当前位置:文档之家› InSb纳米晶体的生长和吸收光谱的研究

InSb纳米晶体的生长和吸收光谱的研究

InSb纳米晶体的生长和吸收光谱的研究
InSb纳米晶体的生长和吸收光谱的研究

InSb纳米晶体的生长和吸收光谱的研究

何焰蓝;孙全

【摘要】采用在惰性气体中蒸发的方法获得了沉积在ZnS基片上的InSb纳米晶体,其平均尺寸随惰性气体的压强增加而增大.从实验测量的室温吸收谱上看到,当纳米晶体的平均直径从27.9 nm减小到24.2 nm再到21.4 nm时,其吸收边分别向高能方向移动了0.0151 eV和0.0145 eV.用有效质量近似模型计算了半导体纳米晶体的吸收边相对其体材料的移动,将理论计算与实验结果进行了比较.

【期刊名称】《原子与分子物理学报》

【年(卷),期】2007(024)001

【总页数】4页(P119-122)

【关键词】InSb纳米晶体;吸收光谱;量子尺寸效应

【作者】何焰蓝;孙全

【作者单位】国防科学技术大学理学院,长沙,410073;国防科学技术大学理学院,长沙,410073

【正文语种】中文

【中图分类】其他

第 24 卷第 1 期2007 年 2 月原子与分子物理学报JOURNAL OFATOMICAND MOLECULAR PHYSICS Vol.24 No.1Feb.2007文章编号:1000-0364(2007)01-0119-04 InSb纳米晶体的生长和吸收光谱的研究何焰蓝,孙全 (国防科学技术大学理学院,长沙 410073)摘要:采用在惰性气体

晶体生长的机理

第五章 一、什么是成核相变、基本条件 成核相变:在亚稳相中形成小体积新相的相变过程。 条件:1、热力学条件:ΔG=G S-G L<0;ΔT>0。2、结构条件:能量起伏、结构起伏、浓度起伏、扩散→短程规则排列(大小不等,存在时间短,时聚时散,与固相有相似结构,之间有共享原子)→晶坯→晶胞。 相变驱动力:f=-Δg/ΩS;Δg每个原子由流体相转变成晶体相所引起的自由能降低;ΩS单个原子的体积。 气相生长体系:(T0 P0)→(T0 P1),Δg=-kT0σ,σ=α-1= P1/ P0;溶液生长体系:(C0 T0 P0)→(C1 T0 P0),Δg=-kT0σ,σ=α-1= C1/ C0;熔体生长体系:Δg=-l mΔT/T m,l m单个原子的相变潜热。 二、均匀成核、非均匀成核 不含结晶物质时的成核为一次成核,包括均匀成核(自发产生,不是靠外来的质点或基底诱发)和非均匀成核。 三、均匀成核的临界晶核半径与临界晶核型成功 临界晶核:成核过程中,能稳定存在并继续长大的最小尺寸晶核。 ΔG=ΔG V+ΔG S,球形核ΔG=-4πr3Δg/ΩS+4πr2γSL→r C=2γSLΩS/Δg,r0,且随着r的增加,ΔG不断增大,r>r C时,ΔG<0,且随着r的增加,ΔG减小,r=r C时,往两边都有ΔG<0,称r C为临界半径。 临界晶核型成功:ΔG C(r C)=A CγSL/3由能量起伏提供。 熔体生长体系:r C=2γSLΩS T m/l m ΔT;ΔG C(r C)=16πγ3SLΩ2S T2m/3l2m(ΔT)2 四、非均匀成核(体系中各处成核几率不相等的成核过程) 表面张力与接触角的关系:σLB = σSB + σLS cosθ ΔG*(r)= (-4πr3Δg/ΩS+4πr2σSL)·f(θ);r*C=2γSLΩS/Δg;ΔG*C(r*C)=ΔG C(r C) ·f(θ)

纳米材料学

1. 团簇:一般指由几~几百个原子的聚集体系,尺寸≤1nm.其结构多样化,呈线状,网状,层状,洋葱状,骨架状…… 2. 人造原子:是指包含一定数量的真正原子的量子点,准一维的量子棒,准二维的量子盘以及~100nm 的量子器件 3. 同轴纳米电缆: 4. 介孔固体: 5. 介孔复合体: 6. 纳米结构: 7. 自组织合成和分子自组织合成: 8. 阵列体系的模板合成: 9. 纳米碳管及其分类:是由碳原子组成的Φ:几~几十nm,长约几十nm~μm 的管子,侧边为六边型,顶端为五边型封顶.有单壁碳管和多壁碳管,多壁管还分为单臂,锯齿形和手性. 10. 光吸收带蓝移和红移:与大块材料相比,纳米微粒的吸收带移向短波方向,是由于尺寸下降,能隙变宽;还有由于纳米微粒颗粒小,大的表面张力使晶格畸变,晶格常数变小.红移可能是由于粒子表面形成的偶极层的库仑作用引起的红移大于粒子尺寸的量子限域效应引起的蓝移,还可能是表面形成束缚激子导致发光. 11. 超顺磁性:铁磁纳米微粒尺寸小到一定临界值,就不再服从居里-外斯定律,呈顺磁性. 12. 磁性液体(结成和特点) 13. 沉淀法和共沉淀法:包含一种或多种离子的可溶性盐溶液,当加入沉淀剂后,或于一定温度下使溶液水解,形成不溶性氢氧化物或盐类从溶液中析出,并将溶液中原有的阴离子洗去,经热分解即得到所需的氧化物粉料. 含多种阳离子的溶液中加入沉淀剂后,所有离子完全沉淀的方法称共沉淀法,分为单相共沉淀和混合物共沉淀. 14. 均相沉淀法:通过控制溶液中的沉淀剂浓度,使之缓慢地增加,则使溶液中的沉淀处于平衡状态,且沉淀能在整个溶液中均匀出现,这种方法称为均相沉淀. 15. 金属醇盐水解法:利用一些金属有机醇盐能溶于有机溶剂并可能发生水解,生成氢氧化物或氧化物沉淀的特性,制备细粉料的一种方法. 16. 纳米微粒的尺寸,结构和形貌特征:1~100nm;一般呈球型,还有其他与制备方法密切相关的其他形状;结构一般与大颗粒相同,但颗粒内部,特别是表面层晶格畸变,有时会出现与大颗粒差别很大的情况. 17. 什么是久保理论?它的基本点是什么?该理论的优缺点是什么?是关于金属粒子电子性质的理论,将超微粒子靠近费米面附近的电子状态看作是受尺寸限制的简并电子气,并进一步假设它们的能级为准粒子态的不连续能级,且忽略相互作用,得到的电子能级分布优于等能级间隔模型;还认为从超微粒子中取走或放入一个电子都是困难的,超微粒子是电中性的.久保理论解释了超微粒子在EPR,磁化率,比热等方面的量子尺寸效应,但对外界条件以及自旋-轨道相互作用对电子能级分布的影响没有考虑. 18. 量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象均称为量子尺寸效应. 小尺寸效应:当超细微粒的尺寸与光波波长,德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致的声,光,电磁,热力学的新特性. 表面效应:纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例,使得表面原子具有高的活性,极不稳定,很容易与其他原子结合. 宏观量子隧道效应:一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦具有贯穿势垒的能力,称为宏观量子隧道效应. 库仑堵塞与量子隧穿: 介电限域效应:当粒子的尺度下降到可与激子的玻尔半径相比拟时,屏蔽效应被减小,而颗粒间的库仑作用得到增强,导致ε增加,激子束缚能增加等效应. 19. 纳米微粒的基本热学特征:纳米微粒的熔点,开始烧结温度和晶化温度均比常规粉体低很多.由于颗粒小,纳米微粒的表面能高,比表面原子数多,这些表面原子近邻配位不全,活性大以及体积远小于大块材料,因此纳米粒子熔化所需增加的内能小得多,熔点急剧下降.纳米微粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利与界面中的孔洞收缩,因此在较低温度下烧结就能达到致密化的目的. 20. 纳米微粒超顺磁性,高矫顽力,低T C 产生的原因:超顺磁性的起源:由于小尺寸下,当各向异性能减小到与热运动能可相比拟时,磁化方向就不再固定在一个易磁化方向,易磁化方向作无规律变化,结果导致超顺磁性的出现.纳米微粒尺寸高于超顺磁临界尺寸时呈现的高矫顽力,有一致转动模式和球链反转磁化模式.一致转动磁化:每个粒子就是一个单磁畴,要使这个磁铁去掉磁性,需要每个粒子整体的磁矩反转,这需要很大的反向磁场.由于小尺寸效应和表面效应而导致纳米粒子的本征和内禀的磁性变化,因此具有较低的居里温度. 21. 纳米材料往往呈现出常规粗晶不具有的发光现象,原因是什么?常规粗晶的结构存在平移对称性,由平移对称性产生的选择定则禁介使得它不能发光.当小到一定程度时,平移对称性消失.载流子的量子限域效应. 22. 如何分散纳米粒子?(1)加入反絮凝剂形成双电层.即选择恰当的电解质做分散剂,使纳米粒子表面吸引异电离子形成双电层,通过双电层之间库排斥作用使粒子之间发生团聚的引力大大降低,实现纳米微粒分散的目的.(2)加表(界)面活性剂包裹颗粒.使其吸附在粒子表面,形成微胞状态,由于活性剂的存在而产生了粒子间的排斥力,使得粒子间不能接触,从而防止团聚体的产生. 23. 低压气体中蒸发法的基本原理是什么?影响纳米粒子尺寸的因素是什么?是在低压的氩,氦等惰性气体中加热金属,使其蒸发后形成超微粒(1~1000nm)或纳米微粒.加热源又以下几种:电阻加热法;等粒子喷射法;高频感应法;电子束法;极光法. 可通过调节惰性气体压力,蒸发物质的分压即蒸发温度或速率,或惰性气体的温度来控制纳米微粒的尺寸. 24. 溅射法制备纳米微粒的基本原理:用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar 气(40~250Pa),两电极间施加的电压范围为0.3~1.5kV .由于两电极间的辉光放电使Ar 离子形成,在电场的作用下Ar 离子冲击阴极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来.粒子的大小及尺寸分布主要取决于两电极间的电压,电流和气体压力. 25. 水热法制备纳米微粒方法的基本点:水热反应是高温高压下在水(水溶液)或蒸汽等流体中进行有关化学反应的总称.水热氧化;水热沉淀;水热合成;水热还原;水热分解;水热结晶. 26. 溶胶-凝胶法制备纳米粒子的基本原理与过程:基本原理是将金属醇盐或无机盐经水解,然后使溶质聚合凝胶化,再将凝胶干燥,焙烧,最后得到无机材料.过程包括:(1)溶胶的制备:一使先将部分或全部组分用适当沉淀剂先沉淀出来,经解凝,使原来团聚的沉淀颗粒分散称原始颗粒;另一种方法使由同样的盐溶液出发,通过对沉淀过程的仔细控制,使首先形成的颗粒不致团聚为大颗粒而沉淀,从而直接得到胶体凝胶.(2)溶胶-凝胶转化:溶胶中含有的大量的水,凝胶化过程中,体系失去流动性,形成一种开放的骨架结构.途径有二:一是化学法,通过控制溶胶中的电解质浓度来实现凝胶化;二是物理法,迫使胶颗粒间相互靠近,克服斥力,实现凝胶化.(3)凝胶干燥:一定条件下(如加热)使溶剂蒸发,得到粉料,干燥过程中凝胶结构变化很大. 27. 常用的评估纳米粒子直径的方法有哪些?测量原理及运用的范围.(1)透射电镜观察法:用此方法测得的颗粒粒径,不一定是一次颗粒,往往是由更小的晶体或非晶,准晶微粒构成的纳米级微粒.这是因为在制备电镜观察用的样品时,很难使它们全部分散成一次颗粒.(2)X 射线衍射线宽法:是测定微粒晶粒度的最好方法.晶粒度<100nm.(3)比表面积法:通过测定粉体单位重量的比表面积S w ,假设颗粒呈球形,则颗粒直径w S d ρ/6=.容量法:测定已知量的气体在吸附前后的体积差,进而得到气体的吸附量;重量法:直接测定固体吸附前后的重量差,计算吸附气体的量.(4)X 射线小角散射法:假定粉体粒子为均匀形状,大小,利用X 射线衍射中倒易点阵原点(000)结点附近的相干散射现象,计算求出粒度分布和平均尺寸.颗粒约几~几十nm.(5)Raman 散射法:通过测量Raman 谱中某一晶峰在纳米晶体和常规晶体中的偏移来得到纳米晶粒的平均粒径. 28. 纳米固体基本构成及分类:基本构成十纳米微粒以及它们之间的分界面(界面).按小颗粒结构状态可分为纳米晶体,纳米微晶,纳米准晶材料;按小颗粒键的形式可分为纳米金属,纳米离子晶体,纳米半导体,纳米陶瓷材料;由单相微粒构成的固体称为纳米相材料,每个纳米微粒本身由两相构成(一种相弥散于另一种相中)的成为纳米复相材料.纳米复合材料大致包括三种类型:一是0-0复合,即不同成分,不同相或者不同种类的纳米粒子复合而成的纳米固体;二是0-3复合,即把纳米粒子分散到常规的三维固体中;三是0-2复合,即把纳米粒子分散到二维薄膜材料中,又分均匀弥散和非均匀弥散. 29. 为什么纳米固体具有高比热,高热膨胀系数?体系的比热主要由熵贡献,在温度不太低的情况下,电子熵可以忽略,体系熵主要由振动熵和组态熵贡献.纳米结构材料的界面结构原子分布比较混乱,界面体积百分比大,因而纳米材料熵丢比热的贡献比常规粗晶材料大的多.固体的热膨胀与晶格非线形振动有关.纳米晶体在温度发生变化时,非线形热振动可分为两个部分,一时晶内的非线形热振动,二时晶界组分的非线形热振动,往往后者的非线形振动更为显著,可以说占体积百分数很大的界面对纳米晶热膨胀的贡献起主导作用. 30. 为什么纳米相材料在较宽的温度范围内具有好的热稳定性,而金属易长大?简述提高纳米相材料热稳定性的方法.因为金属纳米晶体晶粒生长激活能小,在热激活下,相对与纳米相材料晶粒易于长大,故热稳定温区较窄.提高热稳定性(1)降低界面迁移的驱动力.如果没有驱动力,则正向和反相运动的几率是相同的;在驱动力下使势垒产生不对称的偏移,就显示晶界的迁移.界面能量高及界面两侧相邻两晶粒的差别大有利于晶界迁移.纳米材料晶粒为等轴晶,粒径均匀,分布窄,保持纳米材料各向同性就会大大降低界面迁移的驱动力.(2)晶界结构弛豫.高能的晶界并不一定首先引起晶界迁移.晶界结构弛豫所需要的能量小于

单晶硅生长技术的研究与发展

单晶硅生长技术的研究与发展 摘要:综述了单晶硅生长技术的研究现状。对改良热场技术、磁场直拉技术、真空高阻技术以及氧浓度的控制等技术进行了论述。 关键词:单晶硅;真空高阻;磁场;氧含量;氮掺杂 一、前言 影响国家未来在高新技术和能源领域实力的战略资源。作为一种功能材料,其性能应该是各向异性的,因此半导体硅大都应该制备成硅单晶,并加工成抛光片,方可制造IC器件,超过98%的电子元件都足使用硅单晶”引。生产单晶硅的原料主要包括:半导体单晶硅碎片,半导体单晶硅切割剩余的头尾料、边皮料等。目前,单晶硅的生长技术主要有直拉法(CZ)和悬浮区熔法(FZ)。在单晶硅的制备过程中还可根据需要进行掺杂,以控制材料的电阻率,掺杂元素一般为Ⅲ或V主族元素.生长制备后的单晶硅棒还需经过切片、打磨、腐蚀、抛光等工序深加工后方可制成用作半导体材料的单晶硅片。随着单晶硅生长及加工处理技术的进步,单晶硅正朝着大直径化(300ram以上)、低的杂质及缺陷含晕、更均匀的分布以及生产成本低、效率高的方向发展。 二、单晶硅的生长原理 在单晶硅生长过程中,随着熔场温度的下降,将发生由液态转变到固态的相变化。对于发生在等温、等压条件下的相变化,不同相之间的相对稳定性可由吉布斯自由能判定。AG可以视为结晶驱动力。 △G=△H—TAS (1) 在平衡的熔化温度瓦时,固液两相的自由能是相等的,即AG=0,因此 △G=AH一瓦X AS---O (2) 所以,AS=AH/T= (3) 其中,AH即为结晶潜热。将式(3)代入式(1)可得 (4) 由式(4)可以看出,由于AS是一个负值常数,所以△兀即过冷度)可被视为结晶的唯一驱动力。 以典型的CZ长晶法为例,加热器的作用在于提供系统热量,以使熔硅维持在高于熔点的温度。如果在液面浸入一品种,在品种与熔硅达到热平衡时,液面会靠着表面张力的支撑吸附在晶种下方。若此时将晶种往上提升,这些被吸附的液体也会跟着晶种往上运动,而形成过冷状态。这节过冷的液体由于过冷度产生的驱动力而结晶,并随着晶种方向长成单晶棒。在凝固结晶过程中,所释放出的潜热是一个间接的热量来源,潜热将借着传导作用而沿着晶棒传输。同时,晶棒表面也会借着热辐射与热对流将热量散失到外围,另外熔场表面也会将热量散失掉。于是,在一个固定的条件下,进入系统的热能将等于系统输出的热能陟。 三、硅单晶生长方法 1直拉(CZ)法 直拉法的生产过程简单来说就是利用旋转的籽晶从熔硅中提拉制备单晶硅。此法产量大、成本低,国内外大多数太阳能单晶硅片厂家多采用这种技术。目前,直拉法生产工艺的研究热点主要有:先进的热场构造、磁场直拉法以及对单晶硅中氧浓度的控制等方面。 (1)先进的热场构造 在现代下游IC产业对硅片品质依赖度日益增加的情况下,热场的设计要求越来越高。好的

晶体生长方法

晶体生长方法 一、提拉法 晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 二、热交换法

热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。 三、坩埚下降法 坩埚下降法又称为布里奇曼-斯托克巴格法,是从熔体中生长晶体的一种方法。通常坩埚在结晶炉中下降,通过温度梯度较大的区域时,熔体在坩埚中,自下而上结晶为整块晶体。这个过程也可用结晶炉沿着坩埚上升方式完成。与提拉法比较该方法可采用全封闭或半封闭的坩埚,成分容易控制;由于该法生长的晶体留在坩埚中,因而适于生长大块晶体,也可以一炉同时生长几块晶体。另外由于工艺条件

浅析磁场在晶体生长中的应用研究进展

浅析磁场在晶体生长中的应用研究进展 摘要:本文首先介绍了磁场对晶体生长影响的两种机制和磁场的类型,然后分析了磁场在蛋白质晶体生长中的应用和磁场在氧化物晶体生长中的应用,最后探讨了磁场在半导体晶体生长中的应用。 关键词:磁场;晶体生长;应用 从熔体中生长晶体,由于对流,尤其是湍流的存在而产生宏观及微观的生长条纹,影响到晶体的物理及化学性质的均匀性。克服对流的方法主要有微重力环境和磁场,而前者的实验费用昂贵,实验次数少,可用于基础性的研究,大规模的商业应用在目前来说是不现实的。 磁场用于抑制晶体生长中的湍流以减少条纹的方法是在1966年由Utech和Fleming及Chedzey和Hurlel分别独立提出的,然而这一发现却未能引起人们的重视。70年代末,人们发现磁场对Si单晶生长中引入晶体的氧浓度影响很大。由于氧浓度对Si基半导体器件的性能影响很大,才开始大规模研究磁场对晶体生长行为的影响。 1磁场对晶体生长影响的两种机制 磁场影响晶体生长的机制有两种:Lorentz力与熔体中对流的互作用和对生长物质的磁化。前一种机制是对熔融态导电的物质而言的。磁场条件下熔体的流动必然引起感应电流的存在,而磁场又对这种感应电流有LorentZ力的作用,因此可以抑制熔体中的对流。如果用B、E、V分别表示磁场强度、感生电动势和熔体流速,那么熔体中的感生电动势E为:E=-B×V 熔体中的感生电动势是非均匀的,因此有电流J存在,这样抑制熔体运动的力F为:F=J×B 另外一种机制则是对于非导电的物质,如蛋白质而言。它们在磁场作用下分子受到磁化,其受到的力 其中x为该物质的磁化率,H为磁场强度,V为物质体积。 2磁场的类型 目前,磁场在晶体生长中的应用一般分为两大类:稳恒磁场和非稳恒磁场。其中稳恒磁场又可分为横向(水平)磁场、垂直(轴向、纵向)磁场、会切(勾形)磁场;非稳恒磁场又分为旋转磁场、行波磁场、交变磁场和电磁场。 3磁场在蛋白质晶体生长中的应用

单晶制备方法综述

单晶材料的制备方法综述 前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。单晶整个晶格是连续的,具有重要的工业应用。因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。本文主要对单晶材料制备的几种常见的方法进行介绍和总结。 单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。 一、从熔体中生长单晶体 从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。二者速率的差异在10-1000倍。从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。 1、焰熔法[2] 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(V erneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳也法。 1.1 基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。 1.2 合成装置和过程: 维尔纳叶法合成装置

振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。此方法主要用于制备宝石等晶体。 2、提拉法[2] 提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。 2.1、提拉法的基本原理 提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。 2.2、合成装置和过程 提拉法装置 首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。 在提拉法制备单晶时,还有几种重要的技术:(1)、晶体直径的自动控制技术:上称重和下称重;(2)、液封提拉技术,用于制备易挥发的物质;(3)、导模技术。

ZnO单晶生长技术的研究进展

Z nO单晶生长技术的研究进展 祝振奇周建刘桂珍任志国 摘要:ZnO是近期材料领域的研究热点之一,其性能优异,有望成为下一代光电子材料。因此,对ZnO单晶的研究具有重要的理论意义和应用价值。目前生长ZnO单晶的方法有助熔剂法、水热法、气相法、熔体法,但单晶的尺寸和质量都有待提高。本文从晶体生长理论和工艺出发,对4种方法进行了全面的对比和分析,预测了ZnO体单晶的生长的研究方向。 关键词:氧化锌;晶体生长;单晶 近年来,基于紫外激光器的实现, ZnO已成为半导体材料领域的研究热点之一。相比SiC, GaN等其他宽带隙材料而言,其资源丰富、价格低廉、稳定性好。ZnO单晶是一种具有半导体、发光、压电、电光、闪烁等性能的多功能晶体,即将成为下一代光电子材料,具有相当广阔的应用前景[1]。不仅如此,为了更好地研究氧化锌的半导体性能,也必须合成高质量的氧化锌体单晶。但是,由于其熔点高达1975℃,在高温下(1400℃以上)升华现象严重[2],还具有强烈的极性析晶特性,所以该晶体生长极为困难。早在20世纪60年代,人们就开始关注ZnO单晶的生长,尽管尝试了很多种生长工艺,但所得晶体尺寸都很小,一般在毫米量级,没有实用价值。鉴于体单晶生长存在很大的困难,人们逐渐把注意力转向于ZnO薄膜的生长研究,曾一度冷落了对体单晶生长工艺的探索。最近,随着GaN, SiC等新型光电材料产业的迅速发展,对高质量、大尺寸的ZnO单晶基片的需求也越来越大, ZnO体单晶的生长研究才重新引起科学家的重视。本文从晶体生长理论和工艺出发,对4种方法进行了全面的对比和分析,预测了ZnO体单晶的生长的研究方向。 1ZnO晶体生长研究进展与分析 目前生长氧化锌体单晶的方法主要有助熔剂法、水热法、气相法、熔体法。 1. 1助熔剂法 助熔剂法是利用助熔剂使晶体形成温度较低的饱和熔体,通过缓慢冷却或在恒定温度下通过蒸发熔剂,使熔体过饱和而结晶的方法。该方法的优点是: (1)适用性很强,几乎所有的材料都能找 到合适的助熔剂; (2)生长的温度低,特别适合高熔点晶体的生长。该方法的缺点有: (1)由于生长机制的原因,要避免晶体生长中不出现助熔剂的包裹体,生长必须比熔体生长慢得多的速度下进

关于培养晶体一些理论

1 对于分子量比较大的物质(比如说普通配体),一般用极性相 差较大的,比如三氯甲烷和乙醇;对于分子量较大的如杯芳烃,一般用极性相差较小的,比如三氯甲烷和甲苯 2 选择的比例一般是惰性溶剂:良性溶剂=2:1 晶体是在物相转变的情况下形成的。物相有三种,即气相、液相和固相。只有晶体才是真正的固体。由气相、液相转变成固相时形成晶体,固相之间也可以直接产生转变。 晶体生成的一般过程是先生成晶核,而后再逐渐长大。一般认为晶体从液相或气相中的生长有三个阶段:①介质达到过饱和、过冷却阶段; ②成核阶段;②生长阶段。 在某种介质体系中,过饱和、过冷却状态的出现,并不意味着整个体系的同时结晶。体系内各处首先出现瞬时的微细结晶粒子。这时由于温度或浓度的局部变化,外部撞击,或一些杂质粒子的影响,都会导致体系中出现局部过饱和度、过冷却度较高的区域,使结晶粒子的大小达到临界值以上。这种形成结晶微粒子的作用称之为成核作用介质体系内的质点同时进入不稳定状态形成新相,称为均匀成核作 用。在体系内的某些局部小区首先形成新相的核,称为不均匀成核作用。均匀成核是指在一个体系内,各处的成核几宰相等,这要克服相当大的表面能位垒,即需要相当大的过冷却度才能成核。非

均匀成核过程是由于体系中已经存在某种不均匀性,例如悬浮的杂质微粒,容器壁上凹凸不平等,它们都有效地降低了表面能成核时的位垒,优先在这些具有不均匀性的地点形成晶核。因之在过冷却度很小时亦能局部地成核在单位时间内,单位体积中所形成的核的数目称成核速度。它决定于物质的过饱和度或过冷却度。过饱和度和过冷却度越高,成核速度越大。成核速度还与介质的粘度有关,轮度大会阻碍物质的扩散,降低成核速度晶核形成后,将进一步成长。下面介绍关于晶体生长的两种主要的理论。 一、层生长理论 科塞尔(Kossel,1927)首先提出,后经斯特兰斯基(Stranski)加以发展的晶体的层生长理论亦称为科塞尔—斯特兰斯基理论。 它是论述在晶核的光滑表面上生长一层原子面时,质点在界面上进入晶格"座位"的最佳位臵是具有三面凹入角的位臵。质点在此位臵上与晶核结合成键放出的能量最大。因为每一个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位臵是能量上最有利的位臵,即结合成键时应该是成键数目最多,释放出能量最大的位臵。质点在生长中的晶体表面上所可能有的各种生长位臵: k为曲折面,具有三面凹人角,是最有利的生长位臵;其次是S阶梯面,具有二面凹入角的位臵;最不利的生长位臵是A。由此可以得出如下的结论即晶体在理想情况下生长时,先长一条行列,然后长相邻的行列。在长满一层面网后,再开始长第二层面网。晶面(最外的

纳米材料导论期末复习重点

名词解释: 1、纳米:纳米是长度单位,10-9米,10埃。 2、纳米材料:指三维空间中至少有一维处于纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。 3、原子团簇:由几个乃至上千个原子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体(原子团簇尺寸一般小于20nm)。 4、纳米技术:指在纳米尺寸范围内,通过操纵单个原子、分子来组装和创造具有特定功能的新物质。 5、布朗运动:悬浮微粒不停地做无规则运动的现象。 6、均匀沉淀法:利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来,再与沉淀组分发生反应。 7、纳米薄膜材料:指由尺寸在纳米量级的颗粒构成的薄膜材料或纳米晶粒镶嵌与某种薄膜中构成的复合膜且每层厚度都在纳米量级的单层或多层膜。 8、真空蒸镀:指在高真空中用加热蒸发的方法是源物质转化为气相,然后凝聚在基体表面的方法。 9、超塑性:超塑性是指在一定应力下伸长率≥100%的塑性变形。 10、弹性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状。 11、塑性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体不会恢复原状。 HAII-Petch公式: σ--强度;H--硬度;d--晶粒尺寸;K--常数 纳米复合材料:指分散相尺度至少有一维小于100nm的复合材料。 14、蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。 15、热塑性:物质在加热时能发生流动变形,冷却后可以保持一定形状的性质。 大题: 纳米粒子的基本特性? (1)小尺寸效应:随着颗粒尺寸的量变,在一定条件下会造成颗粒性质的质变,由于颗粒尺寸的变小,所导致的颗粒宏观物理性质的改变称为小尺寸效应。 (2)表面效应:纳米粒子表面原子数与总原子数之比随着纳米粒子尺寸的减小而显著增加,粒子的表面能和表面张力也随着增加,物理化学性质发生变化。(粒度减小,比表面积增大;粒度减小,表面原子所占比例增大;表面原子比内部原子具有更高的比表面能;表面原子比内部原子具有更高的活性) (3)量子尺寸效应:当金属粒子的尺寸下降到某一值时,金属费米能级附近的能级由准连续变为离散能级或能隙变宽的现象。 (4)宏观量子隧道效应:宏观物理量具有的隧道效应。 纳米陶瓷具有较好韧性的原因? (1)纳米陶瓷材料有纳米相,具有纳米材料相关的性能,而纳米材料具有大的界面,界面原子排列相当混乱,原子在外力变形条件下容易迁移,从而表现出优良的韧性,因而纳米陶瓷也具有较好的韧性; (2)纳米级弥散相阻止晶粒长大,起到细晶强化作用,使强度、硬度、韧性都得到提高;(3)纳米级粒子的穿晶断裂,并由硬粒子对裂纹尖端的反射作用而产生韧化。

晶体生长机理与晶体形貌的控制

晶体生长机理与晶体形貌的控制 张凯1003011020 摘要:本文综述了晶体生长与晶体形貌的基本理论和研究进展,介绍了层生长理论,分析了研究晶体宏观形貌与内部结构关系的3种主要理论,即布拉维法则、周期键链理论和负离子配位多面体生长基元理论。 关键词:晶体生长机理晶体结构晶体形貌晶体 1.引言 固态物质分为晶体和非晶体。从宏观上看,晶体都有自己独特的、呈对称性的形状。晶体在不同的方向上有不同的物理性质,如机械强度、导热性、热膨胀、导电性等,称为各向异性。晶体形态的变化,受内部结构和外部生长环境的控制。晶体形态是其成份和内部结构的外在反映,一定成份和内部结构的晶体具有一定的形态特征,因而晶体外形在一定程度上反映了其内部结构特征。今天,晶体学与晶体生长学都发展到了非常高的理论水平,虽然也不断地有一些晶体形貌方面的研究成果,但都停留在观察、测量、描述、推测生长机理的水平上。然而,在高新技术与前沿理论突飞猛进的今天,晶体形貌学必然也会受到冲击与挑战,积极地迎接挑战,与前沿科学理论技术接轨,晶体形貌学就会有新的突破,并且与历史上 一样也会对其它科学的发展做出贡献。 2.层生长理论 科塞尔(Kossel,1927)首先提出,后经斯特兰斯基(Stranski)加以发展的晶体的层生长理论亦称为科塞尔—斯特兰斯基理论。 它是论述在晶核的光滑表面上生长一层原子面时,质点在界面上进入晶格"座位"的最佳位置是具有三面凹入角的位置。质点在此位置上与晶核结合成键放出的能量最大。因为每一个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多,释放出能量最大的位置。质点在生长中的晶体表面上所可能有的各种生长位置:k为曲折面,具有三面凹人角,是最有利的生长位置;其次是S阶梯面,具有二面凹入角的位置;最不利的生长位置是A。由此可以得出如下的结论即晶体在理想情况下生长时,先长一条行列,然后长相邻的行列。在长满一层面网后,再开始长第二层面网。晶面(最外的面网)是平行向外推移而生长的。这就是晶体的层生长理论,用它可以解释如下的一些生长现象。 1)晶体常生长成为面平、棱直的多面体形态。 2)在晶体生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状

块体纳米晶材料制备的研究进展

块体纳米晶材料制备的研究进展 王轶,姚可夫,翟桂东 (清华大学机械工程及其自动化系,北京100084) 摘 要:综述了国内外块体纳米晶材料的制备技术进展及存在的问题,指出了非晶晶化法和深过冷晶化法是两类潜在的块体纳米晶材料制备技术,并对今后的研究及发展前景进行了展望。 关键词:块体纳米晶材料;制备;晶化;深过冷 中图分类号:T G14 文献标识码:A 文章编号:1001-3814(2003)02-0048-03 Advance in Fabrication of Bulk Nanostructrued Materials WAN G Yi,YAO Ke-fu,ZHAI Gui-do ng (M echanical Engineering Dep ar tment,T singhua Univ er sity,Beij ing100084,China) Abstract:T he adv ance in fabr ication o f bulk na no structureo mater ials is summar ized a nd tw o special w ays ar e r e-ferr ed. Key words:bulk nanostr uct rued m aterials;fabrication;cr ystallizatio n;under co ol  纳米材料按其三维尺寸分布可分为0维(纳米颗粒)、1维(纳米线和纳米管)、2维(纳米膜)和3维(纳米晶粒构成的块体材料)纳米材料。目前,纳米颗粒、纳米管、纳米薄膜的制备技术已得到飞速发展,已能成功制备。但3维尺寸纳米晶材料(又称为块体纳米晶材料)的制备技术仍处于探索之中。为使这种新型材料既有利于理论研究,又能在实际中拓宽使用范围,探索高质量的三维大尺寸纳米晶材料的制备技术已成为纳米材料研究的最关键问题。本文对几种主要的块体纳米晶材料制备方法的研究进展进行介绍。 1 惰性气体蒸发、原位加压成形法 这种方法最早由Gleiter等人提出,应用惰性气体凝聚(I GC)结合原位冷压成型法(In-situ Co mpa ct ion)在实验室制备出纳米晶块体样品[1]。这种纳米结构材料中的纳米金属与合金 用;购买质量好且稳定、知名度较高的大钢厂生产的钢材;避免频繁更换生产厂家及炉号。 4 结论 油淬硬度检验法对45钢淬透性的检验具有简便、快速、实用的特点。实践表明,用该方法检测的结果用于指导卡爪的热处理生产是可行的,能够作为选择材料以及科学制定热处理工艺的重要参考依据。然而该方法要求条件较严格,受许多因素限制而产生结果波动或偏差。因此,油淬硬度法只能近似地反映45钢淬透性的相对大小,在以后的工作中还需要不断完善、改进,使之更好地为生产服务。 参考文献: [1] 孙珍宝,朱谱藩.合金钢手册(上册)[M].北京:冶金工业出版社, 1984.!材料是一种二次凝聚晶体或非晶体,先是由金属原子形成纳米颗粒,在保持新鲜表面的条件下,将纳米颗粒压在一起形成块状凝固体。先在高真空反应室中的惰性气体保护下使金属受热升华并在液氮冷镜壁上聚集、凝结为纳米尺寸的超微粒子,刮板将收集器上的纳米微粒刮落进入漏斗并导入模具,再在高真空中,加压系统以1~5G Pa的压力使纳米粉原位加压,以300 K至800K的温度烧结成块。采用该法已成功地制得Pb、Cu、F e、A g、N i3A l、Fe5Si95等合金的块状纳米晶材料[2]。周宇松、吴希俊将此法改进为原位温压法,在对粉末加压时,同时对装粉末的模具加热,这样就提高了块体的致密度,成功获得了大尺寸的具有清洁界面的纳米晶铜和银块材[3]。 由于惰性气体蒸发冷凝形成的金属和合金纳米微粒几乎无硬质团聚体存在,因此这种方法制备的纳米微粒具有清洁的表面,很少团聚成粗团聚体,块体纯度高;但同时样品内也不可避免存在大量微孔隙,致密样品密度仅能达金属体积密度的75%~90%,这种微孔隙对纳米材料的结构性能研究及某些性能的提高十分不利。近年来又发展了一些新的纳米粉制备方法如电化学沉积[4]、电火花侵蚀[5]等方法,但与之相衔接的纳米粉的分散、表面处理及成型方法尚未得到发展。 2 粉末冶金法 这种方法包括两个方面:纳米粉末的制备和烧结。纳米粉末的制备技术已经相对成熟,因此关键是烧结技术。纳米烧结的最大问题是纳米粒子在烧结过程中的晶粒长大而导致纳米特性丧失,因此,在烧结中减小晶粒长大和增大烧结致密度是关键。 目前纳米粉末烧结常用的是特种烧结法,包括加入第二相物质、施加外力、快速烧结等来抑制晶粒生长。并由此发展出超高压烧结、放电等离子烧结方法。 48 REVIEW Hot W orking Technology 2003No.2 X收稿日期:2002-10-29 基金项目:清华大学985基础研究基金资助(101113) 作者简介:王轶(1977-),男,四川乐山人,硕士研究生。

薄膜高分子结晶形态及其生长机理研究进展

薄膜高分子结晶形态及其生长机理研究进展 任伊锦1,2*,马 禹1,章晓红2,胡文兵1 (1 南京大学化学化工学院配位化学国家重点实验室高分子科学与工程系,南京 210093; 2 安徽铜峰电子股份有限公司,铜陵 244000) 摘要:由于高分子薄膜和超薄膜的空间效应和界面效应显著,其结晶行为与本体相比具有很大的差别。本文综述了近年来关于高分子在薄膜和超薄膜中特殊结晶行为的研究进展,重点介绍了晶体取向与薄膜厚度的关系。随着膜厚的减小,界面吸附作用对侧立片晶的抑制作用增强,导致晶体取向由侧立转变为平躺。超薄膜中晶体生长受扩散机理控制,其形态不稳定,变为树枝状晶体。在超薄膜中晶体的生长速率随着膜厚的减小而减小,当膜厚小于片晶厚度时,减小的趋势变缓。 关键词:高分子薄膜;晶体取向;晶体形态不稳定性;扩散限制聚集;生长动力学 概述 近年来,结晶功能性高分子薄膜和超薄膜在电子和信息等高新技术产业的应用引起人们极大的关注[1~3]。对于结晶的高分子薄膜来说,其晶体形态对薄膜的物理和机械性能有很大的影响,所以研究高分子薄膜的结晶行为,既可以使我们更加深入地理解高分子结晶的本质,也有利于我们通过调控晶体结构来优化高分子薄膜的性能[4,5]。 高分子结晶过程是分子链的自我排列规整化的过程。熔体中无序高分子链调整序列并吸附在初级核的侧表面上,由于动力学因素优先形成亚稳态折叠链片晶[6,7]。这些片晶通过连续分叉最终形成各向同性的球晶结构[8]。此过程的晶体生长动力学,一般认为是由Lauritzen和H offman提出的次级成核理论所控制,即表面成核动力学所决定[9,10],其中球晶半径随时间是线性变化关系,生长速率恒定[11~13]。 高分子本体的结晶过程较为简单,而高分子受限在纳米级的薄膜(厚度在100~1000nm)和超薄膜(厚度<100nm)中[14],薄膜与基板间的界面相互作用即界面效应,以及尺寸受限的空间效应,导致了分子链运动方式的改变和运动能力的减弱,其结晶性能与本体截然不同。目前人们主要研究了结晶链段的排列取向、晶体形态和生长动力学,它们都强烈地依赖于薄膜厚度和结晶温度。人们也提出了一些受限晶体生长的控制机理。本文对近年来有关高分子薄膜和超薄膜的结晶形态和晶体生长动力学的研究进展做一概述,希望对今后这方面的研究有所帮助。 1 高分子薄膜和超薄膜的结晶形态 高分子晶体的基本形态是折叠链片晶,但是在不同的生长环境下其堆砌方式可以差别很大,从本体中的球晶、轴晶和串晶,到稀溶液中具有规则几何形状的单晶,结晶形态结构丰富多彩[15]。而在高分子薄膜和超薄膜中,由于晶体生长空间受到限制以及界面作用的影响,多数只能得到片晶尺度的有序形态,且随着薄膜厚度的减小,片晶的取向和生长前沿的稳定性发生改变,导致生成更加复杂的晶体形态。 1 1 晶体取向 高分子薄膜中片晶的取向一般以处于薄膜下表面的基板为参考方向,存在典型的侧立(edge on)片 基金项目:国家自然科学基金委资助(20674036和20825415); 作者简介:任伊锦(1978-),女,博士后,主要从事高分子薄膜结晶行为的研究; *通讯作者,E mail:r eny ijin@https://www.doczj.com/doc/f99353641.html,.

晶体生长机理研究综述

晶体生长机理研究综述 摘要 晶体生长机理是研究金属材料的基础,它本质上就是理解晶体内部结构、缺陷、生长条件和晶体形态之间的关系。通过改变生长条件来控制晶体内部缺陷的形成从而改善和提高晶体的质量和性能使材料的强度大大增强开发材料的使用潜能。本文主要介绍了晶体生长的基本过程和生长机理,晶体生长理论研究的技术和手段,控制晶体生长的途径以及控制晶体生长的途径。 关键词:晶体结构晶界晶须扩散成核 一、晶体生长基本过程 从宏观角度看,晶体生长过程是晶体-环境相、蒸气、溶液、熔体、界面向环境相中不断推移的过程,也就是由包含组成晶体单元的母相从低秩序相向高度有序晶相的转变从微观角度来看,晶体生长过程可以看作一个基元过程,所谓基元是指结晶过程中最基本的结构单元,从广义上说,基元可以是原子、分子,也可以是具有一定几何构型的原子分子聚集体所谓的基元过程包括以下主要步骤:(1)基元的形成:在一定的生长条件下,环境相中物质相互作用,动态地形成不同结构形式的基元,这些基元不停地运动并相互转化,随时产生或消失(2)基元在生长界面的吸附:由于对流~热力学无规则的运动或原子间的吸引力,基元运动到界面上并被吸附 (3)基元在界面的运动:基元由于热力学的驱动,在界面上迁移运动 (4)基元在界面上结晶或脱附:在界面上依附的基元,经过一定的运动,可能在界面某一适当的位置结晶并长入固相,或者脱附而重新回到环境相中。 晶体内部结构、环境相状态及生长条件都将直接影响晶体生长的基元过程。环境相及生长条件的影响集中体现于基元的形成过程之中;而不同结构的生长基元在不同晶面族上的吸附、运动、结晶或脱附过程主要与晶体内部结构相关联。不同结构的晶体具有不同的生长形态。对于同一晶体,不同的生长条件可能产生不同结构的生长基元,最终形成不同形态的晶体。同种晶体可能有多种结构的物相,即同质异相体,这也是由于生长条件不同基元过程不同而导致的结果,生长机理如下: 1.1扩散控制机理从溶液相中生长出晶体,首要的问题是溶质必须从过饱和溶液中运送到晶体表面,并按照晶体结构重排。若这种运送受速率控制,则扩散和对流将会起重要作用。当晶体粒度不大于1Oum时,在正常重力场或搅拌速率很低的情况下,晶体的生长机理为扩散控制机理。 1.2 成核控制机理在晶体生长过程中,成核控制远不如扩散控制那么常见但对于很小的晶体,可能不存在位错或其它缺陷。生长是由分子或离子一层一层

相关主题
文本预览
相关文档 最新文档