除需保障铁塔结构的安全、稳定以外,还需综合考虑设计的经济效益。在目前已发生的各类输电线路安全事故中,因铁塔结构设计不合理所致事故的比例是非常高的。因此,为提高架空输电线路运行安全性和稳定性,做好对铁塔结构与基础的设计、优化工作有着非常重要的意义与价值。 关键词:架空输电线路;铁塔设计;优化 一、架空输电线路铁塔塔型设计 在对架空输电线路铁塔进行内力分析时,可以将铁塔杆系节点看作成铰接点,进而进行有效的内力分析。由于架空输电线路铁塔的工作环境一般较为复杂,为了确保铁塔能够顺利的进行有效的工作,要对铁塔的塔型进行技术经济分析,优选最适宜的塔型。架空输电线路铁塔塔型的选择要充分考虑输电线的导线型号、铁塔的工作环境以及线路的敷设路径等因素,根据铁塔所承受的机械外负荷条件进行塔型的计算和设计工作,进而确保铁塔结构的刚度、强度、稳定性等满足实际工作的要求。 根据铁塔底部宽度的不同,可以将架空输电线路的铁塔分为:窄基铁塔和宽基铁塔两种类型。其中,窄基铁塔的底部宽度与塔体的高度之比介于1/14~1/12之间,而宽基铁塔的底部宽度相对较大,其比值介于1/6~1/4之间。窄基铁塔的底部宽度相对较小,在同样的塔高条件下,其主材所承受的各种作用力相对较大,为了确保塔体的安全性,对主材的要求相对较高,该种类型的铁塔设计主要用于档距较小的铁塔之中,其挡距要小于100m;而宽基铁塔其底部宽度较大,能够将铁塔的作用力进行有效的分解,其主材所受到的作用力相对较小,该种类型的铁塔设计主要用于档距较大的铁塔之中,其档距不小于100m。 二、架空输电线路铁塔结构设计 不同类型的铁塔其架空输电线路的结构设计不尽相同,其具体的结构设计如下: 2.1窄基铁塔的结构设计 依据横担以及铁塔支架的通用程度可以采用以下两种类型的结构布置方案:(1)可以将窄基铁塔的塔头区域设置为垂直的形式,对口宽进行固定,塔身开始逐渐起坡,其铁塔的整体高度与底部的宽度参数设置一致,不考虑输电线路回路数量划分的影响;铁塔横担具有良好的通用性,铁塔中所设置的横担数量要根据架空输电线路中实际的回路数量进行有针对性的设计。(2)铁塔塔身与塔头均按照要求设置一定的通用坡度,铁塔的总高度与铁塔的上口和底部宽度保持一致;横担设置成固定形式不进行通用设计,根据导线的数量可以分为单导线回路和 双导线回路两种不同的形式。 2.2宽基铁塔的结构设计 根据铁塔中导线回路数量的不同可以采取不同类型的结构设计方案。其中,对于使用单导线回路的铁塔,其结构布置具有“上”字型的特点;对于使用双导线回路的铁塔,其结构布置上具有鼓型的特点。 三、架空输电线路铁塔基础设计的技术优化措施 3.1加强铁塔的基础 在输电线路铁塔结构设计中,杆塔基础分类三类合计三十三种:①水泥杆基础:分为非原状土无拉线盘基础和非原状土有拉线盘基础两种;②钢管杆基础:分为非原状土台阶式基础、非原状土直柱式柔性基础和非原状土素混凝土基础三种;分为原状土掏挖式基础、原状土套筒式基础、原状土卡盘式基础和原状土复合沉井基础四种;及原状土灌注桩长桩单桩基础、原状土灌注桩长桩多桩承台基础、原状土灌注桩短桩抗倾覆基础、原状土灌注桩短桩位移基础、原状土灌注桩美国算法基础、原状土灌注桩钢管短桩位移基础和原状土灌注桩钢管短桩抗倾覆基础十一种;小计十四种;③直立式铁塔系列基础:非原状土刚性台阶式基础、非原状土直柱式柔性基础、非原状土斜柱式柔性基础、非原状土素混凝土(回填土)基础、非原状土联合式基础和非原状土窄基塔独立式刚性台阶式基础六种;及原状土素混凝土(原状土)基础、原状土灌注桩长桩-单桩带连梁基础、原状土灌注桩长桩-多桩带承台基础、原状土灌注桩短桩抗倾覆基础、原状土灌注桩短桩位移基础、原状土掏挖式基础、原状土岩石基础、原状土复合沉井基础、原状土窄基塔独立式长桩单桩灌注桩基础和原状土窄基塔独立式长桩多桩带承台基础十种;小计十六种。 对于运输或浇制混凝土有困难的地区,可采用预制装配式基础或金属基础;对电杆及拉线宜采用预制装配式基础。设计方案中还要正确分析铁塔基础受力,应首先保证安全,针对轴心受压基础、轴心受拉基础,分别选取不同的K值。对于新基础计算的前提条件是地基承载力满足设计要求,若地质属淤泥或淤泥质土,则必须进行重新设计。总之,基础型式应综合沿线地质、施工条件和杆塔型式并综合考虑基础稳定、承载力、不均匀沉降、基础位移、采空区、基础上拔土重度、上拔角、倾覆、冻土和洪泛区等诸多因数。 3.2降低杆塔的接地电阻 高压送电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,这是提高耐雷水平的基础,也是最经济、有效的手段。即:①杆塔所在地若有水平放设的条件,可水平外延接地,这样不但可降低工频接地电阻,还可有效地降低冲击接地电阻。②增加埋设深度接地极,就近增加垂直接地极的运用。③合理敷设降阻剂。④增加盐、酸、碱、盐及木炭等物质。如地下较深处的土壤电阻率较低,可用竖井式或深埋式接地极。 3.3优选路径和塔型的最佳搭配 城市紧凑型多回路钢管杆走廊、或钢管塔走廊,它在技术上能满足输电线路的实际要求,且钢管杆造型美观,安装快捷,占地面积省,还与城市地势较为平坦,走廊宽度小,线路施工方便等特点相适应,故得以迅速发展。输电线路的走廊宽度由塔头尺寸、风偏、安全距离三部分组成。减少线路走廊宽度的关键在于控制塔头尺寸和风偏。采用固定挂点的直线杆塔以及固定跳线的耐杆塔,是减少塔头尺寸

输电线路基础规范

竭诚为您提供优质文档/双击可除 输电线路基础规范 篇一:输电线路验收技术规程 输电线路验收技术规程 l10~500kV架空电力线路 施工及验收规范 20xx—06发布20xx—10—1实施 连云港供电公司标准化委员会 关于发布国家标准《l10~500kV架空电力 线路施工及验收规范》的通知 (90)建标字第317号 根据国家计委计综[1986]2630号文的要求,由原水电部会同有关部门共同修订的《110~500kV架空电力线路施工及验收规范》,已经有关部门会审。现批准《110~500kV架空电力线路施工及验收规范》gbj223-90为国家标准,自1991年5月1日起施行。原《架空送电线路施工及验收规范》gbj223—81同时废止。 本规范由能源部负责管理,其具体解释等工作由能源部电力建设研究所负责。出版发行由建设部标准定额研究所负

责组织。 建设部 1990年7月2日 修订说明 本规范是根据国家计委[1986]2630号文的要求,由能源部负责主编,具体由能源部电力建设研究所会同超高压输变电建设公司对原《架空送电线路施工及验收规范》gbj223—81进行修订而成。 在修订过程中,规范组进行了广泛的调查研究,认真地总结了原规范执行以来的经验,吸取了部分科研成果,广泛征求了全国有关单位的意见。最后由我部会同有关部门审查定稿。 本规范共分九章和一个附录。这次修订的主要内容有:将原适用电压等级由35~330kV改为110~500kV;比较切合实际地规定了回填土夯实的质量标准;修改并增加了m24的螺栓紧固扭矩标准值;对有预倾斜要求的铁塔基础抹面、紧线后的挠曲值提出了合理的要求;增加了拉线塔立柱扭曲的标准;增加了机械化施工的有关条文;对220kV及以上工程及大跨越档的弧垂提高了质量标准;特别是重点增加了有关张力架线 的条文,提高了因张力架线而导致导线损伤的处理标准;清除导线铝股表面氧化膜由使用凡士林改为使用导电脂;将

输电线路工程地脚螺栓最新要求(国网基建〔〕号)

输电线路工程地脚螺栓全过程管控办法(试行) 第一章总则 第一条为规范公司输电线路工程地脚螺栓的设计、采购、交接仓储、施工安装等工作,落实输电线路工程地脚螺栓各级管理责任,强化地脚螺栓全过程管控,公司根据有关法律法规、规程规范及管理制度,组织编制了《输电线路工程地脚螺栓全过程管控办法》(以下简称“本办法”)。 第二条本办法中的地脚螺栓是指输电线路工程中,基础与杆塔相连接的构件,由螺杆、螺母、垫板及辅助锚固措施等组成。 第三条根据工程应用等实际情况,按照增大级差、减少规格序列的原则,地脚螺栓应选用M24、M30、M36、M42、M48、M56、M64、M72、M80、M90、M100等规格。 第四条输电线路工程设计时,应尽量减少地脚螺栓材质种类,同一工程中同规格地脚螺栓应选用同一性能等级、同一材质,同一基杆塔应选用同一规格的地脚螺栓。 第五条地脚螺栓采购时,结合各省(自治区、直辖市)公司实际情况,采取甲供或乙供甲控方式,鼓励优先采取甲供方式。 第六条本办法适用于公司35千伏及以上输电线路工程地脚螺栓全过程管控,其他工程可参照执行。 第二章选型设计 第七条设计承包商要严格依据《输电杆塔用地脚螺栓与螺母》(DL/T 1236)、《钢结构设计规范》(GB50017)等标准规范的要求选型设计。在地脚螺栓加工图等设计文件中,要注明地脚螺栓性能等级等必备信息,明确地脚螺栓的螺杆与螺母使用同一螺距系列,且螺母的性能等级不应低于相配的地脚螺杆的性能等级。 第八条建设管理单位对地脚螺栓型式有特殊要求时,应在施工图设计前对设计承包商提出明确要求,设计承包商在地脚螺栓设计中予以落实。 第九条设计承包商在输电线路工程中应用杆塔通用设计时,依据《输电线路铁塔制图和构造规定》(DL/T 5442)的要求,核实地脚螺栓规格,校核塔脚板上的

电力工程高压送电线路设计手册学习

电力工程高压送电线路设计手册 1、电线力学计算。@气象条件。结构强度和电气性能适应气象变化。a、气象资 料及用途表:最高气温,计算电线最大弧垂,保持安全距离;最低气温,计算电线可能产生的最大应力、绝缘子串上扬、电线上拔及电线防振的计算; 年平均气温,防振设计一般采用平均气温时的电线应力作为计算控制条件; 历年最低气温月的平均气温,计算电线或杆塔安装检修时的初始条件;最大风速及最大风速月的平均气温,风荷载是考虑杆塔和电线强度的基本条件; 地区最多风向及其出现频率,电线防振、防腐及绝缘防污设计;电线覆冰厚度,杆塔及电线强度设计依据、验算不均匀覆冰时电线纵向不平衡张力及垂直布置的导线接近距离、可能出现最大弧垂时决定跨越时距;雷电日数,防雷计算;雪天、雨天、雾凇天的持续小时数,计算电晕损失时的基本数据; 土壤冻结深度,杆塔的基础设计;常年洪水位置及最高航行水位气温,确定跨越杆塔的高度及验算交叉跨越距离;最高气温月的日最高气温的平均值,计算导线发热温升;历年最低气温月的最低平均气温,计算断线或断串时气温条件。b、气象台的选择及气象分段。就近选取,远则调查,长悬分段,注意要点:利用《建筑结构荷载规范》或气象部门编制的《基本风压分布图》,按照规定的重现期和基准风速高度,将基本风压换算成风速,以供选择最大设计风速参照。c、设计气象条件的选定原则。资料经验并重,按气象重现期,风冰气温组合,近典型气象区则取之,“线路设计规定的气象重现区表格,典型气象区表格”。确定送电线路的最大设计风速:计算最大风速统计值(统一观测、10min时距平均最大风速作样本、极值I型分布函数、重现期T,求出相应重现期下的观测最大风速;然后以最大风速的基准高度表格中所列的不同线路类别所规定的风速基准高度,求出最大风速统计值);选取沿线附近气象台的最大风速统计值,山区按平原提高10%,不同等级最低风速要求;大跨越的最大风速最大冰厚。d、最大设计风速的选择。需要将不同高度、时距、次数的历年最大风速资料换算称某一相同观测高度下连续自记10min平均历年最大风速(指的是按照连续自记10min方式记录的历年最大风速的平均值)作为统计样本进行最大设计风速的统计计算。风速观测高度影响的换算:指数公式,与气象台地面粗糙度有关的系数。风速次时换算:我国一天定时观

输电线路工程基础设计特点

输电线路工程基础设计特点 摘要:随着经济社会的飞速发展与进步,电力工业也随之快速兴起,电网的建设规模越来越大,与其相关的设备也在与日俱增,输电线路的设计也相应的成了一个常规性工作。而输电线路的基础是线路工程中一个十分重要的部分,它是确保电网系统能够安全运行的基础,基于此,本文主要对输电线路工程基础设计特点有关内容展开分析,可供参考。 关键词:输电线路工程;基础设计;特点 输电线路基础工程存在的问题 地形地质勘测 路径的选择以及勘测是线路设计里至关重要。在比较偏远的山里,因为勘测点比较多,加上勘测的人员其业务水平高低不齐,使得在勘测水平上会有一些差异,对铁塔所在点的地质勘测精细程度也不一样。例如,高斜坡地区的水土流失现象严重,导致滑坡。因为塔基所处的地形特点比较特殊,对原有地貌又缺少对应的防护措施,所以在地形地质勘测当中用到的岩土鉴定方法、手段就需要进行改进。 基础设计 线路基础设计的时间比较久的运用安全系数设计法并不适宜。在软土质的地方,杆塔基础的设计不但应该满足普通杆塔对基础的设计标准,还要符合塔基沉降量以及倾斜度等的要求。过去的研究有不少不足的地方,使得软土质地区的杆塔基础设计的质量不高。在软弱地地基内不管是运用灌注桩抑或是大板式基础均可能有不少问题,同时造价还较高,质量很难控制,且施工比较复杂,对钢筋的使用量也很多。 工程施工 对于山区和软土地区,例如山坡、沼泽及河滩等地区,大型的机械是难进进入到场地当中进行施工的,而且对于材料的运输以及开挖基础等工作都存在困难。很多的线路都是塔形相同,其基础型式却因为土质存在区别而出现不同,绝大多数的线路塔杆是设立在高山、荒野等人烟稀少的地方的,因此施工的特点与环境也会因此有些差距。 电线路基础设计的类型及特点 冻土地基 线路基础工程在不同的地方,其施工的材料、工艺和地基的判断方法都有一定的区别。其中,冻土地基大约占全部国土的 1/5 左右,主要原理是由于冻土在融合及冻结的条件下,力学性质常常有所变化,与之相应的强度指标、地形特点和地面构造亦随之出现变化。在冬季时期最常出现安全隐患,冻胀以及融沉是冻土隐患的主要表现形式,一般在结构措施上进行防治。根据当地气候特殊性,结合施工需求,使用排水隔水法、物理化学法以及换填法对冻土地基进行处理。 软土地基 有些地区的土质为软土,在这种土质上建筑,所建的输电线路地基叫做软土地基。这种地基一般有灌注桩、扩展式和大板式三种基础。其中扩展式基础计算起来简单,不过工程对土方开挖以及配筋的要求很高,而且其占地面积很大,在施工过程中经常会发生搬运材料困

输电线路现场运行规程

架空送电线路现场运行维护规程 2012年 1

目录 引用规程、标准、规范…………………………………………………………………架空送电线路运行维护规程 第一章总则…………………………………………………………………………… 第二章设备基本情况………………………………………………………………… 第三章架空送电线路运行维护……………………………………………………… 第四章架空送电线路运行标准……………………………………………………… 第五章巡视与检查…………………………………………………………………… 2

1 适用范围 本规程规定了架空送电线路运行、检修工作的基本要求,并对线路的运行维护、设备检修、工作现场环境保护措施等提出了具体要求。 本规程适用于 运维的35kV、110kV、220kV架空送电线路。 2 引用规程、标准、规范 国家电网安监〔2009〕664号《国家电网公司电力安全工作规程(电力线路部分)(试行)》 国家电网安监〔2005〕145 号《国家电网公司电力生产事故调查规程》 国家电网生〔2004〕634号《110(66)kV~500kV 架空输电线路技术标准》 国家电网生〔2006〕57 号《110(66)kV~500kV 架空输电线路评价标准》国家电网生(2006)935号《架空输电线路管理规范》 国家电网生〔2004〕641 号《预防 110(66)kV~500kV 架空输电线路事故措施》 国家电网基建〔2005〕172 号《110(66)kV~500kV 架空输电线路运行规范》国家电网生技〔2005〕173号《110(66)kV~500kV 架空输电线路检修规范》国家电网生技〔2005〕174 号《110(66)kV~500kV 架空输电线路技术监督规定》 国家电网生技〔2005〕389 号《国家电网公司电力设施保护工作管理办法》 国家电网生技〔2005〕400 号《国家电网公司十八项电网重大反事故措施(试行)》 国家电网安监〔2005〕611 号《国家电网公司处置电网大面积停电事件应急预案》 国家电网生〔2006〕356号《国家电网公司关于开展现场标准化作业工作的指导意见》 国家电网生〔2006〕364号)《国家电网公司反事故斗争二十五条重点措施(修订版) 国家电网供电企业安全性评价查评依据 DL5009.2--2004 电力建设安全工作工程规程第2部分:架空电力线路 DL/T 5146-2001 35kV-220kV架空送电线路测量技术规程 DL/T5168--2002 110kV—500kV架空电力线路工程施工质量及评定规程; DL/T741-2001 架空线路运行规程 GB 50233-2005 (66)110kV~500kV架空送电线路施工及验收规范; 3

浙江省输电线路杆塔通用设计深化应用技术原则

浙江省输电线路杆塔通用设计深化应用技术原则 (2014.10.30) 1、设计原则 铁塔的设计和结构计算遵循以下原则: (1) 铁塔设计采用以概率理论为基础的极限状态设计法; (2) 基本风速、设计冰厚重现期按30年考虑; (3) 四回路铁塔结构重要性系数γ0取1.1,其它塔型取1.0。 (4) 满足适用于电力送电线路工程项目的法令、法规、标准、规程、规范、规定等的最新有效版本。主要标准如下: 《建筑结构荷载规范》(GB 50009-2012) 《输电线路铁塔制图和构造规定》(DL/T 5442-2010) 《110kV~750kV架空输电线路设计规范》(GB 50545-2010) 《架空送电线路杆塔结构设计技术规定》(DL/T 5154-2012) 《重覆冰架空输电线路设计技术规程》(DL/T5440-2009) (5) 本次深化应用对国网通用设计的220kV角钢塔进行全面校核,形成计算书、计算数据、单线图、加工图和汇总表等成果。 (6) 本次深化应用对国网通用设计的110kV角钢塔和钢管杆进行全面校核,修改不满足浙江省内使用要求的地线保护角,增加全方位塔型,同时调整杆塔呼高弥补呼高不足的问题,形成计算书、计算数据、单线图、加工图和汇总表等成果。 (7) 杆塔校核应按附件一要求进行。

2、气象条件 本次通用设计各子模块中的其他气象要素组合,应根据各子模块的基本风速和覆冰厚度,结合浙江省典型气象区参数进行确定。最低气温取-10℃,安装温度取-5℃,大风气温取15℃。考虑初伸长导线降温-15℃,地线-10℃。 塔型规划设计需考虑的四个工况:外过电压(雷电工况)、内过电压(操作工况)、工频电压(大风工况)、带电作业。操作过电压和雷电过电压的风速按《110kV~750kV架空输电线路设计规范》(GB50545)中的详细规定进行取值,其他工况的风速不必按导线高度进行折算,按该规范中规定取值即可。跨越塔的雷电过电压风速与相应Ⅰ~Ⅳ型直线塔的雷电过电压风速取一致。 3、导线和地线 110~220kV导线安全系数取2.5,年平均运行张力25%,其中110kV 钢管杆导线安全系数取8;110kV窄基塔导线安全系数取5.0。 计算地线荷载时,按导电率为20选取地线参数;计算地线支架高度、校核导地线间隙时,按导电率为40选取地线参数。地线安全系数、年平均运行张力百分数的选择应根据不同的电压等级、不同的覆冰厚度、导地线配合、荷载计算等具体条件确定,但地线安全系数应大于导线安全系数。 仅在覆冰工况地线支架强度计算时,考虑地线覆冰较导线增加5mm覆冰设计,断线工况不考虑增加5mm覆冰。地线按安全系数法计算荷载,JLB20A-150安全系数取4.5、JLB20A-120安全系数取4.0、JLB20A-100安全系数取4.0。110kV钢管杆地线安全系数取11.0,窄基钢管塔地线安全

架空输电线路设计

课程设计(论文) 题目名称制作导线的应力弧垂曲线和安装曲线 课程名称架空输电线路设计(LGJ-185/45,VIII区) 学生姓名刘光辉 学号1041201185 系、专业电气工程系电气工程及其自动化 指导教师尹伟华 2013年1月6日

邵阳学院课程设计(论文)任务书 年级专业10输电线路学生姓名宁文豪学号1041201185 题目名称制作某线路导线的应力弧垂曲线和安装曲线。设计时 间 18、19周 课程名称架空输电线路设计课程编号设计地 点 一、课程设计(论文)目的 结合所学的线路设计知识,要求学生掌握线路设计中各项参数的查表发放,并结合工程实际,掌握具体线路的导线应力弧垂曲线和安装曲线做法,从中对线路设计中所涉及到的导线的比载计算,架空线弧垂、线长和应力的计算,架空线的状态方程式,临界档距,最大弧垂的判定,导线应力弧垂曲线和安装曲线做法有深刻的了解。最终加强学生的线路设计认识及动手能力 二、已知技术参数和条件 气象条件:全国线路设计气象条件汇集ⅤIII区 电压等级110kV 导线型号LGJ-185/45 三、任务和要求 a)学生应该完成课程设计说明书的内容,同时还包括导线应力弧垂曲线和安装曲线的绘 制图 b)为简明起见,各计算结果应尽量采用表格形式表示 c)每一计算过程应列出所用公式,并带入一组实际数据示范 d)各系数的取值应说明出处和理由 注:1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效; 2.此表1式3份,学生、指导教师、教研室各1份。

四、参考资料和现有基础条件(包括实验室、主要仪器设备等) 1、孟遂民,李光辉编著,架空输电线路设计,中国三峡出版社,2000.10 2、邵天晓,架空送电线路的电线力学计算,水利电力出版社,1987 3、周振山,高压架空送电线路机械计算,水利电力出版社,1987 4、东北电力设计院,电力工程高压送电线路设计手册,水利电力出版社,1991 五、进度安排 16周(1)查找相关资料,整理和收集数据(2)根据气象区确定气象参数计算相关比载(3)确定临界档距(4)档距的控制气象条件 17周(5)根据已知条件,利用状态方程式计算不同档距,各种气象条件下架空线的应力和弧垂值(6)按一定的比例绘制出应力弧垂曲线(7)绘制安装曲线图(8)按照有关规定,制作论文,打印成稿。 六、教研室审批意见 教研室主任(签字):年月日 七、主管教学主任意见 主管主任(签字):年月日 八、备注 指导教师(签字):学生(签字):

【】毕业设计(220kv输电线路工程设计)

220kV双分裂双回路输电线路设计 学生:阳文闯 指导教师:孟遂民 (三峡大学科技学院) 摘要:本设计讲述了某平丘区段架空输电线路设计的全部内容,主要设计步骤是按《架空输电线路设计》书中的设计步骤,和现实中的设计步骤是不一样的。本设计包括导线、地线的比载计算、临界档距、最大弧垂的判断,力学特性的计算,金具的选取,定位排杆,代表档距的计算,各种校验,杆塔荷载的计算,接地装置的设计以及基础设计等。在本次设计中,重点是线路设计,杆塔定位和基础设计。 关键词:导线避雷线比载应力弧垂杆塔定位 Abstract:In this text, it includes all the steps in of overhead power transmission line design, which is Accordance with《the design of overhead power transmission line 》, but it is not the same with the reality .this article discussed the conductor and the ground wire's coMParing load critical span .the maximum arc-perpendiculer judgement .mechanics property's fixed position of shaft-tower. various checking .representative span's calculating. load ppplied on iron tower calculating. equipment used in the ground connection design. metal appliance choose .In this paper, it is the focal point of line design. iron tower design and fundament design ,at last ,it is simply introduced the iron tower erecting's design and fundament design followed with fundament construction. Key words:conductor overhead ground wire coMParing load stress arc-perpendiculer fixed position of shaft-tower

注册电气工程师(发输变电)专业考试规范及设计手册

2016年注册电气工程师(发输变电)执业资格考试 专业考试规范及设计手册 一.规程、规范: 1.《标准电压》GB/T156; 2.《绝缘配合第1部分:定义、原则和规则》GB311.1; 3.《电力变压器第1部分总则》GB1094.1; 4.《电力变压器第2部分液浸式变压器的温升》GB1094.2; 5.《电力变压器第3部分绝缘水平、绝缘试验和外绝缘空气间隙》GB1094.3;6.《油浸式电力变压器技术参数和要求》GB/T6451; 7.《电信线路遭受强电线路危险影响的容许值》GB6830; 8.《隐极同步电机技术要求》GB/T7064; 9.《同步电机励磁系统》GB/T7409.1~7409.3; 10.《电能质量供电电压允许偏差》GB/T12325; 11.《电能质量电压波动和闪变》GB/T12326; 12.《继电保护和安全自动装置技术规程》GB/T14285; 13.《电能质量公用电网谐波》GB/T14549; 14.《电能质量三相电压不平衡》GB/T15543; 15.《高压交流架空送电线无线电干扰限值》GB15707; 16.《电力变压器选用导则》GB/T17468; 17.《风电场接入电力系统技术规定》GB/T19963; 18.《光伏发电站接入电力系统技术规定》GB/T19964; 19.《污秽条件下使用的高压绝缘子的选择和尺寸确定》GB/T26218.1-3; 20.《光伏发电站无功补偿技术规范》GB/T29321。 21.《建筑设计防火规范》GB50016; 22.《小型火力发电厂设计规范》GB50049; 23.《供配电系统设计规范》GB50052; 24.《低压配电设计规范》GB50054; 25.《爆炸危险环境电力装置设计规范》GB50058; 26.《35-110kV变电所设计规范》GB50059; 27.《3-110kV高压配电装置设计规范》GB50060; 28.《电力装置的继电保护和自动装置设计规范》GB/T50062; 29.《电力装置的电测量仪表装置设计规范》GB/T50063; 30.《交流电气装置的过电压保护和绝缘配合设计规范》GB/T50064; 31.《交流电气装置的接地设计规范》GB/T50065;

输电线路杆塔基础设计分析

输电线路杆塔基础设计分析 摘要:电力是现代社会发展中不可或缺的重要能源,输电线路建设情况直接关 系到供电质量。杆塔是输电线路的重要组成部分,根据相关调查显示,在以往诸 多输电线路安全事故中,基础设计不良是一大重要因素,对此必须做好输电线路 杆塔基础设计工作,切实保证整个电力系统的安全稳定运行。 关键词:输电线路;杆塔;塔基;施工 一、高压输电线路杆塔基础选型分析 现浇台阶基础 此类基础属于刚性基础类型,能应用的地质条件非常的广泛,适用于各种类型的铁塔。 该基础类型的主要特点:混凝土方量较多,但钢材的耗费量较少,且施工工艺简单,为工程 施工的质量提供了很好的保障。以往的工程施工中应用较多,但近年来,为减少混凝土的使 用量,限制了该基础型式大范围应用,仅在受力较大的转角塔中应用,或者是在地下水丰富 容易引起塌方问题的地段中应用。 板式直柱基础 此类基础属于柔性板式基础,采用直立式主柱,连接铁塔时需使用塔脚板和地脚螺栓, 同样适用于各种类型的铁塔。按土重法计算,底板厚度由冲切计算和伸出部分宽厚比小于 2.5 控制,板的上部与下部均配置钢筋。其优点是基础混凝土方量较少,开挖方便,可进行浅埋,在较容易出现流砂或者是地下水位较高的地基中应用居多,能避免基坑坍塌的危险,还可降低深挖水坑的工作难度;缺点是基坑土石方开挖量较大,钢材耗量大。 插入式基础 此类基础不需要地螺和塔脚坂连接,将铁塔塔腿的主材直接插入到主柱之中并在端部进 行锚固。该基础受力简单,基础所承受的偏心弯矩和水平方向作用力较小,底板和立柱处于 压受力状态,该种基础改善了受力状况并且节约材料。另外,由于基础水平力减小,故基础 侧向的稳定性有所提高。该基础适用于有无地下水地段、地基土为硬塑情况。在山区塔位, 由于交通运输条件差,插入式基础弥补了交通运输上的缺陷,是一种更为经济实用、施工简 单方便的基础型式。若按铁塔主材形式划分,可分为钢管类插入式基础和角钢类插入式基础,其中角钢类插入式基础应用较为广泛。 二、输电线路杆塔基础施工要点 基坑开挖前的调查工作 基坑开挖施工之前,必须要对基坑开挖处的环境及地下设施做一个全面的分析调查,开 挖的时候不能破坏各类地线管线设施,特别是国防通讯光缆,保证它们不会遭到破坏。 人工挖孔桩技术 从现阶段输电线路杆塔基础施工的实际状况来看,人工挖孔桩施工是一项复杂且涉及施 工内容较多的一项施工技术。应用人工挖孔桩施工技术进行施工前,相关的施工人员需要明 确当前工程施工的实际状况及施工要求,做好相关的工程施工控制工作,为了确保混凝土的 质量,需要合理的控制混凝土浇灌的时间与力度,尽量避免出现裂缝的情况,如果出现裂缝,

送电线路基础设计技术规定SDGJ

水利电力部电力规划设计院关于颁发 《送电线路基础设计技术规定SDGJ62-84》(试行)的通知 (84)水电电规送字第032号 《送电线路基础设计技术规定SDGJ62-84》为水利电力部电力规划设计院院颁标准,并作为部颁规程 SDJ3-79的补充和具体化。现批准颁发试行。本规定由东北电力设计院协助我院负责管理工作,在试行过程中,如发现需要修改和补充之处,请将意见及有关资料寄我院并抄送东北电力设计院,以便今后修订时参考。 一九八四年八月十日 附加说明 本规定是在电力规划设计院的组织下,委托东北电力设计院主编,并由西北、西南、河南电力设计院和武汉供电局(设计室)等单位组成编写组。第一章至第五章由东北电力设计院起稿,第六章至第九章分别由西北电力设计院、武汉供电局(设计室)、西南电力设计院和河南电力设计院起稿。在各章编制过程中,华东、中南、华北、江苏电力设计院均参加了讨论。武汉水利电力学院土力学教研室参加了附录F的编写并参加了各章的讨论。 电力规划设计院一九八四年八月 主要符号 K1--与土抗力有关的基础上拔稳定的设计安全系数; K2--与基础重力有关的基础上拔稳定的设计安全系数; K3--基础倾覆稳定的设计安全系数; K4--普通钢筋混凝土基础的强度设计安全系数; K5--按抗拉强度计算混凝土构件的设计安全系数; T--作用于基础顶面上的设计上拔力; Na--作用于基础顶面上的设计下压力; H--作用于基础顶面上的设计水平力; ht--基础的上拔深度; hc--基础的上拔临界深度; h--基础埋深;

D--基础底板的计算直径或岩石锚孔直径; B--正方形基础底板的边长; Qf--基础自重力; γ0--土的计算容重; C--土的凝聚力; --土的内摩阻角; α--回填上的计算上拔角; β--回填上的计算等代内摩阻角; R--修正后地基土的容许承载应力; Rs--允许地基内出现局部塑性变形的容许承载应力; [R]--地基土的基本容许承载应力; Ru--爆扩桩大端处上拔土的极限承载应力; [Rd]--爆扩桩等效下压容许承载应力; τp--钻孔(灌注)桩基础受压时,桩身与周围土的极限摩阻力;τa--钢筋与砂浆或细石混凝土的计算极限粘结强度; τb--砂浆或细石混凝土与岩石的计算极限粘结强度; τs--岩石等代极限剪切强度; G0--基础底板正上方土的重力; M--作用于基础底板底面上的弯矩; A--基础底面面积; S0--作用于倾覆类基础上部的水平力; b0--倾覆类基础侧面的宽度或直径。 1 总则

电气工程师供配电专业考试规范及设计手册

2016年度全国注册电气工程师(供配电) 执业资格考试专业考试规范及设计手册 一.规程、规范 ?5.《电能质量供电电压偏差》GB/T12325--2008; ?11.《电能质量公用电网谐波》GB/T14549--1993; ?24.《建筑照明设计标准》GB50034--2013; ?26.《高层民用建筑设计防火规范》GB50045--95(2005年版); ?27.《供配电系统设计规范》GB50052--2009; ?28.《20kV及以下变电所设计规范》GB50053--2013; ?29.《低压配电设计规范》GB50054--2011; ?31.《建筑物防雷设计规范》GB50057--2010; ?33.《35~110kV变电站设计规范》GB50059--2011; ?34.《3kV~110kV高压配电装置》GB50060--2008; ?35.《电力装置的继电保护和自动装置设计规范》GB50062--2008; ?38.《交流电气装置的接地设计规范》GB/T50065--2011; ?41.《火灾自动报警系统设计规范》GB50116--2013; ?45.《电力工程电缆设计规范》GB50217--2007; ?46.《并联电容器装置设计规范》GB50227--2008; ?52.《66kV及以下架空电力线路设计规范》GB50061--2010; ?54.《建筑物电子信息系统防雷技术规范》GB50343--2012; ?55.《安全防范工程设计规范》GB50348--2004; ?58.《视频安防监控系统工程设计》GB50395--2007;

?60.《视频显示系统工程技术规范》GB50464--2008; ?62.《公共广播系统工程技术规范》GB50526--2010; ?69.《民用建筑电气设计规范》JGJ16--2008; ※6.《电能质量电压波动和闪变》GB/T12326--2008; ※12.《电能质量三相电压不平衡》GB/T15543--2008; ※25.《人民防空地下室设计规范》GB50038--2005; ※39.《汽车库、修车库、停车场设计防火规范》GB 50067--2014; ※40.《人民防空工程设计防火规范》GB 50098--2009; ※43.《电子信息系统机房设计规范》GB50174--2008; ※44.《有线电视系统工程技术规范》GB50200--1994; ※47.《火力发电厂与变电所设计防火规范》GB50229--2006; ※48.《电力设施抗震设计规范》GB50260--2013; ※49.《城市电力规划规范》GB50293--2014; ※61.《红外线同声传译系统工程技术规范》GB50524--2010; ※64.《会议电视会场系统工程设计规范》GB50635--2010; ※65.《电子会议系统工程设计规范》GB50799--2012; ※30.《通用用电设备配电设计规范》GB50055--2011; ※32.《爆炸危险环境电力装置设计规范》GB50058--2014; ※36.《电力装置的电气测量仪表装置设计规范》GB/T50063--2008; 1.《绝缘配合第1部分:定义、原则和规则》GB311.1--2012; 2.《户外严酷条件下的电气设施第1部分:范围和定义》GB9089.1--2008; 3.《户外严酷条件下的电气设施第2部分:一般防护要求》GB9089.2--2008;4.《防止静电事故通用导则》GB12158--2006;

相关主题
文本预览
相关文档 最新文档