当前位置:文档之家› 电磁场理论的应用

电磁场理论的应用

电磁场理论的应用
电磁场理论的应用

电磁场理论的应用

电磁场理论是工科电类专业的一门重要的技术基础课。它在物理电磁学的基础上,进一步研究了宏观电磁现象的基本规律和分析方法,是深入理解和分析工程实际中电磁问题所必须掌握的基本知识,很多实际工程问题只有通过电磁场才能揭示其本质。本部分内容收集了一些电磁场理论应用方面的典型例子,作为学习电磁场理论的参考和补充,藉以增加读者学习电磁场理论的积极性,并进一步了解应用电磁场理论分析、解决实际问题的方法和途径,培养和提高读者解决实际问题的能力。

第一部分 静电场的应用举例

1、悬式瓷绝缘子和玻璃绝缘子的电场分布

分析悬式瓷绝缘子和玻璃绝缘子的电场分布时,可以将其近似认为是同心球极间电场,示意图如图1所示

图1 瓷或玻璃悬式绝缘子极间电场示意图

由高斯定理可得同心球的电极间任一点的电场24r Q E πε=

,E 的最大值在1r 处。

极间电压 ?????????==∫21

11421r r Q Edr U r r πε 故 ()()

12221r r r r r U E ?= 而 ()()()1212122121max r r r Ur r r r r r U E ?=?=

当2r 一定时,改变1r 可使max E 达到极小值,令

()()012212111max =???

??????=r r r r r U dr d dr dE 得 2/21r r =

此时 2

222

2

max 422r U r r r Ur E =???????= 如瓷绝缘子的临界电场强度为135kV/cm ,已知cm 52=r ,则允许的最大电压为

kV 75.1684

2max

max ==r E U

2、电容式传感器 电容量和极板面积、极板间的距离,以及极板间所充的介质有关,改变其中任何一项,就可以改变电容量。利用这个特性,可以构成“电容式传感器”,它可以把物理量的变化转化为电容两的变化。如果把这个电容器接在桥式电路中或是一个振荡电路中,就可以把电容的变化,转化成电量的变化。经过放大处理,可以实现对于原物理量的检测或控制。

图2a 、2b 分别为改变面积和介质的电容传感器原理图

a 改变面积

b 改变介质

图2 电容式传感器的原理图

由图2a 得 d bx

C x ε=,其灵敏度为

d

b dx dC K x ε== 利用这个传感器,可以用来测量物体得位移。

由图2b 得

221

1εεd d ab

C A +=

()1

211εεd d b a l C B +?= 故 ??

???

???????+?++=+=21212112111εεεεεd d l a d d lb C C C B A 可见,变化量与电容量C 有明确的关系。

在实际应用中,为了提高传感器的灵敏度,常常做成差动式传感器。例如图3所示,为一变面积的差动式电容传感器,其中间为一动片,上下两个园筒是定片,当动片上升时,1C 增大2C 减小,当动片下降时则相反,所以动片位置的变化转化成1C 、2C 的变化。若将其放于桥路中,就可以将电容的变化变换成电压的变化。

图3 差动式电容式传感器的原理图

电容式传感器常常用于测量零件的尺寸、物位、位移的变化等等。

3、静电技术应用

任何事物都有两重性,给人们带来许多麻烦的静电能也能变害为利,它在静电分选、静电除尘、静电分离、静电植绒、静电纺纱、静电喷漆、静电复印等等方面大显身手。

静电分选:是利用各种塑料不同的静电性能来进行分选的方法。利用静电进

行分选,对于多种混杂在一起的废旧塑料需通过多次分选。静电分选法特别适用于带极性的聚氯乙烯,分离纯度可达99%。物料经馈料系统均匀散布在接地转动电极光滑表面上,荷电的物料与接地转辊电极交换,两种不同静电性能不同的物料有差异。然后荷电的物料进入分选区,在静电力、重力、离心力等的合力下落。完成两种不同电性物料的分离。

静电复印:现在静电复印得到广泛使用。静电复印机的中心部件是一个可以旋转的接地的铝质圆柱体,表面镀一层半导体硒,叫做硒鼓。半导体硒有特殊的光电性质:没有光照射时是很好的绝缘体,能保持电荷;受到光的照射立即变成导体,将所带的电荷导走。复印每一页材料都要经过充电、曝光、显影、转印等几个步骤,这几个步骤是在硒鼓转动一周的过程中依次完成的。充电:由电源使硒鼓表面带正电荷。曝光:利用光学系统将原稿上的字迹的像成在硒鼓上。硒鼓上字迹的像,是没有光照射的地方,保持着正电荷。其他地方受到了光线的照射,正电荷被导走。这样,在硒鼓上留下了字迹的“静电潜像”。这个像我们看不到,所以称为潜像。显影:带负电的墨粉被带正电的“静电潜像”吸引,并吸附在“静电潜像”上,显出墨粉组成的字迹。转印:带正电的转印电极使输纸机构送来的白纸带正电。带正电的白纸与硒鼓表面墨粉组成的字迹接触,将带负电的墨粉吸到白纸上。此后,吸附了墨粉的纸送入定影区,墨粉在高温下熔化,浸入纸中,形成牢固的字迹。硒鼓则经过清除表面残留的墨粉和电荷,准备复印下一页材料。

静电除尘,具有效率高的优点,现在很多空气净化器就是用静电能吸除空气中的很小的尘埃,使空气净化,静电在环境保护中能发挥重要作用。以煤作燃料的工厂、电站,每天排出的烟气带走大量的煤粉,不仅浪费燃料,而且严重地污染环境.利用静电除尘可以消除烟气中的煤粉.除尘器由金属管A和悬在管中的金属丝B组成,A接到高压电源的正极,B接到高压电源的负极,它们之间有很强的电场,而且距B越近,场强越大.B附近的空气分子被强电场电离,成为电子和正离子.正离子被吸到B上,得到电子,又成为分子.电子在向着正极A 运动的过程中,遇到烟气中的煤粉,使煤粉带负电,吸附到正极A上,最后在重力的作用下落入下面的漏斗中.静电除尘用于粉尘较多的各种场所,除去有害的微粒,或者回收物资,如回收水泥粉尘。

图4 静电除尘原理图

静电喷涂:设法使油漆微粒带电,油漆微粒在电场力的作用下向着作为电极的工件运动,并沉积在工件的表面,完成喷漆的工作.这就是静电喷涂.用静电

喷涂家用电器如洗衣机、电冰箱的外壳非常均匀。

第二部分恒定电场应用举例

由于媒质具有导电性,在有电场存在的区域都有电流存在。电场恒定,则媒质中的电流也恒定。这种与恒定电场同时存在的恒定电流区域称为恒定电流场。

恒定电场在电磁场课程中所占比例较小,但其应用却很广泛。直流电路的应用实质上就是恒定电流场的应用,只是把场限制在特定的线路中。现代大型铝电解槽,其工作电流达100kA。由于巨大电流所带来的电磁力作用于铝液问题,已成为国内外研究的重要课题。使电流场的应用理论又进一步丰富。实际电工设备如电缆头、高压套管、绝缘子、电机和变压器等的似稳电场与一些非电工程中的物理量的模拟都运用了恒定电场的理论。另外,跨步电压和接地电阻等等的计算都有用到恒定电场理论。

在输油管、水管等其他金属管道的无损检测和在线监测上,应用恒定电场的理论,开发了各种裂纹测探仪器。

在地质勘探、探矿采矿及油田的勘探等一系列重大问题上,恒定电场的理论得到广泛的应用,形成了专门的学科——电法勘探。电法勘探的方法非常多,其应用范围也在不断扩大,例如,一种利用电阻率法注入恒定电流场,探测堤坝漏水的仪器在江、河、水库堤坝上得到广泛应用,它能探明重大漏水险情、蚁穴、管涌及渗漏、临江侧集中渗漏进水点等,为及时抢护加固,预防大堤决口发挥了重要作用,并为洪水过后彻底处理堤防隐患提供了科学依据。

在超导理论中,也涉及到恒定电场理论。

地震的准确预报是目前尚未解决的重大课题。目前,有日本科学家提出从地电阻率的改变中来进行预报的思路受到广泛的重视。

1、裂纹测深仪

裂纹测深仪的应用场合在: (1)系统运行过程中使用——通过定时监测,掌握构件上裂纹的发展状况,保证系统安全运行。用变针距探头,配合计算机通讯,可实现设备安全或生产质量的在线检测和预报。(2)加工制造过程中使用——根据测量结果和制造要求制定修补措施或决定对工件的取舍。

裂纹测深仪采用电位检测法。电位检测法又称电位差检测法或电导检测法,

其物理原理基于金属的导电性。它已应用到裂纹深度测量、板材厚度测量、焊缝熔深检测、表面淬硬层、渗层深度和复合板结合层质量检测等诸多方面。

当一定值电流流经被检金属试件时,试件两端的电位差应服从欧姆定律:

U=IR,由于电流I为恒定值,故电位差U仅取决于试件的电阻R。电阻R是受材料中许多因素影响的,例如试件的几何形状、尺度、试件自身的材质、试件是否有缺陷存在、缺陷的尺度、方向等。利用电位差与上述因素之间的对应关系可以实现对试件几何尺寸的测量;可以用于材质检验;缺陷检测及对裂纹深度的测量等等。

裂纹深度测量原理:当电流从被检工件的检验部位通过时,将形成一定的电流、电位场。如工件表面存在裂纹,随着裂纹的形位、尺度的不同,它对电流电位场的影响也不同。利用测量电位分布的方法来判断金属材料中裂纹的状况,是电位法测量裂纹深度的依据。图5所示是将四个电流电极(或称电流探针)分别直线排列放置在工件的无裂纹部位(a)和有裂纹部位(b)时的电流、电位场。一个恒定的电流通过电流探针A和B在工件中产生电流场和一个与材料的组成和结构特性有关的电位分布,通过另一对电极c和d可以检测某两点间的电位差,并在电压表上显示。假定与材料有关的影响因素和几何尺寸均相同,以相同的电流分别在无裂纹和有裂纹的试样上测试,显然在测量极c和d之间无裂纹试样的电位差与有裂纹试样的电位差之间的差异是由裂纹引起的。如果保持试验电流、被检工件材质、厚度不变,而只有裂纹深度变化时,则该电位差是一个裂纹深度的函数,通过标定可将电测系统取得的电位差信号转化成裂纹尺寸,从而实现裂纹深度的测量。

一个探伤仪系统由电源、探头、测量回路、显示器构成。探头分向工件被检部位通以恒定电流的电流探针和拾取电位差信号的测量探针。电源用于提供足够大的高稳定激励电流,探头的电流探针在工件被检部位建立电场,测量探针拾取电位信号,经测量回路放大供显示器显示。

(a)无裂纹试件(b)有裂纹试件

图5 电流电位场

系统工作框图:

图6 系统工作框图

(https://www.doczj.com/doc/f9659384.html,/CrackDepth_1.htm)

2、电法勘探

根据地壳中各类岩石或矿体的电磁学性质(如导电性、导磁性、介电性)和电化学特性的差异,通过对人工或天然电场、电磁场或电化学场的空间分布规律和时间特性的观测和研究,寻找不同类型有用矿床和查明地质构造及解决地质问题的地球物理勘探方法。主要用于寻找金属、非金属矿床、勘查地下水资源和能源、解决某些工程地质及深部地质问题。电法勘探的方法,按场源性质可分为人工场法(主动源法)、天然场法(被动源法);按观测空间可分为航空电法、地面电法、地下电法;按电磁场的时间特性可分为直流电法(时间域电法)、交流电法(频率域电法)、过渡过程法(脉冲瞬变场法);按产生异常电磁场的原因可分为传导类电法、感应类电法;按观测内容可分为纯异常场法、总合场法等。我国常用的电法勘探方法有电阻率法、充电法、激发极化法、自然电场法、大地电磁测深法和电磁感应法等。

电法勘探中的电阻率法常用的几种方法有:电剖面法;电测深法;高密度电

阻率法。

电剖面法全称电阻率剖面法,采用固定电极距的电极排列,沿剖面线逐点供电和测量,获得视电阻率剖面曲线。通过分析对比,了解地下岩、土层电性变化,有效地解决某些地质问题。如追索构造破碎带,划分不同岩性陡立接触带,地下暗河、溶洞等。现场工作方法:(1)联合剖面法;(2)对称四极法;(3)复合对称四极法;(4)中间梯度法。

电测深法又称电阻率垂向测深法。它是对同一个测点,用一系列由小到大的极距进行视电阻率测量,反应由浅至深的地层垂向变化情况。通过对现场实测曲线进行分析和解释,可对观测点处垂向各地电性层的厚度和电阻率的大小。

电测深法最适合于解决产状近水平,具有明显性差异的下列工程地质问题:(1)查明基岩埋深,确定覆盖层厚度,查明基岩风化层发育深度,划分有较明显电性差异的第四纪分层等;(2)查寻岩溶发育带,确定具有明显电性差异的断层破碎带,并了解其产状。现场工作方法:(1) 三极测深;(2)对称四极测深;(3)环形测深。

高密度电阻率法又称高密度电法。它的基本原理与普通电阻率法相同,它集中了电剖面法和电测深法的特点,由仪器的先进设计及资料处理能力及高密度电法仪,能快速而准确地获取丰富的地下信息。一条高密度电法测线能了解地下一个面状信息,通过合理布置测线,能三维勾划地质体,从而达到立体勘探。对解决圈定岩溶大小、断层破碎带的追索等地质问题非常有效。

从恒定电场的应用角度,介绍一种常用的现场工作方法——对称四极测深,对称四极剖面装置如图7所示。

图7 对称四极剖面装置

装置形式为四个金属电极AMNB沿测线对称O点分布。其中两根A、B与电源相接,分别向地表注入电流I及-I,另两根M、N与电压表相接用于测量电压。则A、B连线上任一点M的电位为

BM

I AM I M 1212πρπρ??+= 故A 、B 连线上任意两点M 、N 间的电位差为

??

????+??=?=BN BM AN AM I U N M MN 11112πρ?? 根据上式,土壤电阻率ρ就可以由电流I 、电压MN U 和各点间的距离得出

BN BM AN AM I U MN

2+??=πρ 简记为

I U K

MN =ρ 式中BN BM AN AM K 11112+??=π

,称为“布极常数”。这种运用四个电极进行的

土壤电阻率测量的方法,称为“四极法”。

运用“四极法”所测得的土壤电阻率,称为土壤的视电阻率,视电阻率含有平均的意义。值得注意的是,虽然不同的土壤结构其视电阻率不同,然而当土壤结构不变,布极方式与距离的配置不同时,所得的视电阻率也是不同的。这是因为电流所流经的路径不同,所遇到的接地电阻不同之故。如图8所示。

从图8可以看出,固定测点距离MN 不变,当AB 之间距离较小时,亦即当第一层土壤厚度2

1AB h ≥时,大部分电流流经靠近地表的岩层土壤,四极法所测得的视电阻ρ几乎与靠近地表岩层的电阻率1ρ相等。当AB 增大时,使21AB h ≈

,则相当一部分电流流经深部岩层土壤,这时深部的岩层的导电性能就会反应出来,而12ρρ>的情况下,那么测得的ρ就会大于1ρ而小于2ρ。若再加大AB 间的距离第一层相对变薄,其作用可以忽略,此时,所测得的视电阻ρ几乎与第二层的土壤的电阻率2ρ相等了。

图8电流分布与供电电极间距离的关系

按此方法,若以距离的对数为横坐标,以相应测得的视电阻值为纵坐标,就可以得到某测点(指MN所在位置)的视电阻率测深曲线,它反应了该点附近土壤视电阻率随深度变化的关系,根据它,可以推测出地下岩层是否存在断裂情形。

以上只是列举了一个简单的例子来说明恒定电场理论在地质勘探方面的应

用,一本电法勘探的著作就是电磁场理论在地质勘探中的应用的专著。

第三部分 恒定磁场应用举例

我国是发现和使用天然磁石最早的国家,早在两千多年前的春秋战国时期我们的祖先就发现了能够吸引铁的“慈石”。在西方,磁现象首先由古希腊著名的哲学家泰勒斯发现。公元前三世纪的战国时期,在《韩非子》这部著作中,记载了用磁石指示方向的仪器——司南,后将磁针装在轴上,放在盒子里,成为罗盘。后来,指南针经阿拉伯传入欧洲,在航海领域显示出巨大的价值。

在磁的本质探索方面,经过了长期多次的反复曲折过程。直到1820年,丹麦物理学家奥斯特发现了电流的磁效应,才使数百年的电磁无关论的错误思想得到了纠正,开辟了电磁两者相互结合的研究道路。电流的磁效应发明后,制造出了电磁铁,开创了磁学应用的新时代,1831年,英国科学家法拉第发现了电磁感应现象和电磁感应定律,使发电机登上了历史的舞台,是一个划时代的发现。

当前,人们已经认识到,“磁”是一种普遍存在的物质,小至电子、原子、分子,大至地球、太阳系、银河系都有或强或弱的磁场。人体内部的心、肺、大脑和肌肉也存在着微弱的磁场,磁在探病和治病方面已经取得了大量的成就,成为磁场应用的一个重要的分支。

磁记录技术已成为磁学应用的一个重要的分支。磁悬浮列车已在我国上海开始运行,它是利用车厢底部的强磁场与放在两条铁轨之间的定子绕组之间的电磁力,使列车浮起,不再与铁轨接触,由于没有摩擦阻力,可以实现高速运行。

利用磁场控制电子的运动,制造出各种各样的电子仪器设备,如电子显微镜、加速器、示波器、显像管等等。在核物理研究中使用的磁谱仪,也是利用磁场对带电粒子的作用来测定新元素和新同位素以及各种基本粒子的能量。

在电机、电器、变压器、电磁仪表、电磁铁和各种电气设备中,常利用长短不同的螺管线圈获得磁场,如亥姆霍兹线圈,它是两个半径相等的圆形线圈,线圈之间的距离等于线圈的半径,可以在轴线中点附近获得均匀磁场。电视显像管的偏转线圈套在显像管的管颈上,中间产生一个均匀的磁场。磁镜是由很多匝线圈绕成的直管形状的管室,两端线圈的匝数比中间密,从而两端磁场比中间强。这样,绕着磁力线旋转进来的粒子进入端口的强磁场区域,就会受到一反作用力。这个力迫使粒子的速度减慢,轨道的螺距缩短,然后停下来并反射回去,反射回

去的粒子达到管子中心区域后,又向另一端旋进,达到端口后又被反射回来,就像光在两个镜子之间来回反射,称为磁镜。它用于热核反应中约束等离子体的约束系统,称为“磁约束系统”。

工业企业中,经常碰到非电量的测量问题,一般是将其转换成电学量,再进行测量。电测法测量范围广,可实现远距离测量,精度高,测量结果可以用数字显示并进行处理。测量机构一般又三个基本部分组成:传感器、测量电路和输出电路。非电量转换成电量由传感器完成。电感式传感器利用电磁感应原理、磁伸缩效应或压磁效应等磁场的基本原理将非电量转换成电量。

磁性液体,又简称磁流体、磁液。是纳米尺寸的磁性微粒均匀分散、悬浮在油基液中构成地超顺磁性材料。它在重力场、磁场、离心力场中都很稳定、固液不分离。国外已在航空,航天、电子、仪表、机械、冶金、环保、医疗等领域广泛应用。目前最精彩的应用是在各种工况下的旋转轴动态密封。还可以作转动轴的润滑剂,填充磁隙的填充剂,代替硅钢和铁氧体等固体磁性材料作为变压器的铁心。磁性液体扬声器是将磁性材料注入扬声器的音圈气隙对音圈的运动起一定的阻尼作用,并能使音圈自动定位,音圈发热可以通过磁性材料散发,在同样结构的条件下可提高扬声器的输入功率达两倍之多,同时,可以改善其频率特性,提供保真度。磁性液体还可以做成旋转和线性阻尼器件,可消除外界振动噪声的干扰,保证精密仪器的正常工作。在分离不同比重的非磁性矿物方面,磁性液体也发挥着独特的作用。另外,还有用于精密研磨和抛光磁性液体技术、磁性液体开关、用于测量石油勘探中钻头的加速度和倾斜的磁性液体传感器,因此磁液的应用前景广阔。

在其他方面,磁场拉线装置、磁场打磨装置、利用磁场进行高速焊接、高梯度磁场分离技术应用于污水和工业废水中的金属杂质等等使古老的磁学焕发出新的活力,并且开拓出许多应用的新领域。

1、医学方面的应用之一——磁疗

磁疗是利用磁场作用于人体治疗疾病的方法。世界上的一切物体,小至基本粒子,大至天体都具有一定的磁性。地球本身是一个巨大的磁场。地球上的一切生物和人体一直受着地磁场这一物理环境因素的作用,地磁场成为生物体维持正

常生命活动的不可缺少的环境因素。在二千多年前,我国西汉时代已利用磁石

(Fe

3O

4

的天然矿石)来治病。在国外,在16世纪末已制成各种磁疗器械,如磁

椅、磁床、磁幅等用于临床。近20年来,国内外对磁场的生物学作用进行了广泛的研究,包括磁场的治疗和诊断疾病的应用,磁卫生学、磁生态学、生物磁学等,并且取得了明显的进展。

(1)恒定均匀磁场对肿瘤的作用

恶性肿瘤是当今世界危及人类生命的主要疾病之一,积极有效的治疗至今仍未获得突破性进展。人们仍在不断探索和寻求治疗肿瘤的各种方法。应用磁场的物理特性,对肿瘤进行治疗是近年来才开始研究的课题,可望为恶性肿瘤的综合治疗提供新的途径和方法。

恒定均匀磁场是由于优化磁路设计的超导磁体或恒磁体所产生的磁场。它的主要特点是要求磁场在一定范围内磁场强度保持均匀恒定。恒定均匀磁场的强度一般为0.05~1.5T,有的可达2~4T。主要应用于医学成像和波谱学的研究。因此,MRI的恒定均匀磁场可作为一种新的研究手段,用于肿瘤的研究。西安医科大学第一附属医院影像中心的研究人员经过试验证明,磁场可加速肿瘤细胞凋亡的发生,从而达到抑制肿瘤生长的作用。

(2)磁化水及其应用

水以一定流速(0.1米/秒左右),垂直于磁力线方向通过磁场后,即为磁处理水。为此制有专门的磁水器。磁水器的磁场强度一般为200~500mT,水流切割磁场数次至十几次。磁处理水能使水分子间的结合状态发生变化。水并非均以单分子H2O所组成,水分子之间存在力的作用呈结合状态。水分子是极性分子,当水分子通过磁场时,其两端正、负电荷受到劳伦兹力的作用,水分子发生形变而改变了水分子的结合状态,从复杂的长链折散成简单的短链。这样水容易渗入坚硬水垢的缝隙中,使原来较坚固的大块结晶变成小圆球,而使原来较松软的结石表现为平板破碎。长期饮用大量磁处理水,对结石的局部及周围组织的慢性炎症有溶解、冲洗和消炎作用。

2、磁记录技术

磁记录(写入)再生(读出)是由以磁性材料为主构成的磁头完成的。记录

磁头是把电信号转变为磁场,这种磁头由线圈、软磁合金铁芯构成。磁介质是硬磁材料,为使磁化反转记录头必须产生一强磁场,它们之间相对移动在介质上就形成连续的磁化图形。再生磁头则是介质磁场转变成电信号,从而读出所记录的信号。

以磁盘机、磁带机为代表的数字磁记录设备作为计算机外存设备的主体,几十年来在外存领域一直占据统治地位。近年来,磁光盘和大容量半导体存储器的发展,已对磁记录的地位构成了一定的威胁。磁记录设备必须进一步提高记录性能、增大容量、缩小体积,才能适应计算机不断发展的需要,巩固其在外存领域的地位。另一方面,随着计算机应用领域的扩大,对外存设备的环境适应能力也提出了越来越高的要求。特别在军事、航天以及高温高湿高污染等特殊应用场合,不仅要求设备具有优良的存储记录性能,而且要求它们具有优良的抗恶劣环境的能力,以保证在这些条件下工作的可靠性。磁盘、磁带等磁记录介质是磁记录设备中记录和存储信息的载体,它们的性能对磁记录设备的记录性能和环境适应能力有着决定性的影响。因此,为了适应计算机的发展和实际应用的需要,除了不断开发新型的高密度记录介质外,还必须改进和提高介质抗恶劣环境的能力。数字磁记录介质的发展概况及动向。

磁记录技术已有近一个世纪的发展历史。从本世纪50年代起,随着计算机的发展,磁记录技术在数字磁记录领域获得了广泛的应用。这一技术数十年来一直长盛不衰,主要原因在于记录性能的不断改进和提高。过去30年来,磁记录设备的记录密度提高了近1000倍。由于磁头、磁道定位技术,读写信道电子学以及磁记录介质等方面的进步,当初预测的密度极限不断突破。近年来,在硬盘中已经实现了1~2GB/in的记录密度。随着这些技术的继续改进,磁记录系统的性能还将获得进一步提高。

3、电感式传感器

传感器由两个基本部分组成,敏感元件又称预变换器,它的任务是将被测的非电量转化成易测的非电量。对于易测的非电量,就不需要这个环节。变换器是将被测非电量变换成电量的器件,又称变换元件。没有敏感元件的传感器也称为变换器。

变换器的种类很多,按其输出电讯号的性质来分,有电参数变换器(包括电阻式、电容式、电感式和频率式)和电量变换器(包括电压、电荷等),下面仅介绍自感式变换器,自感式变换器又分为闭磁路自感变换器和开磁路自感变换器两种类型。

(1)闭磁路自感式变换器

如图9(a)所示,A 为固定铁心,B 为可动铁心且用拉簧定位。

(a) (b)

图9 闭磁路自感变换器

线圈中未通过电流时,A 、B 间有一定的距离l 0,铁心截面S=ab ,线圈的匝数为N ,则线圈的自感可用下式计算

I

N I L φψ==

根据磁路定律有 ∑+==0

00,S l S l R R NI k k k m m μμφ 式中m R 为磁阻,k l 、k μ、k S 分别为铁心第k 段的长度、磁导率和截面积,0l 、0μ、0S 分别为铁心空气隙的长度、磁导率和等效截面积,铁心不饱和时,铁心的磁阻可以忽略不计。将m R ,φ表达式代入L 的计算式,得

0022l S N L μ= 可见,L 与S 及l 0有关,利用这一点,S 及l 0可以作为变换器得输入量,当铁心上下移动或左右移动时,改变S 或l 0这种输入量为直线位移。改变可动铁心得形状,让其旋转,输入量也可以是角度,当B 旋转时,可以改变气隙的有效

面积。变换器还可以做成差动式,如图9(b )所示。调整B 使无输入量时的两个线圈的电感相等,若有输入量时,一个线圈的电感变大,而另一个的电感变小。

(2)开磁路自感变换器

开磁路自感变换器由空心螺线管中间插入铁心构成。当铁心发生直线位移时,螺线管具有不同的电感,因此,输入量时直线位移,输出量是电感。这种变

换器的铁心磁路只占一部分,空气的磁路很长,故称开磁路。

(a )

(b )

图10 开磁路自感变换器 如图10(a )所示空心螺线管长度为l ,总匝数为N ,内半径为r ,通有电流I ,则中心线上任一点的磁感应强度为

()120cos cos 2θθμ?=l

I N B 当r l ??时,螺线管中间一段的磁场近似均匀,因此可以略去磁感应强度的径向分量。取平均磁感应强度作为螺线管内磁感应强度,即

()()()r x r l I N dx x r x x l r x l l l I N dx l

l I N B l l ?+=???

????

?++?+?=?=∫∫2220222200120012cos cos 12μμθθμ 空心螺线管的电感为

()22

20222

2

200l r N r l r l r N I N I L πμπμφψ≈?+===

若有一半径为r c 、磁导率为μ的铁心插入此螺线管内,长度为l c ,则与L 0的式子相似,其电感值为

???????+===c c c c r Fe r l r l r N I N I L 222220πμμφψ

由于0μμ??,故有铁心的螺线管的电感可写成为

()

?????????????++?+=+=c c c r c Fe r l r r r l r r l N L L L 2222222200μπμ 近似写成为

[]c

r c l r l r l N L μπ

μ22220+= 开磁路自感变换器常做成差接式,如图10(b )所示。左右两个螺线管完全一样,铁心的初始位置放在两个螺线管的中间,所以,两个螺线管的初始电感值相等,当铁心移动x Δ时,一边电感增加,另一边电感减小,即

()[]x l r l r l N L c r c Δ++=μπ

μ222201

()[]

x l r l r l N L c r c Δ?+=μπ

μ222202 利用这一差异,就可以进行测量。

第四部分 时变电磁场的应用举例

1831年法拉第发现的电磁感应定律是时变电磁场特有的规律之一,磁场的变化可以产生电场,不仅为电磁场的完整方程打下了基础,而且表明机械能可以转化成电能。电磁感应定律为设计发电机、电动机和变压器等电工设备提供了理论依据。从而促进了电力工业和电气化的发展。法拉第还提出了场的概念。1862年,麦克斯韦提出位移电流的假设,说明电场的变化也会产生磁场,并将电磁场理论归结为四个微分方程,即麦克斯韦方程。在此基础上,他预见到电磁波的存在。1990年,坡印亭提出了能流理论。1900年左右洛仑兹和彭加勒提出关于电磁冲量和电磁能流的相联系的知识。1901年列别节夫进一步证明了场的物质属性。

我们经常碰到的电磁问题,可以说极大多数属于时变电磁场问题。其变化频率分布在一个广泛的范围内。由电力工业50Hz到电话、广播的音频范围,到各种频段的无线电波,以至电视、雷达、光纤通讯等等。除了电磁波在无线电的应用外,还在检测控制、高频加热、地质勘探、电磁干扰及危害等方面,也需要对有关电磁问题进行研究。

1、电磁感应现象及其应用

1831年8月,法拉第把两个线圈绕在一个铁环上,线圈A接直流电源,线圈B接电流表,他发现,当线圈A的电路接通或断开的瞬间,线圈B中产生瞬时电流。法拉第发现,铁环并不是必须的。拿走铁环,再做这个实验,上述现象仍然发生。只是线圈B中的电流弱些。为了透彻研究,电磁感应现象法拉第做了许多实验。1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化着的电流、变化着的磁场、运动的稳恒电流、运动的磁铁、在磁场中运动的导体。法拉第之所以能够取得这一卓越成就,是同他关于各种自然力的统一和转化的思想密切相关的。正是这种对于自然界各种现象普遍联系的坚强信念,支持着法拉第始终不渝地为从实验上证实磁向电的转化而探索不已

电磁感应现象是电磁学的重大发现之一,这一重大发现进一步揭示了电和磁

的密切联系,为后来麦克斯韦建立完整的电磁理论奠定了基础。根据这一发现后来发明了发电机、变压器等电气设备,使电能在生产和生活中得到广泛应用,开辟了电气化时代。

(1) 电感器和变压器

电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一。

自感:当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压),这就是自感。

互感:两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度。电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。变压器是利用电感器的电磁感应原理制成的部件。

变压器是利用其一次(初级)、二次(次级)绕组之间圈数(匝数)比的不同来改变电压比或电流比,实现电能或信号的传输与分配。其主要有降低交流电压、提升交流电压、信号耦合、变换阻抗、隔离等作用。

(2) 电机

电磁感应原理的最重要的应用之一是电机。电磁感应的最重要的应用之一是电机。图11所示是简单的交流发电机的原理图。

N

S

图11简单的交流发电机的原理图

一个线圈在均匀的磁场中旋转,由于线圈转动,穿过它的磁通便要发生改变,

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么就是等值面?什么就是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么就是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则就是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向与传播方向。 3.什么就是电偶极子?电偶极矩矢量就是如何定义的?电偶极子的电磁场分布就是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量与间距的乘积,方向由负电荷指向正电荷。

4、麦克斯韦积分与微分方程组的瞬时形式与复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5、结构方程

6、什么就是电磁场边界条件?它们就是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件就是在无限大平面的情况得到的,但就是它们适用于曲率半径足够大的光滑曲面。 7、不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量与磁感应强度的法向分量永远就是连续的 (2)理想导体表面的边界条件 ★理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流与面电荷。

电磁场理论发展历史及其在现代科技中的应用

电磁场理论发展历史及其在现代科技中的应用 摘要:电磁场理论在现代科技中有着广泛的应用。现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。在本文中主要介绍电磁场理论发现和发展的历史以及在现代科技中的也应用。 关键词:电磁学电磁场理论现代科技 对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。 库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培在假设了两个电流元之间的相互作用力沿着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。基于这与牛顿万有引力定律十分类似,S.D.泊松、C.F.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。 直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。1846年,M.法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。J.C.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将

2009级电磁场理论期末试题-1(A)-题目和答案--房丽丽

课程编号:INF05005 北京理工大学2011-2012学年第一学期 2009级电子类电磁场理论基础期末试题A 卷 班级________ 学号________ 姓名________ 成绩________ 一、简答题(共12分)(2题) 1.请写出无源、线性各向同性、均匀的一般导电(0<σ<∞)媒质中,复麦克斯韦方程组的限定微分形式。 2.请写出谐振腔以TE mnp 模振荡时的谐振条件。并说明m ,n ,p 的物理意义。 二、选择题(每空2分,共20分)(4题)(最好是1题中各选项为同样类型) 1. 在通电流导体(0<σ<∞)内部,静电场( A ),静磁场(B ),恒定电流场(B ),时变电磁场( C )。 A. 恒为零; B. 恒不为零; C.可以为零,也可以不为零; 2. 以下关于全反射和全折射论述不正确的是:( B ) A.理想介质分界面上,平面波由光密介质入射到光疏介质,当入射角大于某一临界角时会发生全反射现象; B.非磁性理想介质分界面上,垂直极化波以某一角度入射时会发生全折射现象; C.在理想介质与理想导体分界面,平面波以任意角度入射均可发生全反射现象; D.理想介质分界面上发生全反射时,在两种介质中电磁场均不为零。 3. 置于空气中半径为a 的导体球附近M 处有一点电荷q ,它与导体球心O 的距离为d(d>a),当导体球接地时,导体球上的感应电荷可用球内区域设置的(D )的镜像电荷代替;当导体球不接地且不带电荷时,导体球上的感应电荷可用(B )的镜像电荷代替; A. 电量为/q qd a '=-,距球心2/d a d '=;以及一个位于球心处,电量为q aq d ''=; B. 电量为/q qa d '=-,距球心2/d a d '=;以及一个位于球心处,电量为q aq d ''=; C. 电量为/q qd a '=-,距球心2/d a d '=; D. 电量为/q qa d '=-,距球心2/d a d '=; 4.时变电磁场满足如下边界条件:两种理想介质分界面上,( C );两种一般导电介质(0<σ<∞)分界面上,(A );理想介质与理想导体分界面上,( D )。 A. 存在s ρ,不存在s J ; B. 不存在s ρ,存在s J ; C. 不存在s ρ和s J ; D. 存在s ρ和s J ; 三、(12分)如图所示,一个平行板电容 器,极板沿x 方向长度为L ,沿y 方向宽 度为W ,板间距离为z 0。板间部分填充 一段长度为d 的介电常数为ε1的电介质,如两极板间电位差为U ,求:(1)两极板 间的电场强度;(2)电容器储能;(3)电 介质所受到的静电力。

经典电磁场理论发展简史..

电磁场理论发展史 ——著名实验和相关科学家 纲要: 一、定性研究 1、吉尔伯特的研究 2、富兰克林 二、定量研究 1、反平方定律的提出 2、电流磁效应的发现 3、电磁感应定律及楞次定律 4、麦克斯韦方程 5、电磁波的发现 三、小结 一、定性研究 1、吉尔伯特的研究 他发现不仅摩擦过的琥珀有吸引轻小物体的性质,而且一系列其他物体如金刚石、水晶、硫磺、明矾等也有这种性质,他把这种性质称为电性,他是第一个用“电力”、“电吸引”、“磁极”等术语的人。吉尔伯特把电现象和磁现象进行比较,发现它们具有以下几个截然不同的性质: 1.磁性是磁体本身具有的,而电性是需要用摩擦的方法产生; 2.磁性有两种——吸引和排斥,而电性仅仅有吸引(吉尔伯特不知道有排斥); 3.磁石只对可以磁化的物质才有力的作用,而带电体可以吸引任何轻小物体; 4.磁体之间的作用不受中间的纸片、亚麻布等物体的影响,而带电体之间的作用要受到中间这些物质的影响。当带电体浸在水中,电力的作用可以消失,而磁体的磁力在水中不会消失; 5.磁力是一种定向力,而电力是一种移动力。

2、富兰克林的研究 富兰克林(公元1706一1790)原来是费城的印刷商,他通过书本和科学上的来往获得了丰富知识,他利用莱顿瓶做出的第一项重要工作,是根据莱顿瓶内外两种电荷的相消性,在杜菲的“玻璃电”和“树脂电”的基础上提出正电和负电的概念。 富兰克林所做的第二项重要工作是统一了天电和地电。 二、定量研究 1、反平方定律的提出 1750年前后,彼得堡科学院院士埃皮努斯在实验中发现;当发生相互作用的电荷之间的距离缩短时,两者之间的吸引力和排斥力便增加。1766年富兰克林写信给他在德国的一位朋友普利斯特利(公元1733一1804),介绍了他在实验中发现在金属杯中的软木球完全不受金属杯电性的影响的现象。他请普利斯特利给予验证。 英国科学家卡文迪许在1772年做了一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。 法国物理学家库仑(公元1736—1806),起先致力于扭转和摩擦方面的研究。由于发表了有关扭力的论文,于1781年当选为国家科学院院士。他从事研究毛发和金属丝的扭转弹性。1784年法国科学院发出船用罗盘最优结构的悬奖征文,库仑转而研究电力和磁力问题。 1785年库仑自制了一台精巧的扭秤,作了电的斥力实验,建立了著名的库仑定律:两电荷之间的作用力与其距离的平方成反比,和两者所带电量的乘积成正比。 公式:F=k*(q1*q2)/r^2 2、电流磁效应的发现 丹麦物理学家奥斯特(公元1777—1851)首次发现电流磁效应,揭开了电和磁两种现象的内在联系,从此开始了电磁学的真正研究。 1820年4月在一次关于电和磁的讲课快结束时,他抱着试试看的心情做了实验,在一根根细的铂丝导线的下面放一个用玻璃罩罩着的小磁针,用伽伐尼电池将铂丝通电,他发现磁针偏转,这现象虽然未引起听讲人的注意,却使他非常激

电磁学发展简史

电磁学发展简史 07 电联毛华超 一.早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下:1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,给出了欧姆定律的理论推导。欧姆定律发现初期,许多物理学家不能正确理解和评价这一发现,并遭到怀疑和尖锐的批评。研究成果被忽视,经济极其困难,使欧姆精神抑郁。直到1841年英国皇家学会授予他最高荣誉的科普利金牌,才引起德国科学界的重视。 二.安培和法拉第奠定了电动力学基础 1820年间,奥斯特在给学生讲课时,意外地发现了电流的小磁针偏转的现象。当导线通电流时,小磁针产生了偏转。这个消息传到巴黎后,启发了法国物理学家安培。他思考,既然磁与磁之间、电流与磁之间都有作用力,那么电流与电流之间是否也存在作用力呢?他重复了奥斯特的实验,几天后向巴黎科学院提交了第一篇论文,提出了磁针转动方向与电流

2011级电磁场理论期末试题带详细答案

课程编号:INF05005 北京理工大学2013-2014学年第一学期 2011级电子类电磁场理论基础期末试题B 卷 班级________ 学号________ 姓名________ 成绩________ 一、简答题(12分) 1.请写出无源媒质中瞬时麦克斯韦方程组积分形式的限定形式。(4分) 答:媒质中无源,则0su J =,0ρ= ()l s E H dl E ds t ?εσ??? ?=+??????? ?? ()l s H E dl ds t ?μ??=-?? ? =0s E ds ε?? =0s H ds μ?? (评分标准:每式各1分) 2.请写出理想导体表面外侧时变电磁场的边界条件。(4分) 答:? ??==?00?t E E n , ?? ?==?s n s D D n ρρ ?, ???==?00 ?n B B n , ? ? ?==?s t s J H J H n ? 3.请利用动态矢量磁位A 和动态电位U 分别表示磁感应强度B 和电场E ;并简要叙述引入A 和U 的依据条件。(4分) 答:B A =??,A E U t ?=-?- ?; 引入A 的依据为:0B ??=,也就是对无散场可以引入上述磁矢位;引入U 的依 据为:0A E t ?? ???+= ????,也就是对无旋场,可以引入势函数。 二、选择题(共20分)(4题) 1. 以?z 为正方向传播的电磁波为例,将其电场分解为x ,y 两个方向的分量:(,)cos()x xm x E z t E t kz ωφ=-+和(,)sin()y ym y E z t E t kz ωφ=-+。判断以下各项中电 磁波的极化形式:线极化波为( B );右旋圆极化波为( C )。(4分)

电磁学发展史简述

绪论 一、电磁学发展史简述 1概述 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。 和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。 2电学发展简史 “电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。自从18世纪中叶以来,对电的研究逐渐蓬勃开展。它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。 现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。电学又可称为电磁学,是物理学中颇具重要意义的基础学科。

麦克斯韦电磁场理论的建立及意义

麦克斯韦电磁场理论的建立及意义 班级:物理系09本三班姓名:范日耀 摘要:文章通过对法拉第力线思想和W.汤姆孙的类比研究的阐述来引出麦克斯韦的电磁场理论。麦克斯韦经过三个艰难的过程建立了电磁场理论,为壮伟的物理大厦添砖加瓦,做出了巨大贡献。 关键字:法拉第力线思想W.汤姆孙类比研究麦克斯韦电磁场理论 一、引言 二、内容 1、前人的研究 (1)法拉第的力线思想 法拉第从广泛的实验研究中构想出描绘电磁作用的“力线”图像。他认为电荷和磁极周围的空间充满了力线,靠力线(包括电力线和磁力线)将电荷(或磁极)联系在一起。力线就像是从电荷(或磁极)发出、又落到电荷(或磁极)的一根根皮筋一样,具有在长度方向力图收缩,在侧向力图扩张的趋势。他以丰富的想象力阐述电磁作用的本质。 法拉第研究了电介质对电力作用的影响,认识到这一影响表明电力不可能是超距作用,而是通过电介质状态的变化;即使没有电介质,空间也会产生某种变化,布满了力线。后来,法拉第又进一步研究了磁介质,解释了顺磁性和反磁性。电磁感应现象则解释为磁铁周围存在某种“电应力状态”,当导线在其附近运动时,收到应力作用而有电荷做定向运动;回路中产生电动势则是由于穿过回路的磁力线数目发生了变化。 法拉第的力线思想实际上就是场的观念,这是近距理论的核心内容。 (2)W.汤姆孙的类比研究 在法拉第力线思想的激励下,W.汤姆孙对电磁作用的规律也进行过有益的研究。他从法国科学家傅里叶的热传导理论得到启示。傅里叶在1824年发表《热的分析理论》一书,详细的研究了在介质中热流的传播问题,建立了热传导方程。这本书W.汤姆孙对有很深的影响。 1842年,W.汤姆孙发表了第一篇关于热和电的数学论文,题为:《论热在均匀固体中的均匀运动及其与电的数学理论的联系》,他论述了热在均匀固体中的传导和法拉第电应力在均匀介质中传递这两种现象之间的相似性。他指出电的等势面对应于热的等温面,而电荷对应与热源。利用傅里叶的热分析法,他把法拉第的力线思想和拉普拉斯、泊松等人已经建立的完整的静电理论结合在一起,初步形成了电磁作用的统一理论。 1847年,W.汤姆孙进一步研究了电磁现象与弹性现象的相似性,在题为《论电力、磁力和伽伐尼力的力学表征》一文中,以不可压缩流体的流线连续性为基础,论述了电磁现象和流体力学现象的共性。1851年,他给除了磁场的定义,1856年,根据磁致旋光效应提出了磁具有旋转的特性,这样就为进一步借用流体力学中关于涡旋运动的理论,做好了准备。 W.汤姆孙运用类比方法,把法拉第的力线思想转变为定量的表述,为麦克斯韦的工作提供了十分有益的经验。 2、麦克斯韦建立电磁场理论 (1)电磁场理论建立的第一步 麦克斯韦在电磁理论方面的工作可以和牛顿在力学理论方面的工作相媲美。他和牛顿一样,是“站在巨人的肩上”,看得更深更远,作出了伟大的历史综合;他和牛顿一样,其丰硕的成果是一步一步提炼出来的。

电磁场与电磁波理论 概念归纳.(DOC)

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

麦克斯韦电磁场理论的诞生历程

麦克斯韦电磁场理论的诞生历程 柴XX (理学院光信息科学与技术1002班学号XXX) 摘要:1855年至1865年,麦克斯韦在全面地审视了库仑定律、毕奥—萨伐尔定律和法拉第定律的基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。 关键词:麦克斯韦、电磁理论、诞生 引言 电磁场理论的发展经历了三次飞跃:一是库仑定律的建立,二是运动电荷磁效应的发现,三是变化着的电场和磁场的内在联系的假设。 根据一些互不相关适用范围各不相同的实验定律(库仑定律、毕一萨定律和电磁感应定律),能否扩展为一组有内在联系的普遍成立的、能对电磁现象作出统一描述的数学理论体系,这是摆在当时物理学界的一大问题。 法拉第为此走出了坚定的第一步,紧接着麦克斯韦迈开了关键性的第二步。 一、法拉第的奠基 法拉第坚信电磁作用是一种近距作用,他为此提出的力线、场观念具有极其深奥的物理思想。描述场的力线、力管虽是一种定性理论,却为建立电磁学的数学理论提供了物理依据。场观念是物理学中一个全新的观念,一个开创性见解,是对超距作用观点的挑战,其价值要比电磁感应定律的发现高出许多倍。它暗示电磁理论和力学理论在方法论和数学结构上会有极大的差异:力学对质点的描述仅仅涉及到整个电磁场空间。从超距作用过渡到以场为基本变量,以致使电磁理论成为一个时代的场理论。 一门真正的科学理论应该是定量的。由于数学的准确性、抽象性、广泛性,早已成为物理学的亲密朋友。用数学语言精确表述创造性科学思想,深刻揭示自然规律,是科学发展的要求,也是科学成熟的重要标志。 物理学家一要善于提出反映事物本质的物理观念,二要善于将物理问题转化成为数学问题,并用恰当方法求解,三要善于透过数学结果看出隐藏其后的新的物理思想。 法拉第借用力线把场的许多性质用简单而又极富启发性地表示出来了。但终因缺乏数学功底,苦于无法用恰当的数学语言来精确描述,不能更深刻地揭示电磁现象的内在规律性。但深奥的力线、场思想都鼓舞着麦克斯韦接过法拉第的火炬继续向前跑。 二、麦克斯韦的努力与电磁场理论的诞生 麦克斯韦大学毕业不久,读到了法拉第的《电学实验研究》,就被法拉第闪光的科学思想吸引住了,决计以数学弥补其不足。麦克斯韦受过良好教育,先在爱丁堡大学攻读数学、物理,后转入剑桥大学专攻数学,成绩优异。受两位导师霍普金斯和斯托克斯的直接影响,他很重视数学和物理的结合,成为一位优秀的数学物理学家。这一点对他日后完成电磁理论是至关重要的。 法拉第和麦克斯韦两个人都是很有胆识和极富想象力的。一个是实验巨匠,长于物理直

电磁场理论练习题

第一章 矢量分析 1.1 3?2??z y x e e e A -+= ,z y e e B ?4?+-= ,2?5?y x e e C -= 求(1)?A e ;(2)矢量A 的方向余弦;(3)B A ?;(4)B A ?; (5)验证()()()B A C A C B C B A ??=??=?? ; (6)验证()()()B A C C A B C B A ?-?=??。 1.2 如果给定一未知矢量与一已知矢量的标量积和矢量积,则可确定该未知矢 量。设A 为已知矢量,X A B ?=和X A B ?=已知,求X 。 1.3 求标量场32yz xy u +=在点(2,-1,1)处的梯度以及沿矢量z y x e e e l ?2?2?-+= 方向上的方向导数。 1.4 计算矢量()() 3222224???z y x e xy e x e A z y x ++= 对中心原点的单位立方体表面的面积分,再计算A ??对此立方体的体积分,以验证散度定理。 1.5 计算矢量z y e x e x e A z y x 22???-+= 沿(0,0),(2,0),(2,2),(0,2),(0,0)正方形闭合回路的线积分,再计算A ??对此回路所包围的表面积的积分,以验证斯托克斯定理。 1.6 f 为任意一个标量函数,求f ???。 1.7 A 为任意一个矢量函数,求()A ????。 1.8 证明:A f A f A f ??+?=?)(。 1.9 证明:A f A f A f ??+??=??)()()(。 1.10 证明:)()()(B A A B B A ???-???=???。 1.11 证明:A A A 2)(?-???=????。 1.12 ?ρ?ρ?ρρsin cos ?),,(32z e e z A += ,试求A ??,A ??及A 2?。 1.13 θθθ?θ?θcos 1?sin 1?sin ?),,(2r e r e r e r A r ++= ,试求A ??,A ??及A 2?。 1.14 ?ρ?ρsin ),,(z z f =,试求f ?及f 2?。 1.15 2sin ),,(r r f θ?θ=,试求f ?及f 2?。 1.16 求??S r S e d )sin 3?(θ,S 为球心位于原点,半径为5的球面。 1.17 矢量??θ23cos 1?),,(r e r A r = ,21<

电磁学的发展及生活生产中的应用

电磁学的发展及生活生产中的应用摘要:电磁学核心及发展,电磁学应用(磁悬浮列车、电磁炮) 关键字:电磁学、磁悬浮、电磁炮 引言: 随着电话,电视等电子产品的广泛应用,电磁学也日益受到人们的重视。内容: 简单的说来,电磁学核心只有四个部份:库伦定律、安培定律、法拉第定律与麦克斯威方程式。并且顺序也一定如此。这可以说与电磁学的历史发展平行。其原因也不难想见;没有库伦定律对电荷的观念,安培定律中的电流就不容易说清楚。不理解法拉第的磁感生电,也很难了解麦克斯威的电磁交感。因此,要了解电磁学的应用就必须先了解它的发展。 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。电磁学的进一步发展促进了电磁在生活技术当中的应用。 (一)民用--磁悬浮列车 1911年,俄国托木斯克工艺学院的一位教授曾根据电磁作用原理,设计并制成一个磁垫列车模型。该模型行驶时不与铁轨直接接触,而是利用电磁排斥力使车辆悬浮而与铁轨脱离,并用电动机驱动车辆快速前进。 1960年美国科学家詹姆斯?鲍威尔和高登?丹提出磁悬浮列车的设计,利用

强大的磁场将列车提升至离轨几十毫米,以时速300公里行驶而不与轨道发生摩擦。遗憾的是,他们的设计没有被美国所重视,而是被日本和德国捷足先登。德国的磁悬浮列车采用磁力吸引的原理,克劳斯?马菲公司和MBB公司于1971年研制成常导电磁铁吸引式磁浮模型试验车。 随着超导和高温超导热的出现,推动了超导磁悬浮列车的研制。1987年3月,日本完成了超导体磁悬浮列车的原型车,其外形呈流线形,车重17吨,可载44人,最高时速为420公里。车上装备的超导体电磁铁所产生的电磁力与地面槽形导轨上的线圈所产生的电磁力互相排斥,从而使车体上浮。槽形导轨两侧的线圈与车上电磁铁之间相互作用,从而产生牵引力使车体一边悬浮一边前进。由于是悬空行驶,因而基本上不作用车轮。但在起动时,还需有车轮做辅助支撑,这和飞机起降时需要轮子相似。这列超导磁悬浮列车由于试验线路太短,未能充分展示出空的卓越性能。 (二)军用—电磁炮 早在1845年,查尔斯?惠斯通就制作出了世界第一台磁阻直流电动机,并用它把金属棒抛射到20米远。此后,德国数学家柯比又提出了用电磁推进方法制造“电气炮”的设想。而第一个正式提出电磁发射(电磁炮)概念并进行试验的是挪威奥斯陆大学物理学教授伯克兰。他在1901年获得了“电火炮”专利。1920年,法国的福琼?维莱普勒发表了《电气火炮》文章。德国的汉斯莱曾将10克弹丸用电磁炮加速到1.2公里,秒的初速。1946年,美国的威斯汀豪斯电气公司建成了一个全尺寸的电磁飞机弹射器,取名“电拖”。 到20世纪70年代,随着脉冲功率技术的兴起和相关科学技术的发展,电磁发射技术取得了长足的进步。澳大利亚国立大学的查里德?马歇尔博士运用新技术,把3克弹丸加速到了5.9公里,秒。这一成就从实验上证明了用电磁力把物体推进到超高速度是可行的。他的成就1978年公布后,使世界相关领域的科学家振奋不

吉大物理电磁场理论基础答案.

3. 两根无限长平行直导线载有大小相等方向相反电流I, I以dI/dt的变化率增长,一矩形线圈位于导线平面内(如图,则 A.线圈中无感应电流; B B.线圈中感应电流为顺时针方向; C C.线圈中感应电流为逆时针方向; D D.线圈中感应电流方向不确定。 4. 在通有电流I 无限长直导线所在平面内,有一半经r、电阻R 导线环,环中心 距导线a,且a >> r。当导线电流切断后,导线环流过电量为 5.对位移电流,有下述四种说法,请指出哪一种说法是正确的 A A.位移电流是由变化电场产生的

B B.位移电流是由变化磁场产生的 C C.位移电流的热效应服从焦耳-楞次定律 D D.位移电流的磁效应不服从安培环路定理 6.在感应电场中电磁感应定律可写成 式中E K为感应电场的电场强度,此式表明 A. 闭合曲线C 上E K处处相等 B. 感应电场是保守力场 C.感应电场的电场线不是闭合曲线 D.感应电场不能像静电场那样引入电势概念

1. 长直导线通有电流I ,与长直导线共面、垂直于导线细金属棒AB ,以速度V 平行于导线作匀速运动,问 (1金属棒两端电势U A 和U B 哪个较高?(2若电流I 反向,U A 和U B 哪个较高?(3金属棒与导线平行,结果又如何?二、填空题 U A =U B U A U B

;

三、计算题 1.如图,匀强磁场B 与矩形导线回路法线 n 成60°角 B = B = B = kt kt (k 为大于零的常数。长为L的导体杆AB以匀速 u 向右平动,求回路中 t 时刻感应电动势大小和方向(设t = 0 时,x = 0。解:S B m ρρ?=φLvt kt ?=21dt d m i φε=2 21kLvt =kLvt =方向a →b ,顺时针。 ο 60cos SB =用法拉第电磁感应定律计算电动势,不必 再求动生电动势

电磁场理论发展史(DOC 6页)

电磁场理论发展史 引言 载法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家——麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示“不能接受即时传播的思想”,在法拉弟的物理思想影响下,他决心“为法拉弟的场概念提供数学方法的基础”. 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:“借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念”他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了“建立力学模型——引出基本公式——进行数学引伸推导”的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:“我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来”“力线的切线方向就是电场力的方向,力线的密度表示电场力的大小”.他企图阐明电力线和电力线所在空间之间的几何关

电磁学在电力系统中的应用

电磁学在电力系统中的应用 任何一门科学的诞生和发展都离不开科学内部知识的继承和外部社会历史条件的制约,1 9世纪电磁学的崛起正是科学发展的内在逻辑与当时电力技术革命相互影响相互推动的结果。近年来,传统的电工理论、电磁场理论与电子科学、信息科学、控制科学、材料科学以及生命科学的交叉融合,产生了许多对社会经济发展和人类生活有重大影响的新兴学科,如生物电工学、生物电磁学、纳米磁学等。其中电磁兼容技术是一门迅速发展的交叉学科,涉及电子、计算机、通信、航空航天、铁路交通、电力、军事以至人民生活各个方面。另一方面,高频电磁场在电厂中的除垢技术也是当前重点研发的项目之一。本文将主要讨论电磁兼容技术和高频电磁场除垢技术在电力系统中的应用。 一、电磁兼容技术 电磁兼容( EMC)是指设备或系统在所处的电磁环境中能正常工作且不对该环境中任何其他事物构成不能承受的电磁骚扰的能力。在当今信息社会,随着电子技术、计算机技术的发展,一个系统中采用的电气及电子设备数量大大增加,而且电子设备的频带日益加宽,功率逐渐增大,灵敏度提高,联接各种设备的电缆网络也越来越复杂,因此,电磁兼容问题日显重要。 电力系统电磁兼容的主要内容包括:: (1)电磁环境评价。即通过实测或数字仿真等手段,对设备在运行时可能受到的电磁干扰水平(幅值、频率、波形等)进行估计。例如,利用可移动的电磁兼容测试车对高压输电线路或变电站产生的各种干扰进行实测,或通过电磁暂态计算程序对可能产生的瞬变电磁场进行数字仿真。电磁环境评价是电磁兼容技术的重要组成部分,是抗干扰设计的基础。 (2)电磁干扰耦合路径。弄清干扰源产生的电磁搔扰通过何种路径到达被干扰的对象。一般来说,干扰可分为传导型干扰和辐射型干扰两大类。传导干扰是指电磁搔扰通过电源线路,接地线和信号线传播到达对象所造成的干扰,例如,通过电源线传入的雷电冲击源产生的干扰;辐射干扰是指通过电磁源空间传播到达敏感设备的干扰。例如,输电线路电晕产生的无线电干扰或电视干扰即属于辐射型的干扰。研究干扰的耦合途径, 对制定抗干扰的措施, 消除或抑制干扰有重要的意义。 (3)电磁抗扰性评价。研究电力系统中各种敏感的设备仪表,如继电保护、自动

电磁场理论基础试题集上交

电磁场理论基础习题集 (说明:加重的符号和上标有箭头的符号都表示矢量) 一、填空题 1. 矢量场的散度定理为(1),斯托克斯定理为(2)。 【知识点】:1.2 【难易度】:C 【参考分】:3 【答案】:(1)()???=??S S d A d A ττ (2)() S d A l d A S C ???= ??? 2. 矢量场A 满足(1)时,可用一个标量场的梯度表示。 【知识点】:1.4 【难易度】:C 【参考分】:1.5 【答案】:(1) 0=??A 3. 真空中静电场的基本方程的积分形式为(1),(2),微分形式为(3),(4)。 【知识点】:3.2 【难易度】:B 【参考分】:6 【答案】:(1) 0=??c l d E (2) ∑?=?q S d D S 0

(3) 0=??E (4)()r D ρ=??0 4. 电位移矢量D 、极化强度P 和电场强度E 满足关系(1)。 【知识点】:3.6 【难易度】:B 【参考分】:1.5 【答案】:(1) P E P D D +=+=00ε 5. 有面电流s 的不同介质分界面上,恒定磁场的边界条件为(1),(2)。 【知识点】:3.8 【难易度】:B 【参考分】:3 【答案】:(1) ()021=-?B B n (2) ()s J H H n =-?21 6. 焦耳定律的微分形式为(1)。 【知识点】:3.8 【难易度】:B 【参考分】:1.5 【答案】:(1) 2E E J p γ=?= 7. 磁场能量密度=m w (1),区域V 中的总磁场能量为=m W (2)。 【知识点】:5.9 【难易度】:B 【参考分】:3

电磁场理论发展史

电磁场理论 在法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家--麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论的思路与方法大致如下. 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示"不能接受即时传播的思想",在法拉弟的物理思想影响下,他决心"为法拉弟的场概念提供数学方法的基础". 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:"借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念"他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了"建立力学模型--引出基本公式--进行数学引伸推导"的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:"我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来""力线的切线方向就是电场力的方向,力线的密度表示电场力的大小".他企图阐明电力线和电力线所在空间之间的几何关系.他还试图通过类比凭借已知的力学公式推导出电磁学公式,寻求这两种不同的现象在数学形式上的类似. 第二步,引出基本公式 早在1842年,W·汤姆逊就曾把拉普拉斯的势函数的二阶微分方程,普遍用于热、电和磁的运动,建立了这三种相似现象的数学联系.1847年,他又在不可压缩流体的流线连续性基础上,论述了电磁现象和流体力学现象的共同性.麦克斯韦正是吸收了W·汤姆逊这种类比方法,把它发展成为研究各种力线的重要工具.例如麦克斯韦把电学中的势等效于流

电磁学的应用

电磁学的应用—蓝牙技术 摘要:蓝牙是一种支持设备短距离通信(一般10m内)的无线电技术。利用“蓝牙”技术,能够有效地简化移动通信终端设备之间的通信,也能够成功地简化设备与因特网Internet之间的通信,从而数据传输变得更加迅速高效,为无线通信拓宽道路。 关键词: 1、蓝牙系统 蓝牙系统一般由以下4个功能单元组成:天线单元、链路控制(固件)单元、链路管理(软件)单元和蓝牙软件(协议)单元。它们的连接关系如图1所示: 图1 蓝牙系统结构图 1.1 天线单元 蓝牙要求其天线部分体积十分小巧、重量轻,因此,蓝牙天线属于微带天线。蓝牙空中接口是建立在天线电平为0dBm的基础上的。空中接口遵循Federal Communications Commission(简称FCC,即美国联邦通信委员会)有关电平为0dBm的ISM频段的标准。如果全球电平达到100mW以上,可以使用扩展频谱功能来增加一些补充业务。频谱扩展功能是通过起始频率为2.402 GHz,终止频率为2.480GHz,间隔为1MHz 的79个跳频频点来实现的。出于某些本地规定的考虑,日本、法国和西班牙都缩减了带宽。最大的跳频速率为1660跳/秒。理想的连接范围为100mm~10m,但是通过增大发送电平可以将距离延长至100m。 蓝牙工作在全球通用的 2.4GHz ISM(即工业、科学、医学)频段。蓝牙的数据速率为1Mb/s。ISM频带是对所有无线电系统都开放的频带,因此使用其中的某个频段都会遇到不可预测的干扰源。例如某些家电、无绳电话、汽车房开门器、微波炉等等,都可能是干扰。为此,蓝牙特别设计了快速确认和跳频方案以确保链路稳定。跳频技术是把频带分成若干个跳频信道(hop channel),在一次

相关主题
文本预览
相关文档 最新文档