初级中学数学-旋转难题
- 格式:doc
- 大小:296.28 KB
- 文档页数:15
1.如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.
(1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测
量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;
(2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长
线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
图13-2
图13-3
图13-1 A ( B ( E )
2.(10河北|)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图15-1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线
图15-3 图15-1
上,另一条直角边恰好经过点B.
(1)在图15-1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,
然后证明你的猜想;
(2)当三角尺沿AC方向平移到图15-2所示的位置时,一条直角边仍与AC边在同一直线上,另一条
直角边交BC边于点D,过点D作DE⊥BA于
点E.此时请你通过观察、测量DE、DF与CG
的长度,猜想并写出DE+DF与CG之间满足
的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC方向继续平移到图15-3所示的位置(点F在线段AC上,
且点F与点C不重合)时,(2)中的猜想是否
仍然成立?(不用说明理由)
3.(2010 梅州)用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆
时针方向旋转.
(1)当直角三角尺的两直角边分别与矩形ABEF 的两边BE EF ,相交于点G H ,时,如图甲,通过观察或测量BG 与EH 的长度,你能得到什么结论?并证明你的结论. (2)当直角三角尺的两直角边分别与BE 的延长线,EF 的延长线相交于点G H ,时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.
A
B
G C E
H F D
图甲 A B
G C E
H
F D
图乙
4.(09烟台市)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.
5.如图①,四边形AEFG 和ABCD 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F 在AD 上(以下问题的结果均可用a b ,的代数式表示). (1)求DBF S △;
(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBF S △; (3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.
D C
B
A
E F
G
G
F E
A
C
D ①
②
(第28题)
6.如图,在边长为4的正方形ABCD 中,点P 在AB 上从A 向B 运动,连接DP 交AC 于点Q .
(1)试证明:无论点P 运动到AB 上何处时,都有△ADQ ≌△ABQ ; (2)当点P 在AB 上运动到什么位置时,△ADQ 的面积是正方形ABCD 面积的
6
1; (3)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,
在整个运动过程中,当点P 运动到什么位置时,△ADQ 恰为等腰三角形.
,.
1.解:(1)BM=FN。
证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,
∴∠ABD=∠F=45°,OB=OF,
又∵∠BOM=∠FON,
∴△OBM≌△OFN,
∴BM=FN;
(2)BM=FN仍然成立。
证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,
∴∠DBA=∠GFE=45°,OB=OF,
∴∠MBO=∠NFO=135°,
又∵∠MOB=∠NOF,
∴△OBM≌△OFN,
∴BM=FN。
,.
2.
3.解:(1)BG=EH.
∵四边形ABCD和CDFE都是正方形,
∴DC=DF,∠DCG=∠DFH=∠FDC=90°,
∵∠CDG+∠CDH=∠CDH+∠FDH=90°,
∴∠CDG=∠FDH,
∴△CDG≌△FDH,
∴CG=FH,
∵BC=EF,
∴BG=EH.
(2)结论BG=EH仍然成立.同理可证△CDG≌△FDH,
∴CG=FH,
∵BC=EF,
∴BC+CG=EF+FH,
∴BG=EH.
4.