当前位置:文档之家› 实验四 插值问题离散数据的拟合

实验四 插值问题离散数据的拟合

实验四  插值问题离散数据的拟合
实验四  插值问题离散数据的拟合

计算方法

实验四插值问题

实验五离散数据的曲线拟合

班级:自动控制093班

宿舍:八公寓323宿舍

姓名:庄倩倩 200908801

胡瑞 200908803

刘银梅 200908809

李艳芳 200908812

丁春平 200908816

姚小娇 200908819

2011年6月14日

实验四插值问题

一、拉格朗日插值

实验程序:

function f=agui_lagrange(x0,y0,x)

n=length(x0);m=length(x);

format long

s=0.0;

for k=1:n

p=1.0;

for j=1:n

if j~=k

p=p*(x-x0(j))/(x0(k)-x0(j));

end

end

s=p*y0(k)+s;

end

f=s;

end

实验结果:

二、牛顿插值

实验程序:

function f =aguiNewton(x,y,x0) syms t;

if(length(x) == length(y))

n = length(x);

c(1:n) = 0.0;

else

disp('xoíyμ???êy2??àμè£?');

return;

end

f = y(1);

y1 = 0;

l = 1;

for(i=1:n-1)

for(j=i+1:n)

y1(j) = (y(j)-y(i))/(x(j)-x(i));

end

c(i) = y1(i+1);

l = l*(t-x(i));

f = f + c(i)*l;

simplify(f);

y = y1;

if(i==n-1)

if(nargin == 3)

f = subs(f,'t',x0);

else

f = collect(f);

f = vpa(f, 6);

end

end

end

实验结果:

实验五离散数据的曲线拟合

实验程序:

function f=agui_fit(x,y,m)

A=zeros(m+1,m+1);

for i=0:m

for j=0:m

A(i+1,j+1)=sum(x.^(i+j));

end

b(i+1)=sum(x.^i.*y);

end

c=A\b';

f=c';

实验结果:

插值与拟合实验报告

学生实验报告

了解插值与拟合的基本原理和方法;掌握用MATLAB计算插值与作最小二乘多项式拟合和曲线拟合的方法;通过范例展现求解实际问题的初步建模过程; 通过动手作实验学习如何用插值与拟合方法解决实际问题,提高探索和解决问题的能力。这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。 二、实验仪器、设备或软件:电脑,MATLAB软件 三、实验内容 1.编写插值方法的函数M文件; 2.用MATLAB中的函数作函数的拟合图形; 3.针对实际问题,试建立数学模型,并求解。 四、实验步骤 1.开启软件平台——MATLAB,开启MATLAB编辑窗口; 2.根据各种数值解法步骤编写M文件; 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.写出实验报告,并浅谈学习心得体会。 五、实验要求与任务 根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会)。 1.天文学家在1914年8月的7次观测中,测得地球与金星之间距离(单位:米),并取得常用对数值,与日期的一组历史数据如下表: 由此推断何时金星与地球的距离(米)的对数值为9.93518? 解:输入命令

days=[18 20 22 24 26 28 30]; distancelogs=[9.96177 9.95436 9.94681 9.93910 9.93122 9.92319 9.91499]; t1=interp1(distancelogs,days,9.93518) %线性插值 t2=interp1(distancelogs,days,9.93518,'nearest') %最近邻点插值 t3=interp1(distancelogs,days,9.93518,'spline') %三次样条插值 t4=interp1(distancelogs,days,9.93518,'cubic') %三次插值 计算结果: t1 = 24.9949 t2 = 24 t3 = 25.0000 t4 =

插值与数据拟合模型

第二讲 插值与数据拟合模型 函数插值与曲线拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。而面对一个实际问题,究竟用插值还是拟合,有时容易确定,有时则并不明显。 在数学建模过程中,常常需要确定一个变量依存于另一个或更多的变量的关系,即函数。但实际上确定函数的形式(线性形式、乘法形式、幂指形式或其它形式)时往往没有先验的依据。只能在收集的实际数据的基础上对若干合乎理论的形式进行试验,从中选择一个最能拟合有关数据,即最有可能反映实际问题的函数形式,这就是数据拟合问题。 一、插值方法简介 插值问题的提法是,已知1+n 个节点n j y x j j ,,2,1,0),,( =,其中j x 互不相同,不妨设b x x x a n =<<<= 10,求任一插值点)(*j x x ≠处的插值*y 。),(j j y x 可以看成是由某个函数)(x g y =产生的,g 的解析表达式可能十分复杂,或不存在封闭形式。也可以未知。 求解的基本思路是,构造一个相对简单的函数)(x f y =,使f 通过全部节点,即),,2,1,0()(n j y x f j j ==,再由)(x f 计算插值,即*)(*x f y =。 1.拉格朗日多项式插值 插值多项式 从理论和计算的角度看,多项式是最简单的函数,设)(x f 是n 次多项式,记作 0111)(a x a x a x a x L n n n n n ++++=-- (1) 对于节点),(j j y x 应有 n j y x L j j n ,,2,1,0,)( == (2) 为了确定插值多项式)(x L n 中的系数011,,,,a a a a n n -,将(1)代入(2),有 ???????=++++=++++=++++---n n n n n n n n n n n n n n n n y a x a x a x a y a x a x a x a y a x a x a x a 01110111110001010 (3) 记 T n T n n n n n n n n n n y y y Y a a a A x x x x x x X ),,,(,),,,(,11110011111 100 ==?????? ? ??=---- 方程组(3)简写成 Y XA = (4) 注意X det 是Vandermonde 行列式,利用行列式性质可得 ∏≤<≤-= n k j j k x x X 0)(det 因j x 互不相同,故0det ≠X ,于是方程(4)中A 有唯一解,即根据1+n 个节点可以确定唯一的n 次插值多项式。 拉格朗日插值多项式 实际上比较方便的做法不是解方程(4)求A ,而是先构造一组基函数: n i x x x x x x x x x x x x x x x x x l n i i i i i i n i i i ,,2,1,0,) ())(()()())(()()(110110 =--------=+-+- (5) )(x l i 是n 次多项式,满足

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告 一、 实验目的 1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性; 2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理; 3.利用matlab 编程,学会matlab 命令; 4.掌握拉格朗日插值法; 5.掌握多项式拟合的特点和方法。 二、 实验题目 1.、插值法实验 将区间[-5,5]10等分,对下列函数分别计算插值节点 k x 的值,进行不同类型 的插值,作出插值函数的图形并与)(x f y =的图形进行比较: ;11)(2x x f += ;a r c t a n )(x x f = .1)(42 x x x f += (1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值. 2、拟合实验 给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数 ),(i i y x 和拟合函数的图形。 三、 实验原理 1.、插值法实验

∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--= =-= ==-=-=----==++==j i j j i i i i i n i i n n j i j j n j i j j i i n j i j j n i i i n i i n n n o i n i i n x x x x x y x l x L x x c n i x x c x x x c x x x x x x x x c y x l x L y x l y x l y x l x L ,00 ,0,0,01100 00 )(l )()() (1 ,1,0, 1)()(l ) ()())(()()()()()()()(, 故, 得 再由,设 2、拟合实验

插值与拟合(使用插值还是拟合)

利用matlab实现插值与拟合实验 张体强1026222 张影 晁亚敏 [摘要]:在测绘学中,无论是图形处理,还是地形图处理等,大多离不开插值与拟合的应用,根据插值与拟合原理,构造出插值和拟合函数,理解其原理,并在matlab平台下,实现一维插值,二维插值运算,实现多项式拟合,非线性拟合等,并在此基础上,联系自己所学专业,分析其生活中特殊例子,提出问题,建立模型,编写程序,以至于深刻理解插值与拟合的作用。 [关键字]: 测绘学插值多项式拟合非线性拟合 [ Abstract]: in surveying and mapping, whether the graphics processing, or topographic map processing and so on, are inseparable from the interpolation and fitting application, according to the interpolation and fitting theory, construct the fitting and interpolation function, understanding its principle, and MATLAB platform, achieve one-dimensional interpolation, two-dimensional interpolation, polynomial fitting, non-linear fitting, and on this basis, to contact their studies, analysis of their living in a special example, put forward the question, modeling, programming, so that a deep understanding of interpolation and fitting function. [ Key words]: Surveying and mapping interpolation polynomial fitting nonlinear

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合 一、实验目的 1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性; 2. 编写MA TLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象; 3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理; 4. 编写MA TLAB 程序实现最小二乘多项式曲线拟合。 二、实验内容 1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。 2. 设 ]5,5[,11 )(2 -∈+= x x x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。 (2) 编写MA TLAB 程序绘制出曲线拟合图。 三、实验步骤 1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件: ?? ?≠===j i j i x l ij j i , 0,, 1)(δ 的一组基函数{}n i i x l 0)(=,l i (x )的表达式为 ∏ ≠==--= n i j j j i j i n i x x x x x l ,0),,1,0()( 有了基函数{}n i i x l 0)(=,n 次插值多项式就可表示为 ∑==n i i i n x l y x L 0 )()( (2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合 实际中,通常需要处理实验或测量得到的离散数据(点)。插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。 1.如果要求近似函数经过所已知的所有数据点,此时称为插值问 题(不需要函数表达式)。 2.如果不要求近似函数经过所有数据点,而是要求它能较好地反 映数据变化规律,称为数据拟合(必须有函数表达式)。 插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。【拟合】要求得到一个具体的近似函数的表达式。 因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值 根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值 Matlab 插值函数实现: (1)interp1( ) 一维插值 (2)intep2( ) 二维插值 (3)interp3( ) 三维插值 (4)intern( ) n维插值 1.一维插值(自变量是1维数据) 语法:yi = interp1(x0, y0, xi, ‘method’) 其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。 注:(1)要求x0是单调的,xi不超过x0的范围; (2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;

插值与拟合实验报告

一、给定函数y=sinx的函数表如下表,用拉格朗日插值求sin0.57891的近似 值 M文件: function yh=lagrange2(x0,y0,xh) n = length(x0); m = length(xh); yh=zeros(1,m); for k = 1:m for i = 1:n xp = x0([1:i-1 i+1:n]); yp = prod((xh(k)-xp)./(x0(i)-xp)); yh(k) = yh(k) + yp*y0(i); end end 执行:>> x0=[0.4,0.5,0.6,0.7] x0 = 0.4000 0.5000 0.6000 0.7000 >> y0=[0.38942,0.47943,0.56464,0.64422] y0 = 0.3894 0.4794 0.5646 0.6442 >> lagrange2(x0,y0,0.57891) 执行结果: ans = 0.5471

二、 1. 给定sin110.190809,sin120.207912,sin130.224951,o o o ===构造牛顿 插值函数计算'sin1130o 。 M 文件: function fp = newpoly(x,y,p) n = length(x); a(1) = y(1); for k = 1 : n - 1 d(k, 1) = (y(k+1) - y(k))/(x(k+1) - x(k)); end for j = 2 : n - 1 for k = 1 : n - j d(k, j) = (d(k+1, j - 1) - d(k, j - 1))/(x(k+j) - x(k)); end end d for j = 2 : n a(j) = d(1, j-1); end Df(1) = 1; c(1) = a(1); for j = 2 : n Df(j)=(p - x(j-1)) .* Df(j-1); c(j) = a(j) .* Df(j);

计算方法--插值法与拟合实验

实验三 插值法与拟合实验 一、实验目的 1. 通过本实验学会利用程序画出插值函数,并和原图形相比较 2. 通过本实验学会拟合函数图形的画法,并会求平方误差 二、实验题目 1. 插值效果的比较 实验题目:区间[]5,5-10等分,对下列函数分别计算插值节点k x 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较: 2 11)(x x f +=; x x f arctan )(=; 4 41)(x x x f += (1) 做拉格朗日插值; (2) 做三次样条插值. 2. 拟合多项式实验 实验题目:给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形. 三、实验原理 本实验应用了拉格朗日插值程序、三次样条插值程序、多项式拟合程序等实验原理. 四、实验内容 1(1) figure x=-5:0.2:5; y=1./(1+x.^2); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=1./(1+x1.^2); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25);

m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 1(2) x=-5:0.2:5; y=atan(x); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=atan(x1); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25); m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 1(3) x=-5:0.2:5; y=x.^2./(1+x.^4); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=x1.^2./(1+x1.^4); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25); m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 2. x=[-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5]'; y=[-4.45 -0.45 0.55 0.05 -0.44 0.54 4.55]'; plot(x,y,'or'); hold on %三次多项式拟合 p1=mafit(x,y,3);

数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

实验四 插值法与曲线拟合

计算方法实验报告 专业班级:医学信息工程一班姓名:陈小芳学号:201612203501002 实验成绩: 1.【实验题目】 插值法与曲线拟合 2.【实验目的】 3.【实验内容】 4. 【实验要求】

5. 【源程序(带注释)】 (1)拉格朗日插值 #include #include #include #include #include #define n 4 //插值节点的最大下标 main() { double x1[n+1]={0.4,0.55,0.65,0.8,0.9}; double y1[n+1]={0.4175,0.57815,0.69657,0.88811,1.02652}; double Lagrange(double x1[n+1],double y1[n+1],float t); int m,k;float x,y;float X;double z; printf("\n The number of the interpolation points is m ="); //输入插值点的个数 while(!scanf("%d",&m)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\n The number of the interpolation points is m ="); } for(k=1;k<=m;k++) { printf("\ninput X%d=",k); while(!scanf("%f",&X)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\ninput X%d=",k); } z=Lagrange(x1,y1,X); printf("P(%f)=%f\n",X,z); } getch(); return (0); } double Lagrange(double x[n+1],double y[n+1],float X) { int i,j;

数学实验-实验2 插值与拟合

广州大学学生实验报告 开课学院及实验室: 2014年 月 日 学院 数学与信息科学学院 年级、专业、班 姓名 学号 实验课程名称 数学实验 成绩 实验项目名称 实验2 插值与拟合 指导老师 一、实验目的 1、掌握用MATLAB 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。 2、掌握用MATLAB 作线性最小二乘拟合的方法。 3、通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。 二、实验设备 电脑、MATLAB 三、实验要求 1..选择一些函数,在n 个节点上(n )不要太大,如5~11)用拉格朗日,分段线性,三次样条三种插值方法,,计算m 各插值点的函数值(m 要适中,如50~100).通过数值和图形的输出,将三种插值结果与精确值进行比较.适当增加n ,再作比较,由此作初步分析.下列函数供选择参考: a. y=sin x ,0≦x ≦2π; 2.用 1 2 y x =在x=0,1,4,9,16产生5个节点15,...,P P .用不同的节点构造插值公式来计算x=5处的插值(如用 15,...,P P ;14,...,P P ;24,...,P P 等)与精确值比较进行分析。 5.对于实验1中的录像机计数器,自己实测一组数据(或利用给出的数据),确定模型2 t an bn =+中的系数a,b. 6.用电压V=10伏的电池给电容器充电,电容器上t 时刻的电压为 0()()t v t V V V e -τ =--,其中 0V 是电容器的初始 电压,τ是充电常数。试由下面一组t ,V 数据确定0V 和τ. t/s 0.5 1 2 3 4 5 7 9 V/V 6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63 8. 弹簧在力F 的作用下伸长x ,一定范围内服从胡克定律:F 与x 成正比,即F=kx,k 为弹性系数.现在得到下面一组x ,F 数据,并在(x,F )坐标下作图(图13).可以看出,当F大到一定数值(如x=9以后)后,就不服从这个定律了。试由数据拟合直线F=kx,并给出不服从胡克定律时的近似公式(曲线)。 1)要求直线与曲线在x=9处相连接。 2)要求直线与曲线在x=9处光滑连接. 四、实验程序 预备: function y=lagr1(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=s+p*y0(k); end y(i)=s; end 五、实验操作过程 当n=5时 clear; n=5; %在n 个节点上进行插值 m=75; %产生m 个插值点,计算函数在插值点处的精确值,将来进行对比 x=0:4/(m-1):2*pi; y=sin(x); z=0*x; x0=0:4/(n-1):2*pi; y0=sin(x0); y1=lagr1(x0,y0,x); % y1为拉格朗日插值 y2=interp1(x0,y0,x); % y2为分段线性插值 y3=spline(x0,y0,x); % y3为三次样条插值 [x' y' y1' y2' y3'] plot(x,z,'k',x,y,'r:',x,y1,'g-.',x,y2,'b',x,y3,'y--') gtext('Lagr.'), gtext('Pieces. linear'), gtext('Spline'), gtext('y=sin(x)') hold off; %比较插值所得结果与函数在插值点处的精确值 s = ' x y y1 y2 y3' [x' y' y1' y2' y3'] 结果 ans = 0 0 0 0 0 0.0541 0.0540 0.0495 0.0455 0.0611 0.1081 0.1079 0.0999 0.0910 0.1207 0.1622 0.1615 0.1510 0.1365 0.1787 0.2162 0.2145 0.2025 0.1819 0.2350 0.2703 0.2670 0.2541 0.2274 0.2896 0.3243 0.3187 0.3054 0.2729 0.3425 0.3784 0.3694 0.3563 0.3184 0.3936 0.4324 0.4191 0.4066 0.3639 0.4429 0.4865 0.4675 0.4559 0.4094 0.4904 0.5405 0.5146 0.5040 0.4548 0.5359 0.5946 0.5602 0.5508 0.5003 0.5796 0.6486 0.6041 0.5961 0.5458 0.6212 0.7027 0.6463 0.6396 0.5913 0.6609 0.7568 0.6866 0.6812 0.6368 0.6985 0.8108 0.7248 0.7208 0.6823 0.7341 0.8649 0.7610 0.7583 0.7278 0.7675

用多项式模型进行数据拟合实验报告(附代码)

实验题目: 用多项式模型进行数据拟合实验 1 实验目的 本实验使用多项式模型对数据进行拟合,目的在于: (1)掌握数据拟合的基本原理,学会使用数学的方法来判定数据拟合的情况; (2)掌握最小二乘法的基本原理及计算方法; (3)熟悉使用matlab 进行算法的实现。 2 实验步骤 2.1 算法原理 所谓拟合是指寻找一条平滑的曲线,最不失真地去表现测量数据。反过来说,对测量 的实验数据,要对其进行公式化处理,用计算方法构造函数来近似表达数据的函数关系。由于函数构造方法的不同,有许多的逼近方法,工程中常用最小平方逼近(最小二乘法理论)来实现曲线的拟合。 最小二乘拟合利用已知的数据得出一条直线或曲线,使之在坐标系上与已知数据之间的距离的平方和最小。模型主要有:1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型等,根据应用情况,选用不同的拟合模型。其中多项式型拟合模型应用比较广泛。 给定一组测量数据()i i y x ,,其中m i ,,3,2,1,0Λ=,共m+1个数据点,取多项式P (x ),使得 min )]([020 2=-=∑∑==m i i i m i i y x p r ,则称函数P (x )为拟合函数或最小二乘解,此时,令 ∑==n k k k n x a x p 0 )(,使得min ])([02 002=??? ? ??-=-=∑∑∑===m i n k i k i k m i i i n y x a y x p I ,其中 n a a a a ,,,,210Λ为待求的未知数,n 为多项式的最高次幂,由此该问题化为求),,,(210n a a a a I I Λ=的极值问题。 由多元函数求极值的必要条件:0)(200 =-=??∑∑==m i j i n k i k i k i x y x a a I ,其中n j ,,2,1,0Λ= 得到: ∑∑∑===+=n k m i i j i k m i k j i y x a x )(,其中n j ,,2,1,0Λ=,这是一个关于n a a a a ,,,,210Λ的线 性方程组,用矩阵表示如下所示:

matlab 软件拟合与插值运算实验报告

实验6 数据拟合&插值 一.实验目的 学会MATLAB软件中软件拟合与插值运算的方法。 二.实验内容与要求 在生产和科学实验中,自变量x与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。 根据测量数据的类型有如下两种处理观测数据的方法。 (1)测量值是准确的,没有误差,一般用插值。 (2)测量值与真实值有误差,一般用曲线拟合。 MATLAB中提供了众多的数据处理命令,有插值命令,拟合命令。 1.曲线拟合 >> x=[0.5,1.0,1.5,2.0,2.5,3.0]; >> y=[1.75,2.45,3.81,4.80,7.00,8.60]; >> p=polyfit (x,y,2); >> x1=0.5:0.05:3.0; >> y1=polyval(p,x1 ); >> plot(x,y,'*r',x1,y1,'-b')

2.一维插值 >> year=[1900,1910,1920,1930,1940,1990,2000,2010]; >> product = [75.995,91.972,105.711,123.203,131.669,249.633,256.344,267.893 ]; >> p2005=interp1(year,product,2005) p2005 = 262.1185 >> y= interp1(year,product,x, 'cubic'); >> plot(year,product,'o',x,y)

MATLAB插值与拟合实验报告材料

实用标准文档 CENTRAL SOUTH UN I VERS ITY MATLAB实验报告 题目:第二次实验报告 学生姓名: 学院:_____________________________ 专业班级:

学号: 年月 MATLAB第二次实验报告 ------- 插值与拟合插值即在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn}

通过调整该函数中若干待定系数f(入1,疋,…,血),使得该函数与已知点集的差别(最小二乘意义)最小 一、插值 <1>拉格朗日插值(课上例子) m=101; x=-5:10/(m-1):5; y=1./(1+x92);z=0*x; plot(x,z,'r',x,y,'Li neWidth',1.5), gtext('y=1/(1+x A2)'),pause n=3; x0=-5:10/( n-1):5; y0=1./(1+x0.A2); y1=fLagra nge(xO,yO,x); hold on ,plot(x,y1,'b'),gtext(' n=2'),pause, hold off n=5; x0=-5:10/( n-1):5;

y0=1./(1+x0.A2); y2=fLagra nge(xO,yO,x); hold on ,plot(x,y2,'b:'),gtext(' n=4'),pause, hold off n=7; x0=-5:10/( n-1):5; y0=1./(1+x0.A2); y3=fLagra nge(xO,yO,x);hold on, plot(x,y3,'r'),gtext(' n=6'),pause, hold off n=9; x0=-5:10/( n-1):5; y0=1./(1+x0.A2); y4=fLagra nge(xO,yO,x);hold on, plot(x,y4,'r:'),gtext(' n=8'),pause, hold off n=11; x0=-5:10/( n-1):5; y0=1./(1+x0.A2); y5=fLagra nge(xO,yO,x);hold on,

数值计算插值法与拟合实验

实验报告三 一、实验目的 通过本实验的学习,各种插值法的效果,如多项式插值法,牛顿插值法,样条插值法,最小二乘法拟合(即拟合插值),了解它们各自的优缺点及插值。 二、实验题目 1、 插值效果比较 实验题目:将区间[]5,5-10等份,对下列函数分别计算插值节点k x 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较: 211)(x x f +=;x x f arctan )(=;4 2 1)(x x x f +=。 (1) 做拉格朗日插值; (2) 做三次样条插值。 2、 拟合多项式实验 实验题目:给定数据点如下表所示: i x -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 i y -4.45 -0.45 0.55 0.05 -0.44 0.54 4.55 分别对上述数据做三次多项式和五次多项式拟合,并求平方误差,作出离散函数()i i y x ,和拟合函数的图形。 三、实验原理 n 阶拉格朗日插值 设已知n x x x ,,,10 及()()()x L n i x f y n i i ,,,1,0 ==为不超过n 次的多项式,且满足 插值条件()().,,1,0n i y x L i i n ==由对()x L 2的构造经验,可设 ()()()()(),11000 n n n i i i n y x l y x l y x l y x l x L +++==∑= 其中,()()n i x L i ,,1,0 =均为n 次多项式且满足() .,,1,0,, ,0, ,1n j i j i j i x l j i =?? ?≠==不难验 证,这样构造出的()x L n 满足插值条件。因此问题归结为求()()n i x l i ,,1,0 =的表达式。因 ()i j x i ≠是n 次多项式()x l i 的n 个根,故可设

最小二乘拟合实验报告

南昌工程学院 《计算方法》实验报告 课 程 名 称 计算方法 系 院 理 学 院 专 业 信息与计算科学 班 级 12级一班 学 生 姓 名 魏志辉 学 号 16 《最小二乘求解》 1 引言 在科学实验和生产实践中,经常要从一组实验数据(,)(1,2,,)i i x y i m L 出发,寻求函数y=f (x )的一个近似表达式y=φ(x),称为经验公式,从几何上来看,这就是一个曲线拟合的问题。 多项式的插值虽然在一定程度上解决了由函数表求函数近似表达式的问题,但用它来解决这里的问题,是有明显的缺陷的。首先,由实验提供的数据往往有测试误差。如果要求近似曲线y=φ(x)严格地通过所给的每个数据点(,)i i x y ,就会使曲线保留原来的测试误差,因

此当个别数据的误差较大的时候,插值的效果是不理想的。其次,当实验数据较多时,用插值法得到的近似表达式,明显缺乏实用价值。在实验中,我们常常用最小二乘法来解决这类问题。 定义()i i i x y δ?=-为拟合函数在i x 处的残差。为了是近似曲线能尽量反映所给数据点的变化趋势,我们要求||i δ尽可能小。在最小二乘法中,我们选取()x ?,使得偏差平方和最小,即 2 2 1 1 [()]min m m i i i i i x y δ?=== -=∑∑,这就是最小二乘法的原理。 2 实验目的和要求 运用matlab 编写.m 文件,要求用最小二乘法确定参数。 以下一组数据中x 与y 之间存在着bx y ae =的关系,利用最小二乘法确定式中的参数a 和b ,并计算相应的军方误差与最大偏差。数据如下: 3 算法原理与流程图 (1) 原理 最小二乘是要求对于给定数据列(,)(1,2,,)i i x y i m =L ,要求存在某个函数类 01{(),(),()}()n x x x n m ???Φ=

MATLAB插值与拟合实验报告

实验报告MATLAB 第二次实验报告题目:学生姓名:学院:专业班级:学号:

年月 MATLAB第二次实验报告 ————插值与拟合 插值即在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn}通过调整该函数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。 一、插值 <1>拉格朗日插值(课上例子) m=101; x=-5:10/(m-1):5; y=1./(1+x.^2);z=0*x; plot(x,z,'r',x,y,'LineWidth',1.5), gtext('y=1/(1+x^2)'),pause n=3; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y1=fLagrange(x0,y0,x); hold on,plot(x,y1,'b'),gtext('n=2'),pause, hold off n=5; x0=-5:10/(n-1):5; y0=1./(1+x0.^2);

y2=fLagrange(x0,y0,x); hold on,plot(x,y2,'b:'),gtext('n=4'),pause, hold off n=7; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y3=fLagrange(x0,y0,x);hold on, plot(x,y3,'r'),gtext('n=6'),pause, hold off n=9; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y4=fLagrange(x0,y0,x);hold on, plot(x,y4,'r:'),gtext('n=8'),pause, hold off n=11; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y5=fLagrange(x0,y0,x);hold on, plot(x,y5,'m'),gtext('n=10') 运行后得. <2>拉格朗日插值(课下修改) yh=lagrange (x,y,xh)function n = length(x);m = length(xh);yh = zeros(1,m); c1 = ones(n-1,1);c2 = ones(1,m); i=1:n for xp = x([1:i-1 i+1:n]); yh = yh + y(i)*prod((c1*xh-xp'*c2)./(x(i)-xp'*c2));end输入x=[1 2 3 4 5 6] y=[13 21 34 6 108 217] xh=3.2 lagrange(x,y,xh) 运行后得 x = 1 2 3 4 5 6

插值法与数据拟合法

第七讲插值方法与数据拟合 § 7.1 引言 在工程和科学实验中,常常需要从一组实验观测数据(x i , y i ) (i= 1, 2, …, n) 揭示自变量x与因变量y 之间的关系,一般可以用一个近似的函数关系式y = f (x) 来表示。函数f (x) 的产生办法因观测数据与要求的不同而异,通常可采用两种方法:插值与数据拟合。 § 7.1.1 插值方法 1.引例1 已经测得在北纬32.3?海洋不同深度处的温度如下表: 根据这些数据,我们希望能合理地估计出其它深度(如500米、600米、1000米…)处的水温。 解决这个问题,可以通过构造一个与给定数据相适应的函数来解决,这是一个被称为插值的问题。 2.插值问题的基本提法 对于给定的函数表 其中f (x) 在区间[a, b] 上连续,x0,x1,…,x n为[a, b] 上n + 1个互不相同的点,要求在一个性质优良、便于计算的函数类{P(x)} 中,选出一个使 P(x i ) = y i,i= 0, 1, …, n(7.1.1) 成立的函数P(x) 作为 f (x) 的近似,这就是最基本的插值问题(见图7.1.1)。 为便于叙述,通常称区间[a, b] 为插值区间,称点x0,x1,…,x n为插值节点,称函数类{P(x)} 为插值函数类,称式(7.1.1) 为插值条件,称函数P(x) 为插值函数,称f (x) 为被插函数。求插值函数P(x) 的方法称为插值法。 § 7.1.2 数据拟合 1.引例2 在某化学反应中,已知生成物的浓度与时间有关。今测得一组数据如下: 根据这些数据,我们希望寻找一个y = f (t) 的近似表达式(如建立浓度y与时间t之间的经验公式等)。从几何上看,就是希望根据给定的一组点(1, 4.00),…,(16, 10.60),求函数y = f (t) 的图象的一条拟合曲

相关主题
文本预览
相关文档 最新文档