当前位置:文档之家› 机器视觉系列—— Vision 基础知识(下)

机器视觉系列—— Vision 基础知识(下)

机器视觉系列—— Vision 基础知识(下)
机器视觉系列—— Vision 基础知识(下)

机器视觉系列——Vision基础知识(下)

第1章节(下)

rolex cellini replica

在上回我们逐一介绍与机器视觉相关的专有名词与周边光学设备,在本回要开始来说明如何使用LabVIEW来截取相机的影像,并正确的显示在人机介面上﹔另外也针对NI Vision所提供的影像校正模式进行说明,以及如何利用软体方式来设定相机的属性与触发取像模式。audemars piguet royal oak offshore chrono auto replica

1.2软体截取与显像

1.2.1NI MAX影像装置确认

在前面一小节介绍了架设整个影像系统所需要的硬体相关设备,现在要来说明如何在NI MAX找到已安装的相机,并且从相机中取得影像。

当我们打开NI MAX,在「My System--》Devices and Interfaces--》NI-IMAQdx Devices」下,可找寻已安装成功的相机,点选相机后,按下右边画面的上方「Grab」键可进行连续取像,另外红色框选处可以找到一些关于相机的规格与内部参数设定,画面下方有显示影像的基本参数,包括目前影像大小、缩放比例与像素的颜色值,另外下方的tab表单处可以找到一些关于相机的规格与内部参数设定。

replica miu miu tote bags

图1.26-在NI MAX下进行取像作业

1.2.2IMAQ影像截取模式

现在要来练习如何使用LabVIEW来取得相机的影像。如果您过去曾经使用LabVIEW来开发NI相关产品,如DAQ设备等,不难发现LabVIEW在相关套件中都会提供两种开发模式:1.

高阶元件(HL);2.低阶元件(LL),同样地在IMAQ套件裡也存在这两种开发模式。

高低阶模式并不是将元件区分为高低等级,所谓的高阶元件主要是将资源开启、撷取、关闭全包装成一个Express VI,可以帮助使用者快速地完成取像相关的程式设定,就能直接将影像输出到LabVIEW上;而低阶取像元件将功能切割为数个VI,需由使用者自行设定元件才能完成取像动作,好处在于能够让使用者更有弹性的唿叫参数设定,而另一个优点在于,与高阶元件相比,少了反覆建立与关闭资源的动作,可以有效降低系统资源浪费。

高阶(HL)取像元件使用步骤

安装完LabVIEW的IMAQ套件后,可在Block Diagram(简称BD)下,按下右键跳出Function Template后依序往下搜寻「Function Template--》Vision and Motion--》Vision Express --》Vision Acquisition」(图1.27),将「Vision Acquisition」元件拉到BD上,会自动启动设定画面。

图1.27-Vision Acquisition元件位置

A.设定的取像来源(Select Acquisition Source)

左侧「Acquisition Sources for Localhost」可以检视目前安装在电脑上所有相机名称,选择位于「NI-IMAQdx Devices」的相机「cam0:Balsler…」,为本次取像用的相机,接着可以按下右方连续取像按键,测试相机是否有正常被Initialize并取到像;右下角有提供一些关于相机的基础数值(参考图1.2.2)。

图1.28-设定的取像来源

B.设定撷取影像操作方式(Select Acquisition Type)

共分成4种类型:

?取单张影像(Single Acquisition with processing)

?连续取像(Continuous Acquisition with inline process)

?一次取固定张数影像,边取像边做处理(Finite Acquisition with inline processing)?一次取固定张数影像,当所有影像取得完毕后再做处理(Finite Acquisition with post processing)

图1.29-设定撷取影像操作方式

这个项目我们先选择「连续取像」模式,继续往下设定。

C.设定取像参数「Configure Acquisition Settings」

可依据环境因素来调整相机的参数达到最佳化,如增益值(Gain)、Gamma、取像模式等,设定过程可以同时按下右上方的「Test」键来观察设定结果,这边我们暂时不做任何需要设定,直接往下一步。

图1.30-设定取像参数

D.设定是否将影像储存到硬碟(Configure Image Logging Settings)

若将「Enable Image Logging」勾选,表示将撷取到的影像储存到下方指定的资料夹位置,并可设定储存的影像格式,值得注意的是,若开启此功能可能因为硬碟存取速度的关係,使得最大取像速度降低。

图1.31-设定是否将影像储存到硬碟

E.设定影像参数输入与输出「Select Controls/Indicators」

可依据应用,开放影像参数供外部控制元件(Control)设定,让该取像用的Express VI获得输入与输出的功能,在此我们勾选显示元件(Indicator)中的「Image Number」与「Frame Rate」,最后按下「Finish」键完成设定。

图1.32-设定影像参数输入与输出

图1.33-HL取像元件自动产生的程式码

图1.34-HL取像元件自动产生的人机介面

低阶(LL)取像元件使用步骤

操作之前我们先来了解「NI-IMAQ」与「NI-IMAQdx」两者的差异;「NI-IMAQ」一般只能用于NI的影像撷取卡或相机,而「NI-IMAQdx」是可驱动第叁方的相机,如Basler的USB3.0相机,凡是通过影像传输介面协定联盟(如GigE、Camera Link或USB3.0)认证的相机,都可使用「NI-IMAQdx」来驱动。

使用低阶取像元件来驱动第叁方相机时,需同时使用到「NI-IMAQdx」与「NI-IMAQ」影像模组;主要是利用「IMAQdx」来撷取相机的影像,然后再利用「IMAQ」创立的影像空间来储存影像,「IMAQ」同时还提供影像处理工具及机器视觉工具,可依据使用者需求来做应用开发。

利用LL元件来完成连续取像的功能,操作流程图如下:

图1.35-使用IMAQdx与IMAQ取像流程图

先在Front Panel建立一个「IMAQdx Session」与「Image Display」,物件分别位于「Control Template--》Modern--》I/O--》IMAQdx Session」与「Controls Template--》Vision --》Image Display」,最后再放置一个Boolean,名称设为「Stop」。

图1.36-Image Display物件放置区域

跳到Block Diagram,分别在「Function Template--》Vision and Motion--》NI-IMAQdx --》Low-Level」与「Function Template--》Vision and Motion--》Vision Utilities--》Image Management」找到以下几个功能VI:

图1.37-IMAQ Create与Dispose物件

图1.38-IMAQdx的设定取像物件

将这几个功能VI依照操作流程步骤完成,程式码如下:

图1.39-Low Level取像元件程式码

步骤说明:

1.指定开启相机名称,从「IMAQ Session」中选择对应的相机名称

2.设定相机取像模式为「连续」,Image Buffer设为「3」

3.开始取像

4.任何由外部取得的影像,都需透过IMAQ建立一组记忆体空间来储存,由于取像来源是彩色相机,每一张彩色(RGB)影像需要3*8bit的空间来储存,所以「Image Type」要选择「RGB U32」

5.进入While迴圈后,会不断将影像覆盖到记忆体区内,此时将影像接到Display Image

即可在人机介面观察到影像,直到按下「Stop」或Error产生时才会跳出迴圈

6.停止取像

7.解除相机设定

8.结束指定名称的相机作业

9.清空储存影像的记忆体空间

最后再转换画面到FP,启动程式后就会开始连续取像,直到有人按下人机上的「Stop」键,停止取像。

使用上述两种开发模式都可以成功将相机的影像撷取到LabVIEW,有了这些影像来源(Image Source)后,就可以再继续往下做影像后处理(Image Process)与机器视觉(Machine Vision)的应用了。

1.2.3影像软体校正

确认影像系统能正常取像后,首先要做的是对整个影像系统做校正,为何还要多此一举呢?主要塬因有两点:

1.真实世界描述物体的单位可能是吋(inch)或公厘(mm),但在影像系统裡,描述影像的是像素(pixel),这两者之间必须存在一单位转换公式,影像才有办法转换成真实比例,对于尺寸量测或视觉对位类型的应用特别重要。

2.前面章节曾提到视觉系统可能因为镜头的失真(Distortion),或者因为相机投射方向与检测物表面非完全垂直,这两种情况都会造成影像变形,需透过影像校正来修正这些变形量。在NI VISION(IMAQ)有提供以下几种校正模型,主要目的在于单位转换与修正变形量:

图1.40-NI VISON提供的校正模型

1.Point Distance Calibration:在影像变形量轻微且忽略不计下,利用真实世界两点距离与像素之间做单位转换

2.Point Coordinates Calibration:已知真实世界点位置座标与影像中的像素座标做对应,用来修正非垂直透视投影所产生的变形

3.Distortion Model(Grid):利用相机拍摄一张格点校正片的影像,可同时修正镜头失真与非垂直透视投影所造成的失真

4.Camera Model(Grid):利用多张格点影像进行相机模型校正,包括焦距、影中心点与影像失真,一般常用于机械手臂定位应用

5.Microplanes(Grid):修正在非平整的工作表面所造成的影像失真

1.3相机的属性与触发模式设定

1.3.1相机属性说明

了解如何透过LabVIEW来取得影像后,另外可针对相机的部分属性进行参数的微调,一些常用的参数有:

1.Analog Controls

?Gain Auto:可设定自动或手动增益

?Gain(Raw):设定增益值,会直接影响黑跟白的对比,调高Gain值,不仅会强化影像的对比强度,同时也会将杂讯的放大

2.Image Format Controls

?Image Format Controls:若使用的是彩色相机,可将影像设为灰阶(Mono)或彩色格式(Color)﹔若使用的是黑白相机,则只能设定灰阶影像输出

3.Acquisition Controls

?Trigger Mode:开启或关闭触发功能

?Trigger Source:可选择软体触发(Software)或者硬体触发(Line)

?Generate Software Trigger:当触发模式设定为Software时,执行相机后,每按一下取一张影像

?Exposure Auto:开启/关闭自动曝光,一般都设定为关闭

?Exposure Mode:可设定固定曝光时间(Timed)模式,或者是脉衝宽度(Trigger Width)模式,由触发讯号的脉衝持续时间的来决定曝光时间

?Exposure Time:设定固定曝光时间,曝光时间越长,画面亮度会有所提升,曝光时间如果拉得太长会产生过曝,如果遇到晃动也容易产生残影

1.3.2触发模式说明

硬体触发(Line):

一般工业相机都会提供数组硬体触发讯号(Line),可以接收来自外部IO卡的讯号,当相机收到触发后,立即撷取一张影像,常使用在高速影像撷取或Line Scan的应用。

以Line Scan为例,利用运动装置逐行对待测物进行线扫描,每一条影像间距需相同,否则会产生影像变形。利用运动装置的编码器与相机的硬体触发做结合,设定编码器的光学尺每移动固定距离就发送一组讯号,当运动装置移动一段距离,相机会立即收到一组触发讯号,接着完成取像动作,这样做法可确保取到的影像间距都相同。

图1.41-Line Scan的示意图

软体触发(Software):

在无硬体触发情况下,还是可以利用软体方式模拟触发讯号,例如可在人机介面上设立一颗Boolean按键,若按键的机械模式为「Latch when Release」,当按键按下后放开,正缘触发(Positive Edge)成立,立即透过软体方式告诉相机撷取一张影像,这种触发方式适用于大部分视觉应用。

除了在NI MAX下的「NI-IMAQdxèCamera Attributes」可做参数设定外﹔若使用HL开发方式,可在「Express VIèVision Acquisition」的「Configure Acquisition Settings」选项中做设定;而使用LL元件开发,需先利用「NI-IMAQdxèEnumerate Attributes」来读取目前使用相机所有可以设定的参数名称(Attribute Name),再将参数名称输入到Property Node 的「Active Attribute」功能,并且指定对应的资料格式来完成参数写入。

图1.42-NI MAX下的属性设定

图1.43-使用NI-IMAQ Express VI属性设定画面

图1.44-使用LL取像元件的属性设定方式

机器视觉基础知识详解

机器视觉基础知识详解 随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 案例一:机器人+视觉自动上下料定位的应用: 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘2中,振动盘2作用是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 案例二:视觉检测在电子元件的应用: 此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对每个元器件定位后,使用斑点工具检测产品固定区域的灰度值,来判断此区域有无缺胶情况。 该应用采用了深圳视觉龙公司的DragonVision视觉系统方案,使用两个相机及光源配合机械设备,达到每次检测双面8个产品,每分钟检测大约1500个。当出现产品不良时,立刻报警停机,保证了产品的合格率和设备的正常运行,提高生产效率。

机器人视觉算法 参考答案

1.什么是机器视觉 【概述】 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分 CMOS 和 CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。【基本构造】 一个典型的工业机器视觉系统包括:光源、镜头、 CCD 照相机、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯 / 输入输出单元等。 系统可再分为: 主端电脑(Host Computer) 影像撷取卡(Frame Grabber)与影像处理器影像摄影机 CCTV镜头显微镜头照明设备: Halogen光源 LED光源 高周波萤光灯源闪光灯源其他特殊光源影像显示器 LCD 机构及控制系统 PLC、PC-Base控制器 精密桌台伺服运动机台 【工作原理】 机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格 / 不合格、有 / 无等,实现自动识别功能。 【机器视觉系统的典型结构】 一个典型的机器视觉系统包括以下五大块: 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。 2.镜头FOV(Field Of Vision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比)镜头选择应注意: ①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点 / 节点⑦畸变 3.相机 按照不同标准可分为:标准分辨率数字相机和模拟相机等。要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。 4.图像采集卡 图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。 比较典型的是PCI或AGP兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。 5.视觉处理器 视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集

机器视觉入门知识详解

机器视觉入门知识详解 随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 啤酒厂采用的填充液位检测系统为例来进行说明: 当每个啤酒瓶移动经过检测传感器时,检测传感器将会触发视觉系统发出频闪光,拍下啤酒瓶的照片。采集到啤酒瓶的图像并将图像保存到内存后,视觉软件将会处理或分析该图像,并根据啤酒瓶的实际填充液位发出通过-未通过响应。如果视觉系统检测到一个啤酒瓶未填充到位,即未通过检测,视觉系统将会向转向器发出信号,将该啤酒瓶从生产线上剔除。操作员可以在显示屏上查看被剔除的啤酒 瓶和持续的流程统计数据。

机器人视觉引导玩偶定位应用: 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘2中,振动盘2作用是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 视觉检测在电子元件的应用:

(完整版)机器视觉思考题及其答案

什么是机器视觉技术?试论述其基本概念和目的。 答:机器视觉技术是是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。机器视觉主要用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。机器视觉技术最大的特点是速度快、信息量大、功能多。 机器视觉是用机器代替人眼来完成观测和判断,常用于大批量生产过程汇总的产品质量检测,不适合人的危险环境和人眼视觉难以满足的场合。机器视觉可以大大提高检测精度和速度,从而提高生产效率,并且可以避免人眼视觉检测所带来的偏差和误差。 机器视觉系统一般由哪几部分组成?试详细论述之。 答:机器视觉系统主要包括三大部分:图像获取、图像处理和识别、输出显示或控制。 图像获取:是将被检测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据。该部分主要包括,照明系统、图像聚焦光学系统、图像敏感元件(主要是CCD和CMOS)采集物体影像。 图像处理和识别:视觉信息的处理主要包括滤波去噪、图像增强、平滑、边缘锐化、分割、图像识别与理解等内容。经过图像处理后,图像的质量得到提高,既改善了图像的视觉效果又便于计算机对图像进行分析、处理和识别。 输出显示或控制:主要是将分析结果输出到显示器或控制机构等输出设备。 试论述机器视觉技术的现状和发展前景。 答:。机器视觉技术的现状:机器视觉是近20~30年出现的新技术,由于其固有的柔性好、非接触、快速等特点,在各个领域得到很广泛的应用,如航空航天、工业、军事、民用等等领域。 发展前景:随着光学传感器、信息技术、信号处理、人工智能、模式识别研究的不断深入和计算机性价比的不断提高,机器视觉技术越来越成熟,特别是市面上已经有针对机器视觉系统开发的企业提供配套的软硬件服务,相信越来越多的客户会选择机器视觉系统代替人力进行工作,既便于管理又节省了成本。价格持续下降、功能逐渐增多、成品小型化、集成产品增多。 机器视觉技术在很多领域已得到广泛的应用。请给出机器视觉技术应用的三个实例并叙述之。答:一、在激光焊接中的应用。通过机器视觉系统,实时跟踪焊缝位置,实现实时控制,防止偏离焊缝,造成产品报废。 二、在火车轮对检测中的应用,通过机器视觉系统抓拍轮对图像,找出轮对中有缺陷的轮对,提高检测精度和速度,提高效率。 三、大批量生产过程中的质量检查,通过机器视觉系统,对生产过程中的产品进行质量检查跟踪,提高生产效率和准确度。 什么是傅里叶变换,分别绘出一维和二维的连续及离散傅里叶变换的数学表达式。论述图像傅立叶变换的基本概念、作用和目的。 答:傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。 一维连续函数的傅里叶变换为: 一维离散傅里叶变换为: 二维连续函数的傅里叶变换为: 二维离散傅里叶变换为: 图像傅立叶变换的基本概念:傅立叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图

机器视觉算法基础(DOC)

机器视觉 基于visual C++ 的数字图像处理

摘要 机器视觉就是用机器代替人眼来做测量和判断。它通过图像摄取装置将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来获取信息。本文主要介绍的是数字图像处理中的一些简单应用,通过对图像进行滤波、增强、灰度变换、提取特征等处理来获取图像的信息,达到使图像更清晰或提取有用信息的目的。 关键字:机器视觉、灰度图处理、滤波、边缘提取、连通区域

目录 摘要 (2) 目录 (3) 1 概述 (4) 2技术路线 (4) 3实现方法 (5) 3.1灰度图转换 (5) 3.2 直方图均衡化 (6) 3.3均值滤波和中值滤波 (6) 3.4灰度变换 (7) 3.5拉普拉斯算子 (8) 4 轮廓提取 (9) 5 数米粒数目 (15) 6 存在的问题 ................................................................................................ 错误!未定义书签。 7 总结 ............................................................................................................ 错误!未定义书签。 8 致谢 ............................................................................................................ 错误!未定义书签。参考文献 . (17)

机器视觉检测的基础知识[大全]

机器视觉检测的基础知识~相机 容来源网络,由“机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在机械展. 相机都有哪些种类?我们常说的CCD就是相机么?除了2D平面相机,是否还有其他种类的相机,原理又是什么?下面这篇文章给您一一道来。 一,相机就是CCD么? 通常,我们把所有相机都叫作CCD,CCD已经成了相机的代名词。正在使用被叫做CCD的很可能就是CMOS。其实CCD和CMOS都称为感光元件,都是将光学图像转换为电子信号的半导体元件。他们在检测光时都采用光电二极管,但是在信号的读取和制造方法上存在不同。两者的区别如下: 二,像素。 所谓像素,是指图像的最小构成单位。电脑中的图像,是通过像素(或者称为PIXEL)这一规则排列的点的集合进行表现的。每一个点都拥有色调和阶调等色彩信息,由此就可以描绘出彩色的图像。 ▼例如:液晶显示器上会显示「分辨率:1280×1024」等。这表示横向的像素数为1280,纵向的像素数为1024。这样的显示器的像素总数即为1280×1024=1,310,720。由于像素数越多,则越可以表现出图像的细节,因此也可以说「清晰度更高」。

三,像素直径。 所谓像素直径,是指每个CCD元件的大小,通常使用μm作为单位。严谨的说,这个大小中包含了受光元件与信号传送通路。(=像素间距,即某个像素的中心到邻近一个像素的中心的距离。)。也就是说,像素直径与像素间距的值是一样的。如果像素直径较小,则图像将通过较小的像素进行描绘,因此可以获得更加精细的图像。可以通过像素直径和有效像素数,求出CCD元件的受光部的大小。 假设某个 CCD 元件的条件如下所示: ·有效像素数…768 × 484 ·像素直径…8.4 μm× 9.8μm 则受光部的大小为 ·横向768 × 8.4μm= 6.4512 mm ·纵向484 × 9.8μm= 4.7432 mm 四,CCD的大小。 ▼CCD感光元件的大小,一般分为采用英寸单位表示和采用APS-C大小等规格表示这2种方式。采用英寸表示时,该尺寸并不是拍摄的实际尺寸,而是相当于摄像管的对角长度。例如,1/2英寸的CCD表示「拥有相当于1/2英寸的摄像管的拍摄围」。为什么如此计算呢,这是由于当初制造CCD的目的就是用来代替电视机录像机的摄像管的。当时,由于想要继续使用镜头等光学用品的需求比较强烈,由此就诞生了这种奇怪的规格。主要的英寸规格的尺寸如下表所示。

机器视觉应用解析

机器视觉应用解析 机器视觉可以捕捉、观察和分析那些从前无法想象的任务。 想将检测时间降低一个数量级、提高检测质量、降低成本、增加工人满意度、提高安全性和减少不确定度?先进的机器视觉技术是你的绝好选择。用户、系统集成商和机器视觉产品供应商跟踪了如下结果: ■ 与3英里每小时(mph)的人眼检测速度相比,自动3D检测速度可以达到30英里每小时。 ■ 无级调解产品的机器人维修。 ■ 以200m/min的速度对生产和结构疵点进行网面检测,比肉眼速度快10倍。 ■ 每秒记数450个形状各异、大小不同的物体,精度高达99%。 ■ 每份中可以对1200个不同颜色和大小的产品进行检测并做出合格判定,可以设置10个以上的合格判据,精度在95%到99%之间。花费只有预期的1/3,9个月即可收回成本。 为了更快的进行检测,Nagle Rearch将Scik3D技术整合到获专利的Georgetown Rail Aurora轨道检测系统之中。 图片显示了木制枕木(图1)和混凝土枕木(图2)。图3是装载视觉系统的卡车,可以消除人为检测的困难和不准确。 图1

图2 图3 感受机器视觉带来的便利包括: 3D摄像头可以以30mph的速度监测铁路 你愿意沿着铁路边走边找疵点,还是愿意坐在车上以30mph的速度前行,而把工作留给3D摄像头去完成,并且可以每小时检测70000节铁轨,每天检测几百英里?对于9英尺枕木的检测长期以来被认为是轨道维护的“宝石”,它可以确保工人的安全、舒适,且便于制定维护计划。 当检查员们沿着铁轨边走边对每一根枕木进行判断的时候,高稳定性的枕木检测向传统的铁轨检测和枕木维护发起了挑战,为什么? ■ 肉眼检测人员对“好”或“坏”的判断准则是一直变化的; ■ 两个检测人员对同一根铁轨的评价不可能完全一致; ■ 检测人员在每一次评价上只能用仅仅1秒钟; ■ 而且铁路路况条件繁复多变。 来自于德克萨斯州Austin公司的Nagle发现2D检测并不适合枕木的检测,原因是

机器视觉算法笔记

1、相机的信噪比、SNR=1时(光强可探测到的最小光强,绝对灵敏度),动态增益为光强.sat/光强.min(dB/位),量子效率是波长的函数:η=η(λ)--CCD比CMOS灵敏,动态范围大。 2、数据结构:图像、区域和亚像素轮廓 图像:彩色摄像机采集的是每个像素对应的三个采样结果(RGB三通道图像)、图像通道可被看作一个二维数组,设计语言中的表示图像的数据结构;两种约定:离散函数(点对点)R→R n、连续函数:R2→R n。 区域:可以表示一幅图像中一个任意的像素子集,区域定义为离散平面的一个任意子集:R ∈Z2,将图像处理闲置在某一特定的感兴趣区域(一幅图像可被看作图像所有像素点的矩形感兴趣区域)。二值图像特征区域:用1表示在区域内的点,用0表示不在区域内的点;行程表示法:每次行程的最小量的数据表示行程的纵坐标、行程开始和行程结束对应横坐标值。行程编码较二值图像节省存储空间(行程编码保存在16位整数,须要24个字节,而采用二值图像描述区域,每个像素点占1个字节,则有35个字节)。行程编码保存的只是区域的边界。为描述多个区域,采用链表或数组来保存采用形成编码描述的多个区域,每个区域的信息是被独立保存和处理的。 亚像素轮廓:比像素分辨率更高的精度(亚像素阈值分割或亚像素边缘提取)。轮廓基本上可被描述成多表型,然后用排序来说明哪些控制点是彼此相连的,在计算机里,轮廓只是用浮点数表示的横和纵坐标所构成的数组来表示。 3、图像增强:硬件采集的图像质量不好,可应用软件进行增强。 灰度值变换:由于光源照明的影响,局部的图像会产生对比度与设定值不一致,需要局部的去增强对比度。为提高变换速度,灰度值变换通常通过查找表(LUT)来进行(将灰度输入值变换后输出保存到查找表中),最重要的灰度值变换是线性灰度值比例缩放:f(g)=ag+b(ag 表示对比度,b表示亮度)。为了自动获取图像灰度值变换参数a、b的值,通过图像感兴趣区域的最大与最小灰度值设置出a、b的值(灰度值归一化处理)。灰度直方图表示某一灰度值i出现的概率。对于存在很亮和很暗的区域,图像归一化时需要去除一小部分最暗、最亮的灰度值(用2个水平线截取区域),再进行图像归一化处理,将对比度提高(鲁棒的灰度归一化处理)。 辐射标定:传感器收集的能量与图像实际灰度值的关系是非线性时候(一般需要是线性的,提高某些处理算法的精确度),对非线性相应求其逆响应的过程就是辐射标定。取q=?对响应函数求逆运算得到线性响应,求q的过程既是标定。 图像平滑:抑制由于多种原因产生的图像噪声(随即灰度值)。干扰后灰度值=图像灰度值+噪声信号(将噪声看作是针对每个像素平均值为0且方差是б2的随机变量),降噪方法之一、时域平均法,采集多幅图像进行平均,标准偏差将为原来的1/根号n,求的平均值后,将任意一幅图像减去平均,即为该幅图像的噪声;方法之二、空间平均操作法,通过像素数(2n+1)*(2m+1)的一个窗口进行平均操作,会使边缘模糊(计算量非常大,进行(2n+1)*(2m+1)次操作);方法之三、递归滤波器,在前一个计算出的值的基础上计算出新的值,较方法一速度快了30倍;满足所有准则(平滑程度准则t,以及XXs滤波)的高斯滤波器:高斯滤波器是可分的,所以可以非常高效率的被计算出来,能够更好地抑制高频部分。若更关注质量,则应采用高斯滤波器;若关注执行速度,首选使用均值滤波器。 傅里叶变换:将图像函数从空间域转变到频率域,可以再进行频率高低的滤波操作平滑。 4、插值算法:图像被放大不清晰时,通过插值增加放大的增多的像素

2020年机器视觉公司排名

2020年机器视觉公司排名 机器视觉系统最基本的特点就是提高生产的灵活性和自动化程度。在一些不适于人工作业的危险工作环境或者人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉。同时,在大批量重复性工业生产过程中,用机器视觉检测方法可以大大提高生产的效率和自动化程度。 近年来,随着我国智慧城市建设的重新火热,机器视觉技术的市场需求量大增。对于人脸识别、图片搜索引擎、医疗诊断、智能驾驶、娱乐营销等智慧城市建设的多个领域来说,机器视觉技术都是不可或缺的。 随着制造业企业对自动化、智能化需求的不断提升,一大批机器视觉企业涌现了出来。那么,让我们一起来看看都有哪些企业已经涉足这一领域,以及他们的发展情况如何。 机器视觉国外供应商 基恩士 从光电传感器和近接传感器到用于检测的测量仪器和研究院专用的高精度设备,KEYENCE 的产品覆盖面极其广泛。KEYENCE的客户遍及各行各业,有超过80,000的客户都在使用KEYENCE的这些产品。用户只要针对特定应用选择合适的KEYENCE产品,就可以安装高产量,高效能的自动化生产线。 基恩士产品的设计理念是给予客户的制造与研发创造附加价值。产品按照通用目的进行工程设计,因此它们可以用在各个行业或广泛的应用场合。基恩士为既存和潜在的应用需要提供更具附加价值的产品。 基恩士为世界范围内约100 个国家或地区的20 余万家客户提供服务,基恩士这个名称意味着创新与卓越。 欧姆龙 创立于1933年的欧姆龙集团是全球知名的自动化控制及电子设备制造厂商,掌握着世界领先的传感与控制核心技术。通过不断创造新的社会需求,欧姆龙集团已在全球拥有近36,000名员工,营业额达7,942亿日元。产品涉及工业自动化控制系统、电子元器件、汽车电子、社会系统、健康医疗设备等广泛领域,品种多达数十万。 康耐视 康耐视公司设计、研发、生产和销售各种集成复杂的机器视觉技术的产品,即有“视觉”的产品。康耐视产品包括广泛应用于全世界的工厂、仓库及配送中心的条码读码器、机器视觉传感器和机器视觉系统,能够在产品生产和配送过程中引导、测量、检测、识别产品并确保

机器视觉工业镜头计算方法

机器视觉工业镜头计算方法(一) 2012年8月1日艾菲特光电 一、机器视觉中工业镜头的计算方式 1、WD 物距工作距离(Work Distance,WD)。 2、FOV 视场视野(Field of View,FOV) 3、DOV 景深(Depth of Field)。 4、Ho:视野的高度 5、Hi:摄像机有效成像面的高度(Hi来代表传感器像面的大小) 6、PMAG:镜头的放大倍数 7、f:镜头的焦距 8、LE:镜头像平面的扩充距离 二、相机和镜头选择技巧 1、相机的主要参数: 感光面积SS(Sensor Size) 2、镜头的主要参数: 焦距FL(Focal Length) 最小物距Dmin(minimum Focal Distance) 3、其他参数: 视野FOV(Field of View) 像素pixel FOVmin=SS(Dmin/FL) 如:SS=6.4mm,Dmin=8in,FL=12mm pixel=640*480 则:FOVmin=6.4(8/12)=4.23mm 4.23/640=0.007mm 如果精度要求为0.01mm,1pixels=0.007mm<0.01mm 结论:可以达到设想的精度 三、工业相机传感器尺寸大小:(单位:mm) (3.2mm×2.4mm);1/3″:(4.8mm×3.6mm);1/2″:(6.4mm×4.8mm); (8.8mm×6.6mm);1″:(12.8mm×9.6mm);

四、CCD相机元件的尺寸 型号高度比长度(mm)宽度(mm)对角线(mm)1/6" 4:3 1.73 2.3 2.878 1/4" 4:3 2.4 3.2 4 1/3" 4:3 3.6 4.8 6 1/2" 4:3 4.8 6.4 8 1/1.8" 4:3 5.3 7.2 8.9 2/3" 4:3 6.6 8.8 11 1" 4:3 9.6 12.8 16 4/3" 4:3 13.5 18 22.5 五、线阵传感器尺寸(单位:mm)

机器视觉基础知识详解

机器视觉基础知识详解 随着工业4、0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术就是如何工作的、它为什么就是实现流程自动化与质量改进的正确选择等。小编为您准备了这篇机器视觉入门学习资料。 机器视觉就是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统就是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布与亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有: 为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 案例一:机器人+视觉自动上下料定位的应用:

现场有两个振动盘,振动盘1作用就是把玩偶振动到振动盘2中,振动盘2作用就是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶就是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 案例二:视觉检测在电子元件的应用: 此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对每个元器件定位后,使用斑点工具检测产品固定区域的灰度值,来判断此区域有无缺胶情况。 该应用采用了深圳视觉龙公司的DragonVision视觉系统方案,使用两个相机及光源配合机械设备,达到每次检测双面8个产品,每分钟检测大约1500个。当出现产品不良时,立刻报警停机,保证了产品的合格率与设备的正常运行,提高生产效率。 案例三:啤酒厂采用的填充液位检测系统案例:

机器视觉基础知识详解

机器视觉基础知识详解 随着工业 4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让 更多用户获取机器视觉的相关基础知识, 包括机器视觉技术是如何工作的、 它为什么是实现 流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量, 控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号, 传送给专用的 I 图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信 号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 光源 机器视觉优势:机器视觉系统具有高效率、 高度自动化的特点, 可以实现很高的分辨率精度 与速度。机器视觉系统与被检测对象无接触, 安全可靠。人工检测与机器视觉自动检测的主 要区别有: C C D 相机 高題 T 作时闻 工仙『可肖限 不易信息■棗成 人;」和倉理或本不斬上升 不适合齡和措辭境 V 工件 可靠性

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 案例一:机器人+ 视觉 自动上下料定位的应用: 从反面振动为正面。该应用采用了深圳视觉龙公司 VD200视觉定位系统,该系统通过判断玩 偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人, 机器人收到坐标后运动抓取产 品,当振动盘中有很多玩偶处于反面时, VD200视觉定位系统需判断反面玩偶数量,当反面 玩偶数量过多时,VD200视觉系统发送指令给振动盘 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面, 计算出玩偶中心点坐标,发 送给机器人。通过VD200视觉定位系统实现自动上料, 大大减少人工成本, 大幅提高生产效 率。 案例二:视觉检测在电子元件的应用: 此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对 每个元器件定位后,使用斑点工具检测产品固定区域的灰度值, 来判断此区域有无缺胶情况。 该应用采用了深圳视觉龙公司的 Drag on Visi on 视觉系统方案,使用两个相机及光源配 合机械设备,达到每次检测双面 8个产品,每分钟检测大约 1500个。当出现产品不良时, 立刻报警停机,保证了产品的合格率和设备的正常运行,提高生产效率。 2把反面玩偶振成正面。 SB 3^ I i- I" 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘 2中,振动盘2作用是把玩偶

工业机器人视觉系统

工业机器人及机器人视觉系统 人类想要实现一系列的基本活动,如生活、工作、学习就必须依靠自身的器官,除脑以外,最重要的就是我们的眼睛了,(工业)机器人也不例外,要完成正常的生产任务,没有一套完善的,先进的视觉系统是很难想象的。 机器视觉系统就是利用机器代替人眼来作各种测量和判断。它是计算科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。图像处理和模式识别等技术的快速发展,也大大地推动了机器视觉的发展。 机器视觉系统的应用 在生产线上,人来做此类测量和判断会因疲劳、个人之间的差异等产生误差和错误,但是机器却会不知疲倦地、稳定地进行下去。一般来说,机器视觉系统包括了照明系统、镜头、摄像系统和图像处理系统。对于每一个应用,我们都需要考虑系统的运行速度和图像的

处理速度、使用彩色还是黑白摄像机、检测目标的尺寸还是检测目标有无缺陷、视场需要多大、分辨率需要多高、对比度需要多大等。从功能上来看,典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分 工作过程 ?一个完整的机器视觉系统的主要工作过程如下: ?1、工件定位检测器探测到物体已经运动至接近摄像系统的视野中心,向图像采集部分发送触发脉冲。 ?2、图像采集部分按照事先设定的程序和延时,分别向摄像机和照明系统发出启动脉冲。 ?3、摄像机停止目前的扫描,重新开始新的一帧扫描,或者摄像机在启动脉冲来到之前处于等待状态,启动脉冲到来后启动一帧扫描。 ?4、摄像机开始新的一帧扫描之前打开曝光机构,曝光时间可以事先设定。

机器视觉基础技术培训

P f Professional i l Inspection I ti Project, P j t Advanced Ad d Vision Vi i System S t
机器视觉基础技术培训

P f Professional i l Inspection I ti Project, P j t Advanced Ad d Vision Vi i System S t
1. 什么是机器视觉?
简单地理解 机器视觉是一门在工业生产过程中代替人类视觉自动对产品外形特征做100%全检的技术。 什么是外形特征? 例如: 形状识别 颜色识别 高精度尺寸测量 定位/位置测量; 形状识别;颜色识别;高精度尺寸测量;定位 位置测量 表面缺陷检测;OCR/OCV字符识别;1D/2D Code 识别 等等……. 随着工业自动化技术的飞速发展和各领域消费者对产品 品质要求的不断提高。零缺陷,高品质,高附加值的产 品成为企业应对竞争的核心,为了赢得竞争,可靠的质 量控制不可或缺。 由于生产过程中速度加快,产品工艺高度集成,体积缩 小且制造精度提高,人眼已无法满足许多企业外形质量 控制的检测需要。机器视觉代替人类视觉自动检测产品 外形特征,实现100%在线全检,已成为解决各行业制造 商大批量高速高精度产品检测的主要趋势。

P f Professional i l Inspection I ti Project, P j t Advanced Ad d Vision Vi i System S t
2. 机器视觉的应用
机器视觉在各个制造行业都有广泛应用。 电子行业

机器视觉与视觉检测知识点归纳

一总介 使用机器视觉系统五个主要原因: 1.精确性(无人眼限制) 2.重复性(相同方法检测无疲惫) 3.速度(更快检测) 4.客观性(无情绪主观性) 5.成本(一台机器可承担好几人工作) 机器视觉系统构成: 光学:1.相机与镜头;2.光源; 过渡:3.传感器(判断被测对象位置及状态);4.图像采集卡(把相机图像传到电脑主机); 电学(计算机):5.PC平台;6.视觉处理软件;7.控制单元。 机器视觉系统一般工作过程:1.图像采集;2.图像处理;3.特征提取;4.判决和控制。 机器视觉系统的特点:1.非接触测量;2.具有较宽的光谱响应范围;3.连续性;4.成本较低;5.机器视觉易于实现信息集成;6.精度高;7.灵活性。 机器视觉应用领域两大类:科学研究和工业应用 科学研究主要对运动和变化的规律作分析; 工业方面主要是在线检测产品,机器视觉所能提供的标准检测功能主要有:有/无判断、

面积检测、方向检测、角度测量、尺寸测量、位置检测、数量检测、图形匹配、条形码识别、字符识别、颜色识别等。 二机器视觉系统的构成 相机的主要特性参数: 分辨率:衡量相机对物象中明暗细节的分辨能力。 最大帧率:相机采集传输图像的速率。 曝光方式和快门速度;o(* ̄) ̄*)o? 像素深度:每一个像素数据的位数。 固定图像噪声:不随像素点的空间坐标改变的噪声。 动态范围等 CCD相机和CMOS相机的区别: 1.设计:CCD是单一感光器,CMOS是感光器连接放大器。 2.灵敏度:同样面积下,CCD灵敏度高;CMOS由于感光开口小,灵敏度低。 3.成本:CCD线路品质影响程度高,成本高;CMOS由整合集成,成本低。 4.解析度:CCD连接复杂度低,解析度高;CMOS新技术解析度高。 5.噪点比:CCD信号单一放大,噪点低;CMOS百万放大(每个像素都有各自的 放大器),噪点高。 6.功耗比:CCD需外加电压,功耗高;CMOS直接放大,功耗低。

机器视觉教学大纲

《机器视觉》教学大纲 (一)课程基本信息 1. 课程代码:20136219 2. 课程名称(中文/英文):机器视觉 / Machine Vision 3. 课程类别:专业方向课 4. 课程学分:2.0 5. 课程学时:32学时(其中,授课学时:32学时) 6. 开课单位:信息科学与工程学院 7. 教学对象:电子信息工程、通信工程 (二)课程简介 “机器视觉”是电子信息工程、通信工程的专业方向课,是专业理论课信号与系统、数字信号处理在图像、视频处理领域偏重应用实践的课程。通过学习,使学生掌握机器视觉的基本方法,熟悉实际应用中使用较为广泛的视觉问题求解算法,了解机器视觉在各个领域的相关应用。 先修课程:线性代数,信号与系统,数字信号处理,C语言程序设计 (三)课程教学目标和能力要求 “机器视觉”课程以机器视觉的基本算法为基础,通过具体的视觉问题为例讲解机器视觉问题的一般求解方法。通过学习,使学生能使用图像空间滤波、频域变换、特征点检测、图像匹配与几何映射等机器视觉的基本方法,掌握简单机器视觉问题的求解方法。培养学生将文献转换为实际工程实现的能力,使学生能够将现有的方法转换成自己的工具。培养学生工程实践能力和创新能力。为毕业就业培养专业素养,提供技术准备。 (四)课程教学方法 根据学生特点和课程特点,采用理论教学结合实际问题分析的方法。课堂教学部分遵从分知识点循序渐进的原则,主要以启发式教学和实例教学法为主,激发学生的学习兴趣。课程设置针对性的课程项目,通过实际应用,提高学生的实践能力,加深学生对知识点的掌握。通过设置小组合作形式的课程设计,提高学生的团队协作能力。 (五)课程内容及教学安排 教学主题1:机器视觉导论(2 学时) [知识点]:机器视觉概念,视觉理论的发展,机器视觉与相关研究领域,机器视觉的应用 [重点]:掌握机器视觉的概念,理解计算视觉理论 [难点]:Marr的计算视觉理论

机器视觉之光源选择的基本知识

光源选择的基本知识 一个好的操作平台应该能够在最短的时间内处理图像,好的机器视觉软件应该能够很容易的在一系列的案例中应用,好的相机和镜头应该是拥有最小的畸变和足够的分辨率。但是,好的机器视觉照明应该有什么特点呢?在图像的分析处理中,光源的角色又是什么呢? 判断机器视觉的照明的好坏,首先必须了解什么是光源需要做到的!显然光源应该不仅仅是使检测部件能够被摄像头"看见"。有时候,一个完整的机器视觉系统无法支持工作,但是仅仅优化一下光源就可以使系统正常工作。 对比度:对比度对机器视觉来说非常重要。机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特征的区分。对比度定义为在特征与其周围的区域之间有足够的灰度量区别。好的照明应该能够保证需要检测的特征突出于其他背景。 亮度:当选择两种光源的时候,最佳的选择是选择更亮的那个。当光源不够亮时,可能有三种不好的情况会出现。第一,相机的信噪比不够;由于光源的亮度不够,图像的对比度必然不够,在图像上出现噪声的可能性也随即增大。其次,光源的亮度不够,必然要加大光圈,从而减小了景深。另外,当光源的亮度不够的时候,自然光等随机光对系统的影响会最大。 鲁棒性:另一个测试好光源的方法是看光源是否对部件的位置敏感度最小。当光源放置在摄像头视野的不同区域或不同角度时,结果图像应该不会随之变化。方向性很强的光源,增大了对高亮区域的镜面反射发生的可能性,这不利于后面的特征提取。在很多情况下,好的光源需要在实际工作中与其在实验室中的有相同的效果。

好的光源需要能够使你需要寻找的特征非常明显,除了是摄像头能够拍摄到部件外,好的光源应该能够产生最大的对比度、亮度足够且对部件的位置变化不敏感。光源选择好了,剩下来的工作就容易多了! 机器视觉应用关心的是反射光(除非使用背光)。物体表面的几何形状、光泽及颜色决定了光在物体表面如何反射。机器视觉应用的光源控制的诀窍归结到一点就是如何控制光源反射。如何能够控制好光源的反射,那么获得的图像就可以控制了。因此,在机器视觉应用中,当光源入射到给定物体表面的时候,明白光源最重要的方面就是要控制好光源及其反映。 光源可预测:当光源入射到物体表面的时候,光源的反映是可以预测的。光源可能被吸收或被反射。光可能被完全吸收(黑金属材料,表面难以照亮)或者被部分吸收(造成了颜色的变化及亮度的不同)。不被吸收的光就会被反射,入射光的角度等于反射光的角度,这个科学的定律大大简化了机器视觉光源,因为理想的想定的效果可以通过控制光源而实现。 物体表面:如果光源按照可预测的方式传播,那么又是什么原因使机器视觉的光源设计如此的棘手呢?使机器视觉照明复杂化的是物体表面的变化造成的。如果所有物体表面是相同的,在解决实际应用的时候就没有必要采用不同的光源技术了。但由于物体表面的不同,因此需要观察视野中的物体表面,并分析光源入射的反映。 控制反射:本文前面提到了,如果反射光可以控制,图像就可以控制了。这点再怎么强度也不为过。因此在涉及机器视觉应用的光源设计时,最重要的原则就是控制好哪里的光源反射到透镜及反射的程度。机器视觉的光源设计就是对反射的研究。在视觉应用中,当观测一个物体以决定需要什么样的光源的时候,首先需要问自己这样的问题:"我如何才能让物体显现?""我如何才能应用光源使必须的光反射到镜头中以获得物体外表?"

机器视觉引导与定位

机器视觉引导与定位 视觉引导与定位是工业机器人应用领域中广泛存在的问题。对于工作在自动化生产线上的工业机器人来说,其完成最多的一类操作是“抓取-放置”动作。为了完成这类操作,对被操作物体定位信息的获取是必要的,首先机器人必须知道物体被操作前的位姿,以保证机器人准确地抓取;其次是必须知道物体被操作后的目标位姿,以保证机器人准确地完成任务。在大部分的工业机器人应用场合,机器人只是按照固定的程序进行操作,物体的初始位姿和终止位姿是事先规定的,作业任务完成的质量由生产线的定位精度来保证。为了高质量作业,就要求生产线相对固定,定位精度高,这样的结果是生产柔性下降,成本却大大增加,此时生产线的柔性和产品质量是矛盾的。 视觉引导与定位是解决上述矛盾的理想工具。工业机器人可以通过视觉系统实时地了解工作环境的变化,相应调整动作,保证任务的正确完成。这种情况下,即使生产线的调整或定位有较大的误差也不会对机器人准确作业造成多大影响,视觉系统实际上提供了外部闭环控制机制,保证机器人自动补偿由于环境变化而产生的误差。 理想的视觉引导与定位应当是基于视觉伺服的。首先观察物体的大致方位,然后机械手一边运动一边观察机械手和物体之间的偏差,根据这个偏差调整机械手的运动方向,直到机械手和物体准确接触为止。但是这种定位方式在实现上存在诸多困难。 直接视觉引导与定位是一次性地对在机器人环境中物体的空间位姿进行详细描述,引导机器人直接地完成动作。与基于视觉伺服的方法相比,直接视觉引导的运算量大大减少,为实际应用创造了条件,但这必须基于一个前提:视觉系统能够在机器人空间中(基坐标系中)精确测定物体的三维位姿信息。 以上内容由深圳市科视创科技有限公司整理编辑,分享请注明出处

相关主题
文本预览
相关文档 最新文档