当前位置:文档之家› 曲线积分1

曲线积分1

曲线积分1
曲线积分1

§10.1 对弧长的曲线积分

一、 对弧长的曲线积分的概念与性质 曲线形构件的质量:

设一曲线形构件所占的位置在xOy 面内的一段曲线弧L 上, 已知曲线形构件在点(x , y )处的线密度为μ(x , y ). 求曲线形构件的质量.

把曲线分成n 小段, ?s 1, ?s 2, ? ? ?, ?s n (?s i 也表示弧长); 任取(ξi , ηi )∈?s i , 得第i 小段质量的近似值μ(ξi , ηi )?s i ; 整个物质曲线的质量近似为i i i n

i s M ?≈=∑),(1ηξμ;

令λ=max{?s 1, ?s 2, ? ? ?, ?s n }→0, 则整个物质曲线的质量为 i i i n

i s M ?==→∑),(lim 1

0ηξμλ.

这种和的极限在研究其它问题时也会遇到.

定义 设L 为xOy 面内的一条光滑曲线弧, 函数f (x , y )在L 上有界. 在L 上任意插入一点列M 1, M 2, ? ? ?, M n -1把L 分在n 个小段. 设第i 个小段的长度为?s i , 又(ξi , ηi )为第i 个小段上任意取定的一点, 作乘积f (ξi , ηi )?s i , (i =1, 2,? ? ?, n ), 并作和i i i n

i s f ?=∑),(1ηξ, 如果当各小弧

段的长度的最大值λ→0, 这和的极限总存在, 则称此极限为函数f (x , y )在曲线弧L 上对弧长

的曲线积分或第一类曲线积分, 记作

ds y x f L ),(?, 即i i i n

i L s f ds y x f ?==→∑?),(lim ),(1

0ηξλ. 其中f (x , y )叫做被积函数, L 叫做积分弧段.

设函数f (x , y )定义在可求长度的曲线L 上, 并且有界.

将L 任意分成n 个弧段: ?s 1, ?s 2, ? ? ?, ?s n , 并用?s i 表示第i 段的弧长; 在每一弧段?s i 上任取一点(ξi , ηi ), 作和i i i n

i s f ?=∑),(1ηξ;

令λ=max{?s 1, ?s 2, ? ? ?, ?s n }, 如果当λ→0时, 这和的极限总存在, 则称此极限为函数f (x , y )在曲线弧L 上对弧长的 曲线积分或第一类曲线积分, 记作

ds y x f L ),(?, 即

i i i n

i L s f ds y x f ?==→∑?),(lim ),(1

0ηξλ. 其中f (x , y )叫做被积函数, L 叫做积分弧段.

曲线积分的存在性: 当f (x , y )在光滑曲线弧L 上连续时, 对弧长的曲线积分ds

y x f L ),(?是存在的. 以后我们总假定f (x , y )在L 上是连续的.

根据对弧长的曲线积分的定义,曲线形构件的质量就是曲线积分

ds y x L ),(?μ的值, 其中

μ(x , y )为线密度.

对弧长的曲线积分的推广:

i i i i n

i s f ds z y x f ?==→Γ∑?),,(lim ),,(1

0ζηξλ. 如果L (或Γ)是分段光滑的, 则规定函数在L (或Γ)上的曲线积分等于函数在光滑的各段上的曲线积分的和. 例如设L 可分成两段光滑曲线弧L 1及L 2, 则规定

ds y x f ds y x f ds y x f L L L

L ),(),(),(2

1

2

1

???+=+.

闭曲线积分: 如果L 是闭曲线, 那么函数f (x , y )在闭曲线L 上对弧长的曲线积分记作

ds y x f L ),(?.

对弧长的曲线积分的性质: 性质1 设c 1、c 2为常数, 则

ds y x g c ds y x f c ds y x g c y x f c L L L ),(),()],(),([2121???+=+;

性质2 若积分弧段L 可分成两段光滑曲线弧L 1和L 2, 则

ds y x f ds y x f ds y x f L

L L ),(),(),(2

1

???+=;

性质3设在L 上f (x , y )≤g (x , y ), 则

??≤L L ds y x g ds y x f ),(),(. 特别地, 有 ??≤L L ds y x f ds y x f |),(||),(|

二、对弧长的曲线积分的计算法

根据对弧长的曲线积分的定义, 如果曲线形构件L 的线密度为f (x , y ), 则曲线形构件L 的质量为

?L ds y x f ),(.

另一方面, 若曲线L 的参数方程为 x =?(t ), y =ψ (t ) (α≤t ≤β),

则质量元素为

dt t t t t f ds y x f )()()]( ),([),(22ψ?ψ?'+'=,

曲线的质量为 ?'+'β

α

ψ?ψ?dt t t t t f )()()]( ),([22.

??'+'=β

αψ?ψ?dt t t t t f ds y x f L

)()()]( ),([),(22.

定理 设f (x , y )在曲线弧L 上有定义且连续, L 的参数方程为 x =?(t ), y =ψ(t ) (α≤t ≤β),

其中?(t )、ψ(t )在[α, β]上具有一阶连续导数, 且?'2(t )+ψ'2(t )≠0, 则曲线积分ds y x f L ),(?存在,

dt t t t t f ds y x f L )()()](),([),(22ψ?ψ?β

α

'+'=??(α<β).

证明(略)

应注意的问题: 定积分的下限α一定要小于上限β. 讨论:

(1)若曲线L 的方程为y =ψ(x )(a ≤x ≤b ), 则ds y x f L ),(?=?

提示: L 的参数方程为x =x , y =ψ(x )(a ≤x ≤b ),

dx x x x f ds y x f b

a

L ??'+=)(1)](,[),(2ψψ.

(2)若曲线L 的方程为x =?(y )(c ≤y ≤d ), 则ds y x f L ),(?=?

提示: L 的参数方程为x =?(y ), y =y (c ≤y ≤d ),

dy y y y f ds y x f d

c

L ??+'=1)(]),([),(2??.

(3)若曲Γ的方程为x =?(t ), y =ψ(t ), z =ω(t )(α≤t ≤β), 则

ds z y x f ),,(?Γ=?

提示:

dt t t t t t t f ds z y x f )()()()](),(),([),,(222ωψ?ωψ?β

α

'+'+'=??Γ.

例1 计算

ds y L

?, 其中L 是抛物线y =x 2上点O (0, 0)与点B (1, 1)之间的一段弧.

解 曲线的方程为y =x 2 (0≤x ≤1), 因此

??'+=10222)(1dx x x ds y L

?+=1

0241dx x x )155(12

1-=.

例2 计算半径为R 、中心角为2α的圆弧L 对于它的对称轴的转动惯量I (设线密度为

μ=1).

解 取坐标系如图所示, 则?=L ds y I 2.

曲线L 的参数方程为

x =R cos θ, y =R sin θ (-α≤θ<α). 于是 ?=

L ds y I 2?-+-=α

α

θθθθd R R R 2222)cos ()sin (sin

?-=α

αθθd R 23

sin =R 3

(α-sin α cos α).

例3 计算曲线积分

ds z y x )(222++?Γ, 其中Γ为螺旋线x =a cos t 、y =a sin t 、z =kt 上相应

于t 从0到达2π的一段弧.

解 在曲线Γ上有x 2+y 2+z 2=(a cos t )2+(a sin t )2+(k t )2=a 2+k 2t 2, 并且 dt k a dt k t a t a ds 22222)cos ()sin (+=++-=, 于是

ds z y x )(222++?Γ?++=π

20

22222)(dt k a t k a

)43(3

222222k a k a ππ++=

. 小结: 用曲线积分解决问题的步骤: (1)建立曲线积分;

(2)写出曲线的参数方程 ( 或直角坐标方程) , 确定参数的变化范围; (3)将曲线积分化为定积分; (4)计算定积分.

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时, 求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分.

(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=??L L f x ds f y ds . (3)若积分曲面∑关于xOy 面对称,则 1 0 (,,)2(,,)f z f x y z dS R x y z dS f z ∑ ∑?? =????? ??对为奇函数对为偶函数 1 0 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分. 若积分曲面∑关于yOz 面对称,则 1 0 (,,)2(,,)f x f x y z dS R x y z dS f x ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分. 若积分曲面∑关于zOx 面对称,则 1 0 (,,)2(,,)f y f x y z dS R x y z dS f y ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分. (4)若曲线弧() :()()αβ=?≤≤?=? x x t L t y y t ,则 [ (,)(),()()β α αβ=

第一类曲线积分的计算

第一类曲线积分的计算

第一类曲线积分的计算 1、定义 定义1 :设L 为平面上可求长度的曲线段,)y ,x (f 为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段)n ,,2,1i (L i ,i L 的弧长记为i s ,分割T 的细度为i n i 1s max T ,在i L 上任取一点 (i ,).n ,,2,1i )(i 若存在极限J s ),(f lim i i n 1 i i 0T 且J 的值与分割T 及点),(i i 的取法无关,则称此极限为)y ,x (f 在L 上的第一型曲线积分,记作 .ds )y ,x (f L (1) 定义2: 若L 为空间可求长曲线段,)y ,x (f 为定义在L 上的函数,则可类似地定义)z ,y ,x (f 在空间曲线L 上的第一型曲线积分为 J s ),,(f lim i i i n 1 i i 0T ,(此处i s 为i L 的弧长,i n i 1s max T , J 为一常 数),并且记作 L .ds )z ,y ,x (f (2) 2、物理意义 (1)设某物体的密度函数f (P )是定义在 上的连续函数.当 是直线段时,应用定积分就能计算得该物体的质量。现在研究当 是平面上某一可求长度的曲线段时物体的质量的计算问题.首先对 作分割,把 分成n 个可求长度的小曲线段i (i=1,2,…,n),并在每一个i 上任取一点P i 由于f (P )为 上的连续函数,故当i 的弧长都很小时,每一小段i 的质量可近似地等于f (P i ) i ,其中 i 为小曲线段i 的长度.于是在整个 上的质量就近似地等于和 式

空间曲线积分的计算方法

空间曲线积分的计算方法 (1)曲线积分的计算例1 计算,其中为平面被三个坐标平面所截三角形的边界,若从轴正向看去,定向为逆时针方向.方法一根据第二型曲线积分的定义化为定积分计算根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数.解法一:设,则,,,则.由曲线积分的定义,有.同理可得: .所以.方法二将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系.解法二:设,,则,是围成的区域.代入原积分由格林公式得原式.化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算.方法三根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮

助.我们主要在讨论单轮换对称的情形.解法三:由题目特征可知该积分及曲线都具有轮换对称性,因此由对称性知原式.同样由对称性知原式.方法四根据公式求曲线积分 公式建立了空间曲线积分和曲面积分之间的联系,从而将曲线积分和曲面积分有机联系起来. 解法四: 设,方向为上侧,曲面上一点的外法线向量的方向余弦为由公式化为第一型曲面积分得原式.为解法一中所设的点组成的三角形.另解: 根据上面解法中所设,并设为在面上的投影.用公式化为第二型曲面积分得原式 .用公式将曲线积分化为曲面积分时,若曲面为平面化为第一型曲面积分较简单.

第二十章曲线积分

第二十章曲线积分 教学目的:1.理解第一、二型曲线积分的有关概念;2.掌握两种类型曲线积分的计算方法,同时明确它们的联系。 教学重点难点:本章的重点是曲线积分的概念、计算;难点是曲线积分的计算。 教学时数:6学时 § 1 第一型曲线积分 一. 第一型线积分的定义: 1.几何体的质量: 已知密度函数 , 分析线段的质量 2.曲线的质量: 3.第一型曲线积分的定义: 定义及记法.线积分,. 4.第一型线积分的性质: P198 二. 第一型线积分的计算: 1.第一型曲线积分的计算: 回顾“光滑曲线”概念 . Th20.1 设有光滑曲线, . 是定义在上的连续函数 . 则 . ( 证 ) P199 若曲线方程为: , 则 .

的方程为时有类似的公式. 例1 设是半圆周, . . P200例1 例2 设是曲线上从点到点的一段. 计算第一型曲线积分. P200例2 空间曲线上的第一型曲线积分: 设空间曲线 ,. 函数连续可导, 则对上的连续函数, 有 . 例3计算积分, 其中是球面被平面 截得的圆周 . P201例3 解由对称性知 , , =. ( 注意是大圆 ) § 2 第二型曲线积分 一.第二型曲线积分的定义: 1.力场沿平面曲线从点A到点B所作的功: 先用微元法 , 再用定义积分的方法讨论这一问题 , 得

, 即. 2. 稳流场通过曲线( 从一侧到另一侧 ) 的流量: 解释稳流场. ( 以磁场为例 ). 设有流速场. 求在单位时间内通过曲线AB从左侧到右侧的流量E . 设曲线AB上点处的切向量为, ( 是切向量方向与X轴正向的夹角. 切向量方向按如下方法确定: 法线方 向是指从曲线的哪一侧到哪一侧, 在我们现在的问题中是指从左侧到右侧的方向. 切向量方向与法线向按右手法则确定, 即以右手拇指所指为法线方向, 则食指所指为切线方向 .) .在弧段上的流量. , 因此 , . 由, 得 . 于是通过曲线AB从左侧到右侧的总流量E为 . 3. 第二型曲线积分的定义: 闭路积分的记法. 按这一定义 , 有 力场沿平面曲线从点A到点B所作的功为

曲线积分

曲线积分 一. 第(对弧长的曲线积分) ds y x f L ),(? 引入: 开始接触这个概念对大家可能都很突兀,我们从直观上看它的形式,形式和定积分?dx x f )(很像,Right ?那它的物理意义和几何意义按照自然界对称的法则应该和定积分也是相似的咯-----我们如果把 ),(y x f 看成是线密度函数的话, ds y x f L ),(? 可以理解成为曲线形构件的质量咯(*^__^*) ,这当 然是它的物理意义;几何意义呢?想想定积分,几何意义是曲边梯形的面积,那么对第一型曲线积分就是曲面的面积咯,沿着一段弧函数对它的曲线积分就是曲面的面积(PS :这个可以作为一种求曲面面积的求法,后面会有题目介绍) 想必通过上面形象的介绍,我们对第一型曲线积分有了一个初步的认识。现在来看看它的求法:ds y x f L ),(?这个式子我们唯一没见过的就是ds 咯,在这里ds 实际上就是弧长,所以第一型也就是对弧长的曲线积分。那么第一型的求法就等价于求ds ,然后解个定积分就ok 。根据高数上学过的微分三角形,如果曲线能够表示成参数方程x =?(t ), y =ψ (t ) (α≤t ≤β), 那么显然 dt t t t t f ds y x f )()()]( ),([),(22ψ?ψ?'+'=,于是就有 ??'+'=β α ψ?ψ?dt t t t t f ds y x f L )()()]( ),([),(22, 当然如果不用表示成参数方程,把x 看为参数也可以。注意注意注意注意注意: 1.这里的定积分的下限α一定要小于上限β. 原因在于弧长

始终是正的,所以t ?>0,这样定积分的下限一定小于上限。然曲线不仅仅是平面上的,三维空间里也可以,计算方法还是一样 的,即dt t t t t t t f ds z y x f )()()()](),(),([),,(222ωψ?ωψ?β α'+'+'=??Γ。 2. 若曲线封闭,积分号?ds y x f ),( 3. 若规定L 的方向是由A 指向B ,由B 指向A 为负方向,但 ds y x f L ?),(与L 的方向无关 Eg1:例3.计算?+L ds y x 22 L :ax y x =+22 解 ?? ?==θ θ sin cos r y r x L :θcos a r = )22(πθπ≤≤- θ cos 22a r y x ==+, ()()ads d a a ds =-+= θθθ22sin cos ∴ ?+L ds y x 2 2 =?- ?22 cos π πθθad a =22 2 sin ππθ - a =22a 思考题021:计算?+L y x ds e 2 2 L :a r = 0=θ 4 π θ= 所围成的边界 (答案:)1(2-a e +a e a 4 π) 思考题022:计算曲线积分ds y L ?:(1).其中L 是第一象限内从 点)1,0(A 到点)0,1(B 的单位圆弧。(2). 其中L 是ⅠⅣ象限从) 1,0(A o y x a x o y B A

数学分析20.1第一型曲线积分(含习题及参考答案)

第二十章 曲线积分 1第一型曲线积分 一、第一型曲线积分的定义 引例:设某物体的密度函数f(P)是定义在Ω上的连续函数. 当Ω是直线段时,应用定积分就能计算得该物体的质量. 当Ω是平面或空间中某一可求长度的曲线段时,可以对Ω作分割,把Ω分成n 个可求长度的小曲线段Ωi (i=1,2,…,n),并在每一个Ωi 上任取一点P i . 由f(P)为Ω上的连续函数知,当Ωi 的弧长都很小时,每一小段Ωi 的质量可近似地等于f(P i )△Ωi , 其中△Ωi 为小曲线段Ωi 的长度. 于是在整个Ω上的质量就近似地等于和式i n i i P f ?Ω∑=1)(. 当对Ω有分割越来越细密(即d=i n i ?Ω≤≤1max →0)时,上述和式的极限就是 该物体的质量. 定义1:设L 为平面上可求长度的曲线段,f(x,y)为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段L i (i=1,2,…,n),L i 的弧长记为△s i ,分割T 的细度为T =i n i s ?≤≤1max ,在L i 上任取一点 (ξi ,ηi ),( i=1,2,…,n). 若有极限i n i i i T s f ?∑=→1 ),(lim ηξ=J ,且J 的值与分割T 与点(ξi ,ηi )的取法无关,则称此极限为f(x,y)在L 上的第一型曲线积分,记作:?L ds y x f ),(. 注:若L 为空间可求长曲线段,f(x,y,z)为定义在L 上的函数,则可类

似地定义f(x,y,z)在空间曲线L 上的第一型曲线积分?L ds z y x f ),,(. 性质:1、若?L i ds y x f ),((i=1,2,…,k)存在,c i (i=1,2,…,k)为常数,则 ?∑=L k i i i ds y x f c 1 ),(=∑?=k i L i i ds y x f c 1 ),(. 2、若曲线L 由曲线L 1,L 2,…,L k 首尾相接而成,且?i L ds y x f ),((i=1,2,…,k) 都存在,则?L ds y x f ),(也存在,且?L ds y x f ),(=∑?=k i L i i ds y x f 1 ),(. 3、若?L ds y x f ),(与?L ds y x g ),(都存在,且f(x,y)≤g(x,y),则 ? L ds y x f ),(≤?L ds y x g ),(. 4、若?L ds y x f ),(存在,则?L ds y x f ),(也存在,且?L ds y x f ),(≤?L ds y x f ),(. 5、若?L ds y x f ),(存在,L 的弧长为s ,则存在常数c ,使得?L ds y x f ),(=cs, 这里),(inf y x f L ≤c ≤),(sup y x f L . 6、第一型曲线积分的几何意义:(如图)若L 为平面Oxy 上分段光滑曲线,f(x,y)为定义在L 上非负连续函数. 由第一型曲面积分的定义,以L 为准线,母线平行于z 轴的柱面上截取0≤z ≤f(x,y)的部分面积就是 ? L ds y x f ),(. 二、第一型曲线积分的计算 定理20.1:设有光滑曲线L:?? ?==) () (t y t x ψ?, t ∈[α,β],函数f(x,y)为定义在L 上的连续函数,则?L ds y x f ),(=?'+'β αψ?ψ?dt t t t t f )()())(),((22. 证:由弧长公式知,L 上由t=t i-1到t=t i 的弧长为△s i =?='+'i i t t dt t t 1 )()(22ψ?. 由)()(22t t ψ?'+'的连续性与积分中值定理,有

第一类曲线积分的计算

第一类曲线积分的计算 1、定义 定义1 :设L 为平面上可求长度的曲线段,)y ,x (f 为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段)n ,,2,1i (L i ,i L 的弧长记为i s ,分割T 的细度为i n i 1s max T ,在i L 上任取一点(i , ).n ,,2,1i )(i 若存在极限J s ),(f lim i i n 1 i i 0T 且J 的值与分割T 及点),(i i 的取法无关,则称此极限为)y ,x (f 在L 上的第一型曲线积分,记作 .ds )y ,x (f L (1) 定义2: 若L 为空间可求长曲线段,)y ,x (f 为定义在L 上的函数,则可类似地 定义)z ,y ,x (f 在空间曲线L 上的第一型曲线积分为J s ),,(f lim i i i n 1 i i 0T , (此处i s 为i L 的弧长,i n i 1s max T , J 为一常数),并且记作 L .ds )z ,y ,x (f (2) 2、物理意义 (1)设某物体的密度函数f (P )是定义在 上的连续函数.当 是直线段时,应用定积分就能计算得该物体的质量。现在研究当 是平面上某一可求长度的曲线段时物体的质量的计算问题.首先对 作分割,把 分成n 个可求长度的小曲线段i (i=1,2,…,n),并在每一个i 上任取一点P i 由于f (P )为 上的连续函数,故当i 的弧长都很小时,每一小段i 的质量可近似地等于f (P i ) i ,其中 i 为小曲线段i 的长度.于是在整个 上的质量就近似地等于和式 i n 1 i i )P (f

第二型曲线积分与曲面积分的计算方法

第二型曲线积分与曲面积分的计算方法 摘 要: 本文主要利用化为参数的定积分法,格林公式,积分与路径无关的方法解答第二型曲线积分的题目;以及利用曲面积分的联系,分面投影法,合一投影法,高斯公式解答第二型曲面积分的题目. 关键词: 曲面积分;曲线积分 1 引 言 第二型曲线积分与曲面积分是数学分析中的重要知识章节,是整本教材的 重点和难点.掌握其基本的计算方法具有很大的难度,给不少学习者带来了困难.本文通过针对近年来考研试题中常见的第二型曲线积分与曲面积分的计算题目进行了认真分析,并结合具体实例以及教材总结出其特点,得出具体的计算方法.对广大学生学习第二型曲线积分与第二型曲面积分具有重要的指导意义. 2 第二型曲线积分 例1 求()()()sin cos x x I e y b x y dx e y ax dy =-++-?,其中a ,b 为正的常数,L 为从点A (2a ,0)沿曲线y=22ax x -到点o (0,0) 的弧. 方法一:利用格林公式法 L D Q P Pdx Qdy dxdy x y ?? ??+=- ????????,P(x ,y),Q (x ,y )以及它们的一阶偏导数在D 上连续,L 是域D 的边界曲线,L 是按正向取定的. 解:添加从点o (0,0)沿y=0到点A (2a,0)的有向直线段1L , ()()()()()()11sin cos sin cos x x L L x x L I e y b x y dx e y ax dy e y b x y dx e y ax dy =-++---++-?? 记为12I I I =- , 则由格林公式得:()1cos cos x x D D Q P I dxdy e y a e y b dxdy x y ??????=-=---- ??????????? ()()22 D b a dxdy a b a π =-= -?? 其中D 为1L L 所围成的半圆域,直接计算2I ,因为在1L 时,0y =,所以dy =0

空间曲线积分的计算方法

空间曲线积分的计算方法. (1)曲线积分的计算 例1 计算222222()()()C I y z dx z x dy x y dz =-+-+-?,其中C 为平面 1=++z y x 被三个坐标平面所截三角形的边界,若从x 轴正向看去,定向为逆时针方向. 方法一 根据第二型曲线积分的定义化为定积分计算 根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数. 解法一:设(1,0,0),(0,1,0),(0,0,1)A B D ,则0,1:==+z y x ,:1,0BD y z x +==,:1,0DA x z y +==,则:C AB BD DA ++.由曲线积分的定义,有 dz y x dy x z dx z y AB )()()(222222-+-+-? 32])1[(0122-=+-= ?dx x x . 同理可得: 222222()()()BD y z dx z x dy x y dz -+-+-? 2222222()()()3 DA y z dx z x dy x y dz =-+-+-=-?. 所以 2AB BD DA I =++=-???. 方法二 将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系. 解法二:设)0,0,0(O ,OA BO AB L ++:1,则dy dx dz y x z --=--=,1,D 是1L 围成的区域.代入原积分由格林公式得 原式))((])1[(])1([2222221dy dx y x dy x y x dx y x y L ---+---+---=? ??-=-=D dxdy 24. 化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算. 方法三 根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮助.我们主要在讨论单轮换对称的情形. 解法三:由题目特征可知该积分及曲线C 都具有轮换对称性,因此由对称性知 原式dz y x dy x z dx z y )()()(3222222-+-+-=?

曲线积分曲面积分总结

第十三章 曲线积分与曲面积分 定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分. 第一节 对弧长的曲线积分 一、 对弧长的曲线积分的概念与性质 在设计曲线构件时,常常要计算他们的质量,如果构件的线密度为常量,那么这构件的质量就等于它的线密度与长度的乘积. 由于构件上各点处的粗细程度设计得不完全一样, 因此, 可以认为这构件的线密度(单位长度的质量)是变量, 这样构件的质量就不能直接按下面它的线密度与长度的乘积来计算. 下面考虑如何计算这构件的质量. 设想构件为一条曲线状的物体在平面上的曲线方程为 ()x f y =,[]b a x ,∈,其上每一点的密度为()y x ,ρ. 如图13-1我们可以将物体分为n 段,分点为n M M M ,...,,21, 每一小弧段的长度分别是12,,...,n s s s ???.取其中的一小段弧i i M M 1-来分析.在线密度连续变化的情况下, 只要这一小段足够小,就可以用这一小段上的任意一点(),i i ξη的密度(),i i ρξη来近似整个小段的密度.这样就可以得到这一小段的质量近似于(),i i i s ρξη?.将所有这样的小段质量加起来,就得到了此物体的质量的近似值.即 ()∑=?≈n i i i i s y x M 1 ,ρ. 用λ表示n 个小弧段的最大长度. 为了计算M 的精确值, 取上式右端之和当0λ→时的极限,从而得到 图13-1

第一类曲线积分

§1 第一类曲线积分的计算 设函数(),,f x y z 在光滑曲线l 上有定义且连续,l 的方程为 ()()() ()0x x t y y t t t T z z t =?? =≤≤?? =? 则 ()()()() ,,,,T l t f x y z ds f x t y t z t =??? ?。 特别地,如果曲线l 为一条光滑的平面曲线,它的方程为()y x ?=,()a x b ≤≤,那么有 ((,) , ()b l a f x y ds f x x ?=? ?。 例:设l 是半圆周t a y t a x sin , cos ==, π≤≤t 0。求22 ()l x y ds +? 。 例:设l 是曲线x y 42 =上从点) 0 , 0 (O 到点) 2 , 1 (A 的一段,计算第一类曲线积分l yds ?。 例:计算积分2l x ds ? ,其中l 是球面2222a z y x =++被平面0=++z y x 截得的圆周。 例:求()l I x y ds =+?,此处l 为连接三点()0,0O ,()1,0A ,()1,1B 的直线段。 §2 第一类曲面积分的计算 一 曲面的面积 (1)设有一曲面块S ,它的方程为 (),z f x y =。 (),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。则该 曲面块的面积为 xy S σ=。 (2)若曲面的方程为 () ()() ,,,x x u v y y u v z z u v =?? =?? =?

令 222u u u E x y z =++,u v u v u v F x x y y z z =++,222 v v v G x y z =++, 则该曲面块的面积为 S ∑ =。 例:求球面2 2 2 2 x y z a ++=含在柱面()220x y ax a +=>内部的面积。 例:求球面2 2 2 2 x y z a ++=含在柱面()220x y ax a +=>内部的面积。 二 化第一类曲面积分为二重积分 (1)设函数(),,x y z φ为定义在曲面S 上的连续函数。曲面S 的方程为(),z f x y =。(),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。则 ()( ),,,,,xy S x y z dS x y f x y σφφ=??????。 (2)设函数(),,x y z φ为定义在曲面S 上的连续函数。若曲面的方程为 () ()() ,,,x x u v y y u v z z u v =?? =?? =? 令 222u u u E x y z =++,u v u v u v F x x y y z z =++,222 v v v G x y z =++, 则 ()()()( ),,,,,,,S x y z dS x u v y u v z u v φφ∑ =??????。 例:计算 ()S x y z dS ++?? ,S 是球面2222 x y z a ++=,0z ≥。 例:计算 S zdS ??,其中S 为螺旋面的一部分:

第一型曲线积分

第一型曲线积分 标准式: dt t r t r f ds f ??'=Γ β α )()( 算法:参数法 1.求出Γ的一个向量参数方程)(t r r = 2.计算弧元dt t r ds )( '= 3.计算定积分dt t r t r f ?'β α )()( 特别地: 显示方程 )(x y ?= xoy 平面的圆的参数方程???==θ θ cos sin a y a x 为参数θ 第二型曲线积分 标准式: dt t r t r F p d p F ?? '?= ?Γ β α )()()(

其中),,(R Q P F = 符号按参数增加的方向积分为正 算法: 一.参数法 dt t z t y t x t r R t r Q t r P dz R Qdy Pdx p d p F ))(),(),(())(),(),(()('''?= ++= ???? Γ Γ β α 二.Green 公式(二维) (封闭曲线的积分 转化到 所围成曲面的积分即二重积分) dxdy y P x Q Qdy Pdx ???Ω ?Ω ??- ??= +)( (定向:一个人沿着Ω?走的正方向行进时,区域Ω总在这个人的左边) 三.Stokes 公式(三维) (封闭曲线的积分 转化到 封闭的曲面的积分 封闭的曲面即有所围区域体即二重积分之和) ?? ?∑ ∑ ??????= ++R Q P z y x dxdy dzdx dydz dz R Qdy Pdx 应用:求曲面面积 ??????= - =-= D D D xdy dx y ydx xdy D 2 1)(σ 第一型曲面积分 标准式:(1)dudv r r r f fd v u ? ?? ∑ ? ?= σ

习题十八 第一型曲线积分

习题十八 第一型曲线积分 一、填空题 1、 设曲线L 是由) 10(1:),10(0:),10(0:321≤≤=+≤≤=≤≤=x y x L x y L y x L 所围成的平面图形的边界,函数),(y x f 在上连续,则将ds y x f L ),(? 化为定积分 计算时, = ? 1 ),(L ds y x f ? 1 ),0(dy y f , = ? 2 ),(L ds y x f ? 1 )0,(dx x f , =? 3 ),(L ds y x f ? -1 2)1,(dx x x f , =? L ds y x f ),( ??? -++1 1 1 2)1,()0,(),0(dx x x f dx x f dy y f 。 2、 设曲线L 的方程为21x y -=,函数),(y x f 在L 上连续,现将曲线积分 ? L ds y x f ),(化为定积分进行计算,则当取x 为参数时, ? = L ds y x f ),(? ---1 1 2 21) 1,(x dx x x f ,而当取y 为参数时, ? =L ds y x f ),( ?--+--1 2 2 21)],1(),1([y dy y y f y y f 3、设曲线L 的方程为24x y -= ()20≤≤x ,则曲线L 以极角为参数的参数方程 ? ? ?≤≤==20,sin 2,cos 2π t t y t x ,用极坐标计算弧长的曲线积分时,? = L ds y x f ),(? 2 )s i n 2,c o s 2(2π dt t t f 。 (其中),(y x f 在L 上连续)。 4、设曲线Γ的直角坐标方程是???==++13 222z z y x ,则Γ用柱面坐标中的θ为参数的参 数方程为π20,1,sin 2, cos 2≤≤?? ? ??===t z t y t x ,并利用它计算曲线积分 ? Γ =ds z y x f ),,( ? ?π 20 2)1,sin 2,cos 2(dt t t f ,(其中f 在Γ上连续)。 二、计算曲线积分? L xds ,其中L 为由直线x y =及抛物线2 x y =所围成的区域的边界。

曲线、曲面积分方法小结

曲线、曲面积分方法小结

求曲线、曲面积分的方法与技巧 一.曲线积分的计算方法与技巧 计算曲线积分一般采用的方法有:利用变量参数化将曲线积分转化为求定积分、利用格林公式将曲线积分转化为二重积分、利用斯托克斯公式将空间曲线积分转化为曲面积分、利用积分与路径无关的条件通过改变积分路径进行计算、利用全微分公式通过求原函数进行计算等方法。 例一.计算曲线积分?+L xdy ydx ,其中L 是圆)0(222>=+y x y x 上从原点 )0,0(O 到)0,2(A 的一段弧。 本题以下采用多种方法进行计算。 解1:A O )的方程为?????-==, 2, 2 x x y x x L 由,A O →x 由,20→.212 dx x x x dy --= ? +L xdy ydx dx x x x x x x ?--+-=2 02 2 ]2)1(2[ dx x x x x dx x x x x x x x ? ? --+----=20 2 20 2 2 2)1(2)1(220 .00442=--= 分析:解1是利用变量参数化将所求曲线积分转化为求定积分进行计算的,选用的参变量为.x 因所求的积分为第二类曲线积分,曲线是有方向的,在这种解法中应注意参变量积分限的选定,应选用对应曲线起点的参数的起始值作为定积分的下限。 解2:在弧A O ) 上取)1,1(B 点, B O )的方程为 ?? ???--==,11,2y x y y L 由,B O →y 由 ,10→.12 dy y y dx -= A B ) 的方程为 ?????-+==, 11,2y x y y L 由,A B →y 由 ,01→.12 dy y y dx -- =

计算第一型曲线积分

1. 计算第一型曲线积分: (1)?+L ds y x )(,其中L 是以)1,0(),0,1(),0,0(B A O 为顶点的三角形 分析:先将L 分段表示,在利用第一型曲线积分的性质。 L=OA+AB+BO ,又 OA :010 x x x y =?≤≤?=? AB :011x x x y x =?≤≤?=-? BO :001x y y y =?≤≤? =? 解:?+L ds y x )(=?+OA ds y x )(+?+AB ds y x )(+?+BO ds y x )( = .212101010+=++???dy y dx dx x (2)?+L ds y x 2 122)(,其中L 是以原点为中心,R 为半径的右半圆周; 分析:是以原点为中心,R 为半径的右半圆周的参数方程为: )22.(sin ,cos πθπθθ≤≤- ==R y R x 解:?+L ds y x 2122)(=.2222R d R πθπ π=?- .(3)?L xyds , 其中L 为椭圆122 22=+b y a x 在第一象限中的部分; 分析:先将椭圆122 22=+b y a x 在第一象限中的部分表示为: 0y x a =≤≤ 解:因为,,2222x a bx y x a a b y --='-= 从而 ?L xyds =dx y x a x a b a 2220)(1'+-? =dx x a a x b x a x a b a ) (122222220-+-? =?+-a dx x a b x a a b 02222 222

=?--a dx x b a a a b 0222242)(2 =) (3)(22b a b ab a ab +++. 此题也可将椭圆122 22=+b y a x 在第一象限中的部分表示为参数方程:cos 0sin 2x a y b θπθθ =?≤≤?=? (4) ?L ds y ,其中L 为单位圆周122=+y x ; 解:由于单位圆的参数方程为:cos ,sin (02)x y θθθπ==≤≤,从而 ? L ds y =4sin sin 20=-??πππθθθθd d . (5) ?++L ds z y x )(222,其中L 为螺旋线)20(,sin ,cos π≤≤===t bt z t a y t a x 的一段; 解: ?++L ds z y x )(222=222222222202)43(3 2)(b a b a dt b a t b a ++=++?πππ. (6) ?L xyzds ,其中L 是曲线)10(2 1,232,23≤≤===t t z t y t x 的一段; 解:?L xyzds =dt t t t t t 223102121232++??? = .143216)1(32102/9=+??dt t t (7)ds z y L ?+222,其中L 是2222a z y x =++与y x =相交的圆. 分析:2222a z y x =++与y x =相交的圆? ??=+=2222a z y y x 的 其参数方程为)20(,cos ,sin 2 π≤≤===t t a z t a y x 解:ds z y L ?+222=.2cos sin 2202222ππ a dt t a t a a =+? 注意:计算第一型曲线积分的关键是将L 的表达式正确的给出来。 2. 求曲线)0,10(21,,2>≤≤===a t at z at y a x 的质量,设其线密度为a z 2=ρ. 分析:根据第一型曲线积分的物理意义L M ds ρ=?

21.1第一类曲线积分的计算

§21.1 第一类曲线积分的计算 1.定义 定积分研究的是定义在直线段上函数的积分.本节将研究定义在平面曲线或空间曲线段上函数的积分. 定义 1 设L 为平面上可求长度的曲线段,),(y x f 为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段),,2,1(n i L i =,i L 的弧长记为i s ?,分割T 的细度为i n i s T ?=≤≤1max ,在i L 上任取一点(i ξ,).,,2,1)(n i i =η若存在极限 J s f i i n i i T =?∑=→),(lim 1 ηξ 且J 的值与分割T 及点),(i i ηξ的取法无关,则称此极限为),(y x f 在L 上的第一型曲线积分,记作 .),(ds y x f L ? (1) 定义 2 若L 为空间可求长曲线段,(,,)f x y z 为定义在L 上的函数,则可类似地定义 ),,(z y x f 在空间曲线L 上的第一型曲线积分为J s f i i i n i i T =?∑=→),,(lim 1 ζηξ,(此处i s ?为 i L 的弧长,i n i s T ?=≤≤1max , J 为一常数),并且记作 ? L ds z y x f .),,( (2) 2.物理意义 1) 设某物体的密度函数f (P )是定义在Ω上的连续函数.当Ω是直线段时,应用定积分就能计算得该物体的质量, 现在研究当Ω是平面上某一可求长度的曲线段时物体的质量的计算问题.首先对Ω作分割,把Ω分成n 个可求长度的小曲线段i Ω(i=1,2,…,n),并在每一个i Ω上任取一点P i 由于f (P )为Ω上的连续函数,故当i Ω的弧长都很小时,每一小段i Ω的质量可近似地等于f (P i )?i Ω,其中?i Ω为小曲线段i Ω的长度.于是在整个Ω上的质量就近似地等于和式 i n i i P f ?Ω∑=)(1 当对Ω的分割越来越细密(即0max 1→?Ω=≤≤i n i d )时,上述和式的极限就应是该物体的 质量.

曲线积分的计算法

曲线积分的计算法 1.基本方法 f第一类(对弧长) 曲线积分J 1 转化 第二类(对坐标) C用参数方程 (1)选择积分变量用直角坐标方程 I用极坐标方程 对弧长曲线积分的计算 定理 设f(x,y)在曲线弧L上有定义且连续, L的参数方程为X (t),( t )其中 y (t), (t), (t)在[,]上具有一阶连续导数,且 L f(x,y)ds f[ (t), (t)h 2(t) 2(t)dt ( ) 汪意: 1. 定积分的下限一定要小于上限; 2. f(x,y)中x, y不彼此独立,而是相互有关的 特殊情形 (1) L : y (x) a x b. L f(x,y)ds f[x, (x)L.1 2(x)dx. (2) L:x (y) c y d. L f(x,y)ds : f[ (y), y] .,1 2(y)dy.定积分 (2)确定积分上下限下小上大 下始上终

x a cost, xyds L :椭圆 (第象限). L y bsi nt. 2 2 o 2 a cost bsi nt ( as int) (bcost) dt a b 2 sin t cost . a 2 sin 2 t b 2 cos 2 tdt ab ~ 2 a b 2 ab(a 解 [ 2 ,— a 2 cos sin k v a 2 I 1 ka 2 . a 2 k 2. 2 求1 x 2ds, 例4 其中 2 2 2 2 为圆周x y z a, 2 0. x y z z k ) k 2 d 解由对称性 故]1 (x 2 x 2ds z 2)ds y 2ds z 2ds. a 2 --------------------------------------- b u du (令u a 2sin 21 b 2 cos 21) ab b 2) 3( a b) 求 I l yds, 其中 L: y 2 4x,从(1,2)到(1, 2)一段. 2 dy °. - L 2 \ \ \ xyzds, 其中 的一段.(0 a cos , y a sin ,

曲线积分

-可编辑修改- 1.有关曲线积分与曲面积分的基本内容 1.1曲线积分的概念 1.1.1对弧长的曲线积分概念 1)定义:设函数),(y x f 在xoy 面内的一条光滑曲线弧L 上有界,通过分割、近似、求和、取极限得到和的极限就是对弧长的曲线积分,即 1 (,)lim (,)n i i i i L f x y ds f s λ ξη→==?∑?. 2)性质: ① 与积分路线方向无关,即 ? ?= AB BA L L ds y x f ds y x f ),(),(. ② 对曲线具有可加性,即若21L L L +=,则 ???+=2 1 ),(),(),(L L L ds y x f ds y x f ds y x f . 1.1.2对坐标的曲线积分概念 1)定义:设L 为xoy 面上从点A 到点B 的一条有向光滑曲线弧,函数),(),,(y x Q y x P 在 L 上有界,通过分割、近似、求和、取极限得到和的极限就是对坐标的曲线积分,即 i i i i i i n i L y Q x P dy y x Q dx y x P ?+?=+∑?=→),(),(lim ),(),(1 ηξηξλ . 2)性质: ① 与积分路线方向有关,即 AB BA L L Pdx Qdy Pdx Qdy +=-+??. ② 对曲线具有可加性,即若21L L L +=,则 ???+++=+2 1 L L L Qdy Pdx Qdy Pdx Qdy Pdx . 3)空间曲线情况 对弧长的曲线积分 i n i i i i s f ds z y x f AB ?=∑?=→Γ1 ),,(lim ),,(τηξλ . 对坐标的曲线积分 ?∑Γ=→?+?+?=++AB n i i i i i i i z R y Q x P Rdz Qdy Pdx 1 ]),,([lim τηξλ . 4)两种曲线积分联系

相关主题
文本预览
相关文档 最新文档