当前位置:文档之家› 手动开平方和开立方的方法

手动开平方和开立方的方法

手动开平方和开立方的方法
手动开平方和开立方的方法

手动开平方

从右到左,每两位隔开。

其他内容简单,自己看看就知道了。

手动开立方

从右到左,每三位隔开。

其他的看图上说明。

解一元二次方程(直接开方法-配方法)练习题100+道

解一元二次方程练习题(配方法) 1.用适当的数填空: ①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2 2.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 4.把方程x 2+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 5.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D .6.用配方法解下列方程: (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2 -x-4=0 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662 =--y y 2、x x 4232 =- 3、9642=-x x 4、01322=-+x x 5、07232=-+x x 6、01842 =+--x x 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232 =- 3、9642=-x x 2 2 2

自然数平方和公式的推导与证明

※自然数之和公式的推导 法计算1,2,3,…,n,…的前n项的和: 由 1 + 2 + … + n-1 + n n + n-1 + … + 2 + 1 (n+1)+(n+1)+ … +(n+1)+(n+1) 可知 上面这种加法叫“倒序相加法” ※等差数列求和公式的推导 一般地,称为数列的前n项的和,用表示,即 1、思考:受高斯的启示,我们这里可以用什么方法去求和呢? 思考后知道,也可以用“倒序相加法”进行求和。 我们用两种方法表示: ① ② 由①+②,得

由此得到等差数列的前n项和的公式 对于这个公式,我们知道:只要知道等差数列首项、尾项和项数就可以求等差数列前n项和了。 2、除此之外,等差数列还有其他方法(读基础教好学生要介绍) 当然,对于等差数列求和公式的推导,也可以有其他的推导途径。例如: = = = = 这两个公式是可以相互转化的。把代入中,就可以得到 引导学生思考这两个公式的结构特征得到:第一个公式反映了等差数列的任意的第k项与倒数第k项的和等于首项与末项的和这个内在性质。第二个公式反映了等差数列的前n项和与它的首项、公差之间的关系,而且是关于n的“二次 函数”,可以与二次函数进行比较。这两个公式的共同点都是知道和n,不同 点是第一个公式还需知道,而第二个公式是要知道d,解题时还需要根据已知条件决定选用哪个公式。

自然数平方和公式的推导与证明(一) 12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。 一、设:S=12+22+32+…+n2 =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题另设:S 1 的关键,一般人不会这么去设想。有了此步设题, 第一:S =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S,1 (n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即 =2S+n3+2n(1+2+3+...+n).. (1) S 1 =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为: 第二:S 1 =12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中: S 1 22+42+62...+(2n)2=22(12+22+32+...+n2)=4S.. (2) 12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2 = (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2 =22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n =22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n =4S-4(1+2+3+…+n)+n……………………………………………………………..(3 ) 由(2)+ (3)得: =8S-4(1+2+3+...+n)+n.. (4) S 1 由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n 即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n = n[n2+n(1+n)+2(1+n)-1] = n(2n2+3n+1)

前n个自然数的平方和及证明

帕斯卡与前n 个自然数的平方和 十七世纪的法国数学家帕斯卡(Pascal B.,1623.6.19~1662.8.19)想出了一个新的很妙的方法能求出前n 个自然数的平方和。这个方法是这样的: 利用和的立方公式,我们有 (n +1)3=n 3+3n 2+3n +1, 移项可得 (n +1)3 -n 3=3n 2+3n +1, 此式对于任何自然数n 都成立。 依次把n =1,2,3,…,n -1,n 代入上式可得 23 -13=3?12+3?1+1, 33 -23=3?22+3?2+1, 43 -33=3?32+3?3+1, …………………………… n 3-(n -1)3=3(n -1)2+3(n -1)+1, (n +1)3 -n 3=3n 2+3n +1, 把这n 个等式的左边与右边对应相加,则n 个等式的左边各项两两相消,最后只剩下(n +1)3 - 1;而n 个等式的右边各项,我们把它们按三列相加,提取公因数后,第一列出现我们所要计算的前n 个自然数的平方和,第二列出现我们在上一段已经算过的前n 个自然数的和,第三列是n 个1。因而我们得到 (n +1)3 -1=3S n + 2)1(3+n n +n , 现在这里S n =12+22+…+n 2。 对这个结果进行恒等变形可得 n 3+3n 2+3n =3S n + 2)1(3+n n +n , 2n 3+6n 2+6n =6S n +3n 2+3n +2n 移项、合并同类项可得 6S n =2n 3+3n 2+n =n (n +1)(2n +1), ∴S n = 61n (n +1)(2n +1), 即 12+22+32+…+n 2=6 1n (n +1)(2n +1)。 这个方法把所要计算的前n 个自然数的平方和与已知的前n 个自然数的和及其它一些已知量通过一个方程联系起来,然后解方程求出所希望得到的公式,确实是很妙的。

平方和立方和公式推导

数学][转载]自然数平方和公式推导及其应用 (2009-07-29 12:13:14) 转载▼ 标 分类:游戏数学 签: 杂 谈 12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。 设:S=12+22+32+…+n2 另设:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题的关键,一般人不会这么去设想。有了此步设题,第一: S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S, (n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即 S1=2S+n3+2n(1+2+3+...+n).. (1) 第二:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为: S1=12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中: 22+42+62...+(2n)2=22(12+22+32+...+n2)=4S.. (2) 12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2 = (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2 =22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n =22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n =4S-4(1+2+3+...+n)+n.. (3) 由(2)+ (3)得:S1=8S-4(1+2+3+...+n)+n.. (4) 由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n 即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n

自然数平方和公式推导

我们把S(n)拆成数字排成的直角三角形: 1 2 2 3 3 3 4 4 4 4 …… n n …… n 这个三角形第一行数字的和为12,第二行数字和为22,……第n行数字和为n2,因此S(n)可以看作这个三角形里所有数字的和 接下来我们注意到三角形列上的数字,左起第一列是1,2,3,……,n,第二列是2,3,4,……n 这些列的数字和可以用等差数列的前n项和来算出,但是它们共性不明显,无法加以利用 如果求的数字和是1,2,3,……,n,1,2,3,……,n-1这样的,便可以像求 1+(1+2)+(1+2+3)+(1+2+3+……n)一样算出结果,那么该怎样构造出这样的列数字呢 注意上面那个直角三角三角形空缺的部分,将它补全成一个正方形的话,是这样的: 1 1 1 (1) 2 2 2 (2) 3 3 3 (3) 4 4 4 (4) …… n n n …… n 这个正方形所有的数字和为n*(1+n)*n/2=n3/2+n2/2 而我们补上的数字是哪些呢? 1 1 1 …… 1 (n-1)个的1 2 2 …… 2 (n-2)个的2 3 …… 3 (n-3)个的3 ……… n-1 又一个直角三角形,我们只需算出这个三角形的数字和T(n),再用刚才算的正方形数字和减去它,便能得到要求的S(n),即S(n)=n3/2+n2/2-T(n)。而这个三角形的每一列数字和很好算,第一列是1,第二列是1+2,第三列是1+2+3,……,

最后一列(第n-1列)是1+2+3+……+n-1,根据等差数列前n项和公式,这个三角形第n列的数字和是(1+n)*n/2=n2/2+n/2,所以T(n)相当于 (12/2+1/2)+(22/2+2/2)+(32/2+3/2)……+[(n-1)2/2+(n-1)/2] 将各个扩号内的第一项和第二项分别相加,得 T(n)=[12+22+32+……+(n-1)2]/2+(1+2+3+……+n-1)/2 =S(n-1)/2+(n-1)*n/4 =S(n-1)/2+n2/4-n/4 也就是说,S(n)=n3/2+n2/2-T(n) =n3/2+n2/2-S(n-1)-n2/4+n/4 =n3/2+n2/4+n/4-S(n-1)/2 ……① 因为S(n)=12+22+32+……+n2,S(n-1)=12+22+32+……+(n-1)2 可以看出,S(n)=S(n-1)+n2,即S(n-1)=S(n)-n2,代入①式,得到 S(n)=n3/2+n2/4+n/4-S(n)/2+n2/2 3S(n)/2=n3/2+3n2/4+n/4 3S(n)=n3+3n2/2+n/2 S(n)=n3/3+3n2/6+n/6 上面这个式子就是我们熟悉的S(n)=n(n+1)(2n+1)/6 另外一种经典的方法

解一元二次方程 直接开方法、配方法、公式法的计算

直接开方法与配方法 一 直接开方法 形如()()02 ≥=-b b a x 的方程,可用直接开平方法,求得方程的根为:()0≥±=b b a x 。 例3.解方程: (1)()512=-x (2)()162812 =-x (3)()()22322+=-x x (4)01532 =+x 4.一般的一元二次方程,可用配方法求解。其步骤是: ①化二次项系数为1,并把常数项移项到方程的另一侧,即把方程化为q px x -=+2的形式; ②方程两边都加上22??? ??p ,把方程化为44222q p p x -=??? ? ?+; ③当042≥-q p 时,利用开平方法求解。 1.把下列各式配成完全平方式 (1)()22__________-=+-x x a b x (2) ()22____25____-=+-x x x (2)()22___________3 2+=++x x x 10.关于x 的方程()2222b ab a a x ++=-的根是 。 11.把方程0562=+-x x 化成()k m x =+2 的形式,则m =_______,k =_________。 例4.用配方法解下列方程: (1)0542=--x x (2)01322 =-+x x (3)01842=+--x x (4)0222=-+n mx x

练习 3.方程052=x 的解是( ) A .有一个解x =0 B .有两个解x 1=x 2=0 C .有一个解51= x D . 以上都不对 4.方程()()02>=-q q p x 的根是( ) A .q p x ±= B .q p x ±-= C .q p x ±±= D .)(q p x ±±= 5.用配方法解方程01322=++ x x ,正确的解法是( ) A .3223198312±-==??? ??+x x , B .98312-=??? ? ?+x ,原方程无实数根。 C .35295322±-==??? ??+x x , D .95322 -=??? ? ?+x ,原方程无实数根。 9.方程()()22132+=-x x 的解是 。 2.用配方法解下列方程时,配方错误的是( ) A .08022=--x x ,化为()8112=-x B .0352 =--x x ,化为437252=??? ??-x C .0982 =++t t ,化为()2542=+t D .02432=-+t t ,化为910322=??? ??+t 3.将二次三项式6422+-x x 进行配方,正确的结果是( ) A .()4122--x B .()4122+-x C .()2222--x D .()2222 +-x 16.用配方法解下列方程: (1) 01722=++x x (2)()00222>=--m m mx x (3)012=--x x (4)02932=+-x x

平方和与立方和公式推导

1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3 =2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3 =2*(2^2+3^2+...+n^2)+[1^2+2^2+... +(n-1)^2]-(2+3+4+...+n) n^3-1 =2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+... +(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1 =3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2 =(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+ ...+n^2)+4*(1+2+3+...+n)+n 4*(1^3+2^3+3^3+...+n^3) =(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3 =2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3 =2*(2^2+3^2+...+n^2)+[1^2+2^2+... +(n-1)^2]-(2+3+4+...+n) n^3-1 =2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+... +(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1 =3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2 =(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+ ...+n^2)+4*(1+2+3+...+n)+n 4*(1^3+2^3+3^3+...+n^3) =(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2

手动开平方方法(最新方案)

手动开平方方法(最新方案) 虽然现在开方可以直接用符号表示,但考试中如果出一道开方让你写数值的题目怎么办呢?在最新的数学研究中,有一种最新的开平方法。 如有下题: 1522756=() 开方步骤如下: (一)分位 把一个平方数分为几段。 1.从最低位(个位)开始。 2.每两个数为一位。 3.最高位可以是一位数。 1522756分为:1|52|27|56 分位后,1522756被分为了4段,开方结果为四位数(这里是完全平方数,没有小数)(二)开方 开方运算和除法类似,每运算1次都有一个递减过程。运算时也是从高位至低位。 如1|52|27|56先算1,再算52…… 格式如下: 平方根 52 | |1 56 | 27 运算过程 和除法类似,平方根写在横线上面,运算过程写在下面。 平方定义,12=1 所以如下: 1 52 | |1 56 | 27 1 ——————— 5 2 这第一步与除法佷像,但是是一次落2位,也就是1段。 下面的运算就与除法有些差别了,这是计算中非常麻烦的部分。 这一步骤叫:造数 首先,将已开出的平方根部分×2,得到1×2=2 然后,我们须要假设下一个我们要开出的平方根是A,A的范围是0~9中任何一个自然数。下面就需要我们去试一试了,我们要在0~9中找出一个数作为A的值,前提是:要使前面一步算出的2与A合为一个新数,就是以A为个位,2为十位,合成2A(注意:这里不指2和A相乘,如果A=6,那么这个数为26),并且2A×A最接近而不超过前面落下的52。下一步就是试数,经试验A=2合适,也就得到22×2=44。 这一步的44就是结果了,下一位平方根为A,也就是2,得到:

解一元二次方程(直接开方法-配方法)练习题100+道

解一元二次方程(直接开方法-配方法)练习题100+道 解一元二次方程练习题(配方法) 1.用适当的数填空: ①、x2+6x+ =(x+ )2;②、x2-5x+ =(x-)2; ③、x2+ x+ =(x+ )2;④、x2-9x+ =(x-)2 2.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b 的形式为_______,?所以方 程的根为_________. 3.若x2+6x+m2是一个完全平方式,则m的值是() A.3 B.-3 C.±3 D.以上都不对4.把方程x2+3=4x配方,得 () A.(x-2)2=7 B.(x+2) 2=21 C.(x-2)2=1 D.(x+2)2=2 5.用配方法解方程x2+4x=10 的根为() A.210B.-2 ±14C.-2+10 D.10 6.用配方法解下列方程: (2)x2+8x=9 (3)x2+12x-15=0 (4) 4 1 x2-x-4=0 7.用直接开平方法解下列一 元二次方程。 1、0 1 42= - x 2、2 )3 (2= - x 3、()5 12= - x 4、()16 2 812= - x 8.用配方法解下列一元二次 方程。 1、.0 6 6 2= - -y y 2、x x4 2 32= - 3、96 4 2= -x x 4、0 1 3 22= - +x x 5、0 7 2 32= - +x x 6、0 1 8 42= + - -x x 7.用直接开平方法解下列一 元二次方程。 1、0 1 42= - x2、 2 )3 (2= - x3、 ()5 12= - x4、 ()16 2 812= - x 8.用配方法解下列一元二次 方程。 1、.0 6 6 2= - -y y 2、x x4 2 32= - 3、96 4 2= -x x 4、0 1 3 22= - +x x 5、0 7 2 32= - +x x

三角函数公式的推导及公式大全

诱导公式 目录2诱导公式 2诱导公式记忆口诀 2同角三角函数基本关系 2同角三角函数关系六角形记忆法 2两角和差公式 2倍角公式 2半角公式 2万能公式 2万能公式推导 2三倍角公式 2三倍角公式推导 2三倍角公式联想记忆 2和差化积公式 2积化和差公式 2和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k2π/2±α(k∈z)的个三角函数值,

求连续自然数平方和的公式 精品

求连续自然数平方和的公式 前面,在“求连续自然数立方和的公式”一中,介绍了用列表法推导公式的过程。这种方法浅显易懂,有它突出的优越性。在“有趣的图形数”一文中,也曾经用图形法推出过求连续自然数平方和的公式: 12+22+32…+n 2=6 ) 12)(1(++n n n 这里用列表法再来推导一下这个公式,进一步体会列表法的优点。 首先,算出从1开始的一些连续自然数的和与平方和,列出下表: n 1 2 3 4 5 6 …… 1+2+3+…+n 1 3 6 10 15 21 …… 12+22+32+…+n 2 1 5 14 30 55 91 …… 然后,以连续自然数的平方和为分子,连续自然数的和为分母,构成分数 A n =n n ++++++++ 3213212 222, 再根据表中的数据,算出分数A n 的值,列出下表: n 1 2 3 4 5 6 …… A n 1 35 37 3 311 313 …… 观察发现,A n 的通项公式是3 1 2+n 。 既然A n =n n ++++++++ 3213212 222,而它的通项公式是312+n ,于是大胆猜想 n n ++++++++ 3213212 222=312+n 。 因为分母1+2+3+…+n =2 ) 1(+n n , 所以 2)1(3212222+++++n n n =31 2+n 。 由此得到 12+22+32…+n 2= 2)1(+n n ×312+n =6 ) 12)(1(++n n n 。 即 12+22+32…+n 2= 6 ) 12)(1(++n n n 。

用数学归纳法很容易证明等式的正确性,这样就轻而易举地推出了求连续自然数平方和的公式。 这个妙不可言的推导过程是数学家波利亚的杰作,关键之处是他运用了“猜想—证明”的思路。联想到当年著名文学家胡适也曾经有过“大胆假设,小心求证”的名言。看来,无论数学也好,文学也好,追求真理的道路是相通的。 这件事对我们教师有什么启示吗?有,那就是:切莫轻视了对学生观察、类比和猜想能力的培养,这往往是培育创新思维的有效途径。

一元二次方程直接开平方和配方法

一元二次方程的解法 直接开平方法和配方法解一元二次方程 一、选择题 1. 解方程2 3270x +=,得该方程的根是( ) A .3x =± B .3x = C .3x =- D .无实数根 2. 用配方法解下列方程时,配方有错误的是( ) A .2 2990x x --=化为2 (1)100x -= B .2 2740t t --=化为2 781 416t ??-= ??? C .2890x x ++=化为2 (4)25x += D .23420x x --=化为2 21039x ??-= ?? ? 3. 用配方法解下列方程时,配方错误的是( ) A .2 2350x x +-=化为2 (1)36x += B .2 740y y --=化为2765 ()24y -= C .2890x x ++=化为2 (4)25x += D .23420x x --=化为2210()39 x -= 4. 用配方法解方程2 2103 x x ++=,正确解法是( ) A .21839x ??+= ???,133x =-±. B .2 1839x ? ?+=- ???,原方程无实数根. C .2 2539x ??+= ???,x =. D .2 2539x ? ?+=- ?? ?,原方程无实数根. 5. 用配方法解下列方程时,配方错误的是( ) A .2 2800x x --=,化为2 (1)81x -=. B .2 530x x --=,化为2 53724x ? ?-= ??? . C .2890t t ++=,化为2 (4)25t +=. D .23420t t +-=,化为2 21039t ??+= ??? . 6. 用配方法将二次三项式2 45a a ++变形,结果是( ) A .2 (2)1a -+ B .2 (2)1a ++ C .2 (2)1a -- D .2 (2)1a +-

2017最新立方公式推导

前n个自然数的和: 1+2+...+n=n(n+1)/2 前n个自然数平方和:前n个自然数的和: 1+2+...+n=n(n+1)/2 前n个自然数平方和: n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ......

n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n) n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+ ...+n) n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 (n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+ n 4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]

解一元二次方程(配方法-直接开方法)练习题

% 解一元二次方程练习题(配方法) 1.用适当的数填空: ①、x 2 +6x+ =(x+ )2 ; ②、x 2 -5x+ =(x - )2 ; ③、x 2 + x+ =(x+ )2 ; ④、x 2 -9x+ =(x - )2 2.将一元二次方程x 2 -2x-4=0用配方法化成(x+a )2 =b 的形式为_______,?所以方程的根为_________. 3.若x 2 +6x+m 2 是一个完全平方式,则m 的值是( ) : A .3 B .-3 C .±3 D .以上都不对 4.把方程x 2 +3=4x 配方,得( ) A .(x-2)2 =7 B .(x+2)2 =21 C .(x-2)2 =1 D .(x+2)2 =2 5.用配方法解方程x 2 +4x=10的根为( ) A .2 .-2 . . 6.用配方法解下列方程: (2)x 2+8x=9 (3)x 2 +12x-15=0 (4)4 1 x 2 -x-4=0 】 解一元二次方程练习题(配方法) 1.用适当的数填空: ①、x 2 +6x+ =(x+ )2 ; : ②、x 2 -5x+ =(x - )2 ; ③、x 2 + x+ =(x+ )2 ; ④、x 2 -9x+ =(x - )2 2.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2 =b 的形式为_______,?所以方程的根为_________. 3.若x 2 +6x+m 2 是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 4.把方程x 2 +3=4x 配方,得( ) A .(x-2)2 =7 B .(x+2)2 =21 C .(x-2)2 =1 D .(x+2)2 =2 ~

直接开方法

学员第阶段数学科目第次个性化教案授课时间教师姓名备课时间学员年级初二课题名称直接开方法 学员教学需求分析 一元二次方程是中考的必考内容,希望通过本节课让学员熟练掌握一元二次方程的四种解法中的直接开方法。 学生学习特 点分析 中等生 教学目标 教学内容直接开方法 个性化学习问题解 决 认识形如x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c为常数)类型的方程,并会用直接开平方法解 教学重点直接开方法 教学难点认清具有(ax+b)2=c(a≠0,c≥0,a,b,c为常数)这样结构特点的一元二次方程适用于直接开平方法. 教学疑点一元二次方程可能有两个不相等的实数解,也可能有两个相等的实数解,也可能无实数解.如:(ax+b)2=c(a≠0,a,b,c常数),当c>0时,有两个不等的实数解,c=0时,有两个相等的实数解,c<0时无实数解. 教学过程 教师活动 学生 活动教学过程: 1.复习提问 (1)什么叫整式方程?举两例,一元一次方程及一元二次方程的异同? (2)平方根的概念及开平方运算? 2.引例:解方程x2-4=0. 解:移项,得x2=4. 两边开平方,得x=±2. ∴ x 1 =2,x 2 =-2. 分析 x2=4,一个数x的平方等于4,这个数x叫做4的平方根(或二 次方根);据平方根的性质,一个正数有两个平方根,它们互为相反数;所 以这个数x为±2.求一个数平方根的运算叫做开平方.由此引出上例解一 元二次方程的方法叫做直接开平方法.使学生体会到直接开平方法的实质是 求一个数平方根的运算.

习题:2225x = 3.例1 解方程9x 2-16=0. 解:移项,得:9x 2=16, 此例题是在引例的基础上将二次项系数由1变为9,由此增加将二次项系数变为1的步骤.此题解法教师板书,学生回答,再次强化解题 负根. 例2 解方程(x +3)2=2. 分析:把x +3看成一个整体y . 例2把引例中的x 变为x+3,反之就应把例2中的x+3看成一个整体, 两边同时开平方,将二次方程转化为两个一次方程,便求得方程的两个解.可以说:利用平方根的概念,通过两边开平方,达到降次的目的,化未知为已知,体现一种转化的思想. 习题 2 (1) 9x -=

平方和的计算方法

1×1+2×2+3×3+……+n×n=n(n+1)(2n+1)/6 来历是:用完全立方公式和等差数列求和公式推导 因为: (n+1)3=n3+3n2+3n+1 在这个等式中,让依次取从1开始的n个连续的自然数,就得到n个相对应的等式, 23=13+3×12+3×1+1 33=23+3×22+3×2+1 43=33+3×32+3×3+1 ……………… (n+1) 3=n3+3n2+3n+1 将这个等式中等号两边的式子分别加起来,划去等号两边相同的数,就得到, (n+1) 3=1+3(12+22+32+……+n2)+3(1+2+3+……+n)+n 第二个括号内的和就是一个等差数列,和为n(1+n)÷2,于是 (n+1) 3=1+3(12+22+32+……+n2)+3n(n+1)÷2+n 所以, 3(12+22+32+……+n2)= (n+1) 3-3n(n+1)÷2-(n+1) =n3+3n2+3n+1-3n2/2-3n/2-n-1 =n3+3/2n2+n/2 所以, 12+22+32+……+n2=1/3(n3+3n2/2+n/2) =n(n+1)(2n+1)/6 前n个自然数的和: 1+2+...+n=n(n+1)/2 前n个自然数平方和: n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)

解一元二次方程(直接开方法配方法)试题100+道

解一元二次方程(直接开方法配方法)试题100+道

————————————————————————————————作者:————————————————————————————————日期: 2

3 解一元二次方程练习题(配方法) 1.用适当的数填空: ①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2 2.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 4.把方程x 2+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 5.用配方法解方程x 2+4x=10的根为( ) A .2±10 B .-2± 14 C .-2+10 D .2-10 6.用配方法解下列方程: (2)x 2+8x=9 (3)x 2+12x-15=0 (4) 41 x 2-x-4=0 7.用直接开平方法解下列一元二次方程。 1、0142=-x 2、2)3(2=-x 3、()512=-x 4、()162812=-x 8.用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 3、9642=-x x 4、01322=-+x x 5、07232=-+x x 6、01842=+--x x 7.用直接开平方法解下列一元二次方程。 1、0142=-x 2、2)3(2=-x 3、()512=-x 4、()162812=-x 8.用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 3、9642=-x x 4、01322=-+x x 5、07232=-+x x 6、01842=+--x x

自然数的平方和公式的推导方法总结

自然数的平方和公式的推导方法总结 自然数的平方和就是2222123n ++++ ()n N *∈,它的结果是1(1)(21)6 n n n ++。对于这一结论的推导,方法多种多样,现将我所知道的方法一一总结如下,与大家共享。 方法一:设数列{}n a ,其中22212n a n =+++ ,则 {}n a 的一阶差数列记为1 {}n a ,其中121(1)n n n a a a n +=-=+,首项为114a =; {}n a 的二阶差数列记为2{}n a ,其中 21 1221(2)(1)n n n a a a n n +=-=+-+,首项为215a =; {}n a 的三阶差数列记为3{}n a ,其中 3221(25)(23)2n n n a a a n n +=-=+-+=,首项为312a =; 于是我们可知数列{}n a 为三阶等差数列。于是我们应用下面方法求可求出数列{}n a 的通项。 22222222121321()()()n n n a a a a a a a a -=+-+-++- =5+333121n a a a -+++ =5+2+2+……+2=1125n C -+(2)n ≥ 亦知当1n =时亦有21125n n a C -=+, 故有21*125,n n a C n N -=+∈ 1 1111111121321()()()n n n a a a a a a a a -=+-+-++- =4+222121n a a a -+++ =111110122142()5n n C C C C C --++++++ =2111254n n C C --++(2)n ≥ 亦知当1n =时亦有12111254n n n a C C --=++。 故有1 2111254,*n n n a C C n N --=++∈ 121321()()()n n n a a a a a a a a -=+-+-++- =1+111121n a a a -+++

相关主题
文本预览
相关文档 最新文档