当前位置:文档之家› 基于Solidworks钣金折弯计算分析(原创)

基于Solidworks钣金折弯计算分析(原创)

基于Solidworks钣金折弯计算分析(原创)
基于Solidworks钣金折弯计算分析(原创)

钣金折弯计算分析及与solidworks配合使用

2013-03-30,ysh

第一章,折弯原理及已推导公式

板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动。

现在通用的展开板料尺寸计算有三种,即折弯系数,折弯扣除和K-因子。通过学习《SolidWorks的钣金设计技术基础——折弯计算》一文(本文最后附带此文),推导出以下4公式,

①折弯补偿(折弯系数):bend allowance,即BA

L=各外边长度之和-2n×(R+T)+BA

n为折弯次数,R为折弯半径,T为板料厚度,BA实质上就是发生变形的弧长(根据下图,可以很好理解上面的公式)

图1

②折弯扣除:bend deduction,即BD

L=各外边长度之和-n×BD

③BA与BD转换公式:BA=2(R+T)tan(α/2)-BD,当α=90°时tan(α/2)

=1

即,BA=2(R+T)-BD

④K-因子:为简化表示钣金中性层的定义,同时考虑适用于所有材料厚度,引

入k-因子的概念。具体定义是:K-因子就是钣金的中性层位置厚度与钣金零件材料整体厚度的比值,即:K = t/T(t为中性层到折弯内侧的距离)。因此,K的值总是会在0和1之间。如果中性钣金层不变形,那么处于折弯区域的中性层圆弧的长度在其弯曲和展平状态下都是相同的。所以,BA(折弯补偿)就应该等于钣金件的弯曲区域中中性层的圆弧的长度。因此,中性钣金层

圆弧的半径可以表示为(R+t).利用这个表达式和折弯角度,中性层圆弧的长度(BA)就可以表示为:

BA = π(R+t)α/180°=π(R+KT)α/180°

K-因子与BA的转换公式:BA=π(R+KT)×α/180°,当α=90°时,

即BA=π(R+KT)/2

solidworks系统也是采用上面的公式进行计算。

第二章,验证已有的折弯系数值并确定使用值

一、90°折弯系数

在网上找到一份《冲模中性层位移系数K》的表格,根据公式④可知,当α=90°时,配合此表,即K 、T 、R为已知,便可求的BA,将BA代入①便可得展开料长。

图2,中性层位移系数K一览表

根据图2可知,曲率半径为ρ=R+KT。也反映了当R/T≥5时,中性层已经不再发生偏移,所以在用solidworks画大圆弧时,可用K=0.5来计算(此时往往为了方便起见,对于此折弯件的其他折弯也采用K=0.5,因折弯大圆弧的通常为T=1、1.2或1.5所以尺寸不会差别多大)。当R/T越小时,K-因子越小,表示中性层越往内侧偏移!

表一中,BA(在用)表示公司正在solidworks中使用的折弯系数,BA(自制)表示网上找到的网友自制的折弯系数表中,α=90°R=0.5的情况下,对应的折弯系数。

表二中,T=0.8,1,1.5三个厚度与BA(自制)对应的数值相同,而其他K值,表上无对应数值,无法参与计算。

接下来详细分析笔记,确定适合自己公司使用的折弯系数。

采用计算方法为折弯系数法。采用公式为solidworks系统的计算公式

L=各外边长度之和-2n×(R+T)+BA

其他参数采用公司习惯使用参数:角度为α=90°,折弯半径R=0.5mm

验证方法:根据公式,对每一个常用厚度选用两种或三种外形尺寸(一种为已批量生产的产品所用系数为BA(在用),一种为系数采用BA(自制)所画的图纸)进行测量和计算,求得BA(公式)值,再与BA(在用)和BA(自制)的值进行比对,最终确定适用公司实际用的BA值。但是因测量数量有限,一般为2、3个,且因材料批次的强度差异、折弯的角度偏差和板料边的毛刺问题等,测量值将会不是很准确,所有测量值仅供参考。

例一:

①T=1.5厚,此图纸所用参数为BA(在用)=1.5

③T=1.5

例二:

①T=2厚,此图纸所用参数为BA(在用)=2

例三:

①T=3厚,此图纸所用参数为BA(在用)=2.5

②T=3

③T=3

取BA=1.9

例四:T=4厚,此图纸所用参数为BA(在用)=2.5,使用V槽=36,GZEK机头箱,连接板实际厚度为3.8mm。

例五:T=5厚,在用)=2.5,使用V槽=36,实际厚度为4.6mm

-0.1,而4mm 实际厚度为3.8, 5mm实际为4.6mm。所以以上计算所得BA值,只适用于现有公司的实际情况。

由于公司目前最大的V槽为36mm。已无法折弯6mm以上的板料,折6mm时,板料已经出现崩裂,危险性很大。

综上所得,总结结果如下表,为常用Q235板料系数(其他板厚详细见自制折弯系数表)。

铝板 T=1.5~1.4mm,R=0.5,BA=1.4

不锈钢板 T=1.5mm,R=0.5,BA=1.5

二、非90°的折弯系数

根据图2中的《中性层位移系数K一览表》可知,当折弯角度大于90°时,中性层向内偏移少,由表和图1可知折弯角度越大,α就越小,K-因子就越大。在T固定的情况下,即R越大。再根据公式④BA=π(R+KT)×α/180°,式中变量R,K变大,但A变小,所以以目前条件,无法确定BA值是变大还是变小!在根据实际观察中,可以发现大于90°折弯的BA值要小于90°时的BA值。例如已经批量生产的《GZ-P送纸辊支撑架》其图纸大致如下

此零件在设计时BA值为2,在角度正确的折弯情况,107.14

尺寸却变成大致为110,。由此可得BA=2这个用于折弯90°的折弯系数在用大于90°的折弯时,明显过大,即使用BA=1.7这个数值也是偏大的。所以可以适当减小BA值的大小,或者可以直接用K因子0.4来计算,因为尺寸的不确定,大于90°折弯最好用于尺寸要求不高的零件。在实际批量生产的零件中,《GZ-P 收、送纸电机护罩》为例,其设计BA=1.2,对于其他135°的折弯也采用BA=1.2,而零件侧边有斜接法兰,所以每一刀的位置都已定好。根据护罩与侧板的焊接组件看来,此零件每一段折弯都偏大一点。所以BA值应适当减小。

故先暂定在

也就每一个折弯才多几十丝,正常生产也没多大影响。对于某些只有个别尺寸要求准的零件,熟悉这套折弯系数的老工人,会把握好重要尺寸,对于其他尺寸也会均匀分料,使每个尺寸合适。而不习惯新系数,反而容易不好把握尺寸。

对于钣金展开尺寸的计算心得

钣金展开尺寸影响到的因素太多,如材料的批次,厂家,材质,凹模的选择,折弯机的个体差异等。因此对于钣金件的展开尺寸,制图人员只能给出一个参考数值,因为展开尺寸最终由R值决定,就像我们平时走路,从A点到B点,走直角路线时距离最远,绕圆弧走比较近,圆弧绕得越大路程就越近,车间工人取折弯刀和折弯槽多数是凭习惯,加上有时也存在“懒得换”的现象,对于不同的折弯刀和折弯槽所加工出来的钣件展开尺寸,车间工人其实也有一定的心得,因为他们有临床试验的经历,假如第一次加工时所用的系数有出入,他们就会有针对

性的作出改变来适应机器和折弯刀,所以我们作为制图人员也不适宜过于硬性的规定自已计算出来的尺寸。

第三章,钣金件结构及尺寸问题

一.成型最小折边。

对于部分料厚而折边小的折弯,比如加强侧筋。例如T=3,而折边宽只有10,原本需要V20槽折的,要改成V14、V16,这样致使折弯R角很小,即折弯的部分变小,而未变形尺寸变大,如果直接套用以上的BA值,势必会使各折弯外边变小,此时可以适当增加些0.3~0.5的BA值,使BA=2~2.2,这样可以避免外形尺寸差太多,具体见下

1、L型折弯

V槽中间距离为悬空段,成型时,折边必须超过此悬空段,具体搭边尺寸按实际设备情况而定(下V槽因使用时间长,R角变大,搭边距

离将会随之变大,否则会“滑位”)

换算公式(经验式) L=6T/2+0.5+0.9T(但下V槽因使用时间长,R角变大,搭边距离将会随之变大,否则会“滑位”),所以可以近似取

L=4T+0.5

因V槽尺寸不一定齐全,故需要灵活使用公式,特别情况下,需要更小V槽时,原则上相对V槽减小不能超过2.0mm(但实际上,远远不止超过这个范围)。附:折弯V模选择表

b为相对应的V槽的最短折弯边长

根据此表可得最小边长,如果一个折弯边长比上表边长还有小,则需要小于标准V槽来折弯(同时要保证这个小的尺寸能够折出来)。在设计时,可以适当减小BA值,一般情况下减0.1~0.3已经差不多了。

表仅做参考

2、U折

决定U折的因素。

上模的形状(如下图)从常规刀具来看,小U折最佳刀具为弯刀(弯刀有很多种型号,具体看实际情况)折边尺寸(见下图,两尺寸呈递增关系)A越长B就越长。

已用solidworks绘制公司折弯机各上下模及平台尺寸,可以大致模拟折弯各结构

的可行性和各尺寸是否干涉。这个方法是最实用的。

二.与折弯机焊接的筋类,要注意弯角处倒圆角,避免筋与折弯机干涉。

设计焊接钣金组件时,一定要考虑到焊接、打磨的方便性,可行性,有

时候要适当增加焊接工艺孔,来焊牢两焊接。在考虑到焊接件的牢固的

同时,要兼顾美观性。

三.

这是常用的定位槽,用来定位竖板与横板的结构。上下3.5mm的空隙是为了放入工具来撬定位片的,使定位片易于放入定位槽内。

四.对于部分尺寸精度要求高的孔、槽类。在激光割的情况下,是无法做到精准的,如Φ6孔,在5mm板材下,激光割实际可能只有Φ5.7,

所以为了保证尺寸精准,在拷贝图纸到激光车间时,要备份一份图纸,

并适当加大尺寸,如Φ6变成Φ6.3,并做好修改记录,以此来达到尺

寸的精度。

五.设计钣金件时还要考虑这个零件是要如何下料的,是激光割、数控冲床、还是冲模,以此来相应做出尺寸和结构调整。如数冲料一般用

1~2mm,因要考虑到已有的冲压凸模大小的限制,所以要设定适当的孔,

槽,腰孔等是否有相匹配的模具来加工。因激光成本是数冲的2、3倍,

所以,在基本情况下,能满足要求的尽量用数冲。

六.板厚与螺纹大小的关系:翻边攻丝.翻边又叫抽孔,就是在一个较小的基孔上抽成一个稍大的孔,再在抽孔上攻丝.这样做可增加其强度,避

免滑牙.一般用于板厚比较薄的钣金加工.当板厚较大时,如2.0、2.5等

以上的板厚,我们便可直接攻丝,无须翻边。一般来说,钢板上的螺纹孔深

度不应小于螺纹公称直径,但如果受力非常小也可以用2~3倍螺距。如果

必须要攻大螺纹孔时,可以在板厚焊接一块厚板,再进行攻丝。板厚选

择参考相应的普通螺母厚度(GB/T41)选择即可,太薄不合适。

第四章,钣金基础

一.钣金所用材料

常用材料有:冷轧板SPCC、电解板SECC、普通铝板及铝合金板AL3003-H14、AL5052-H32,不锈钢板、花纹板SGEC.镀铝锌钢板.

1.冷轧板.简称SPCC,用于表面处理是电镀五彩锌或烤漆件使用.

2.镀锌板.简称SECC,用于表面处理是烤漆件使用.在无特别要求下,一般选用SPCC,可减少成本.

3.铜板.一般用于镀镍或镀铬件使用,有时不作处理.跟据客户要求而定.

4.铝板.一般用于表面处理是铬酸盐或氧化件使用.

5.不锈钢板.分镜面不锈钢和雾面不锈钢,它不需要做任何处理.

6.铝型材.一般用于表面处理是铬酸盐或氧化件使用.主要起支撑或连接作用,大量用于各种插箱中.

下面是常用板厚使用较多的零件类型。

T=0.5, 压纸片等

T=1 ,箱体外壳类,小支架,筋类(一般用于折弯刀数多,尺寸误差小的零件,易变形校正)

T=1.5,安装板类,底梁托板类。

T=2 ,垫片,安装板等

T=3 ,撑架侧筋类,隔板,固定架类

T=4

T=5 ,支撑板

T=8 ,侧板

二.钣金加工方法

1.下料方法下料是将厚材料按需要切成坏料,钣金下料的方法很多.按机床的类型和工作原理可分为剪切、铣切、冲切、氧气切割和激光切割.我们公司主要采用剪板机、数控冲床及激光切割(LASER)。

三.钣金联接方法

钣金联接主工采用焊接、螺纹联接、铆接和粘接.我们公司采用的联接方式:焊接、螺纹联接

观察钣金件焊接,可以注意到很多钣金件焊接的结构和要注意的尺寸。

1.焊接是对焊件进行局部或整体加热或使焊件产生塑性变形,或加热与塑性变形同时进行,实现永久连接的工艺方法.可分为:手工电弧焊、气体保护电弧焊、激光焊、气焊、段焊和接触焊.我们公司主要采用气体保护焊(氩气和二氧化碳保护焊)和点焊。

1.1气体保护电弧焊在进行气体保护电弧焊时,电极电弧区及焊接熔池都处在保护气体的保护下.采用氩气保护焊缝表面没有氧化物及夹杂物.可以在任何空间位置施焊,可以用肉眼观察焊缝的成形过程并进行调整,生产效率高.

①氩弧焊简介

氩弧焊技术是在普通电弧焊的原理的基础上,利用氩气对金属焊材的保护,通过高电流使焊材在被焊基材上融化成液态形成溶池,使被焊金属和焊材达到冶金结合的一种焊接技术,由于在高温熔融焊接中不断送上氩气,使焊材不能和空气中的氧气接触,从而防止了焊材的氧化,因此可以焊接铜、铝、合金钢等有色金属。氩弧焊按照电极的不同分为熔化极氩弧焊和非熔化极氩弧焊两种。1.非熔化极氩弧焊

工作原理及特点:非熔化极氩弧焊是电弧在非熔化极(通常是钨极)和工件之间燃烧,在焊接电弧周围流过一种不和金属起化学反应的惰性气体(常用氩气),形成一个保护气罩,使钨极端头,电弧和熔池及已处于高温的金属不与空气接触,能防止氧化和吸收有害气体。从而形成致密的焊接接头,其力学性能非常好。钨极氩弧焊一般只适于焊接厚度小于6mm的工件。

2.熔化极氩弧焊

工作原理及特点:焊丝通过丝轮送进,导电嘴导电,在母材与焊丝之间产生电弧,使焊丝和母材熔化,并用惰性气体氩气保护电弧和熔融金属来进行焊接的。它和钨极氩弧焊的区别:一个是焊丝作电极,并被不断熔化填入熔池,冷凝后形成焊缝;另一个是采用保护气体,随着熔化极氩弧焊的技术应用,保护气体已由单一的氩气发展出多种混合气体的广泛应用,如以氩气或氦气为保护气时称为熔化极惰性气体保护电弧焊(在国际上简称为MIG焊);以惰性气体与氧化性气体(O2,CO2)混合气为保护气体时,或以CO2气体或CO2+O2混合气为保护气时,或以CO2气体或CO2+O2混合气为保护气时,统称为熔化极活性气体保护电弧焊(在国际上简称为MAG 焊)。从其操作方式看,目前应用最广的是半自动熔化极氩弧焊和富氩混合气保护焊,其次是自动熔化极氩弧焊。

氩气是最常用的惰性气体是氩气。它是一种无色无味的气体,在空气的含量为0.935%(按体积计算),氩的沸点为-186℃,介于氧和氦的沸点之间。氩气是氧气厂分馏液态空气制取氧气时的副产品。

氩焊产生的热量特别大,对工件有很大影响,使工件很容易变形,而薄材则更容易烧坏.

铝材的焊接: 铝及铝合金的溶点低,高温时强度和塑形低,焊接不慎会烧穿且在焊缝面会出现焊瘤.如果两铝材平面焊接,通常在其中一面冲塞焊孔,以增强焊接强度. 如果是长缝焊,一般进行分段点固焊, 点焊的长度为30mm左右(金属厚度2mm~5mm).

铁材的焊接:两工件垂直焊接时,可考虑在这两个工件上分别开工艺定位孔及定位口使其自身就能定位.且端口不能超出另一工件的料厚,也可以冲定位点,使工件定位且需用夹具将被焊处夹紧,以免使工件受热影响而导致尺寸不准.

氩弧缺陷:氩弧焊容易将工件烧坏,导致产生缺口.焊后的工件需要在焊接处进行打磨及抛光.

当工件展开发生干涉或工件太大,可考虑将该工件分成若干部分然后通过氩弧焊来克服,

使其被焊成一体。

co2气体保护焊工艺

以CO2作保护气体,依靠焊丝与焊件之间的电弧来熔化金属的气体保护焊的方法称CO2焊。这种焊接法采用焊丝自动送丝,敷化金属量大、生产效率高、质量稳定,且成本相当低.。因此,在国内外获得广泛应用。一般适用于大于2mm 厚的钢材焊接, 像低熔点金属如:铝、锡、锌等不能使用

气体保护焊的特点

1)采用明弧焊接,熔池可见度好,操作方便,适宜于全位置焊接。并且有利于焊接过程中的机械化和自动化,特别是空间位置的机械化焊接。

2)电弧在保护气体的压缩下热量集中,焊接速度较快,熔池小,热影响区窄,焊件焊后的变形小,抗裂性能好,尤其适合薄板焊接。

3)用氩、氦等惰性气体焊接化学性质较活泼的金属和合金时,具有较好的焊接质量。

4)在室外作业时,必须设挡风装置才能施焊,电弧的光辐射较强,焊接设备比较复杂。

但飞溅的熔渣很多

保护焊的常见缺陷有:裂纹、未熔合、气孔、未焊透、夹渣、飞溅、熔CO

2

透过大等。

1.2接触焊,即压力焊

接触焊是瞬时加热连接部位在熔化状态或非熔化状态下对被焊件加压形成焊接接头的焊接方法.它可分为对焊、点焊和缝焊.

点焊的总厚度不得超过8mm,焊点的大小一般为2T+3(2T表示两焊件的料厚),由于上电极是中空并通过冷却水来冷却.因此电极不能无限制的减小,最小直径

一般为3~4mm.

点焊的工件必须在其中相互接触的某一面冲排焊点,以增加焊接强度,通常

排焊点大小为Φ1.5~2.5mm高度为0.3mm左右.

两焊点的距离:焊件越厚两焊点的中心距也越大,偏小则过热使工件容易变形, 偏大则强度不够使两工件间出现裂缝.通常两焊点的距离不超过35mm(针对

2mm以下的材料).

焊件的间隙:在点焊之前两工件的间隙一般不超过0.8mm,当工件通过折弯

后再点焊时,此时排焊点的位置及高度非常重要,如果不当,点焊容易错位或变形,导致误差较大.

点焊的缺陷:

(1)破损工件的表面, 焊点处极易形成毛刺须作抛光及防锈处理.

(2)点焊的定位必须依赖于定位治具来完成, 如果用定位点来定位其稳定性不佳.

2.螺纹联接

螺纹联接具有安装

容易、拆卸方便、操作简单等优点,常用于可拆的钢结构连接.它可分为螺钉联接

和螺栓联接.

3.铆接

铆接是用铆钉将金属结构的零件或组合件连接在一起的方法,铆钉种类较多,常用的铆钉有封闭形圆头抽芯铆钉、封闭形沉头抽芯铆钉及开口型圆头抽芯铆钉、开口型沉头抽芯铆钉。

四.钣金表面处理方式

表面处理.表面处理一般有磷化皮膜、电镀五彩锌、铬酸盐、烤漆、氧化等.磷化皮膜一般用于冷轧板和电解板类,其作用主要是在料件表上镀上一层保护膜,防止氧化;再来就是可增强其烤漆的附着力.电镀五彩锌一般用冷轧板类表面处理;铬酸盐、氧化一般用于铝板及铝型材类表面处理;其具体表面处理方式的选用,是根据产品的要求而定。

1.拉丝

2.喷砂

3.烤漆、喷粉、主要技术指标:光泽度、膜厚和色差

烤漆前的表面处理:除锈,除油,磷化处理.

烤漆对工件一般要求及工艺处理:

(1)烤漆对工件表面要求平整,凹凸不平影响外观.

(2)在要求的烤漆面上如有通孔,工艺安排时须对该孔作单边加0.1mm处理,

以避免因烤漆导致该孔减小.

(3)在烤漆面如有通孔螺柱,螺母及直接攻芽螺纹则须注明并特别提醒注意以

避免烤漆粘附在螺纹上而导致不良.

(4)烤漆后的工件一般不能受外界的冲击力,如折弯,冲压等.以避免烤漆层脱

落.

4.电镀:主要镀五彩锌、白锌、黑锌、镀铬

5.抛光

6.氧化

五.钣金加工主要设备

1.下料设备:普通剪床、数控剪床、激光切割机、数控冲床、线切割

激光切割:

激光切割是由电子放电作为供给能源,利用反射镜组聚焦产生激光光束作热源的一种无接触切割技术,利用这种高密度光能来实现对钣金件的打孔及落料。

特点:切割形状多样化,切割速度比线切割快,热影响区小,材料不会变形,切口细,精度及质量高,噪声小,无刀具磨损,无需考虑切割材料的硬度,可加工大型,形状复杂及其它方法难以加工的零件。但其成本较高,同时会损坏工件的支撑台,而且切割面易沉积氧化膜,难处理。一般只适合单件和小批量加工。

注意的问题及要求:一般只用于钢板。铝板及铜板一般不能用,因为材料传热太快,造成切口周围融化,不能保证加工精度及质量。激光切割端面有一层氧化皮,酸洗不掉,有特殊要求的切割端面要打磨;激光切割密孔变形较大,一般不用激光切割密孔。

线切割:

线切割是把工件和电极丝(钼丝,铜丝)各作为一极,并保持一定距离,在有足够高的电压时形成火花隙,对工件进行电蚀切割的加工方法,切除的材料由工作液带走。

特点:加工精度高,但加工速度较低,成本较高,且会改变材料表面性质。一般用于

模具加工,不用作加工生产用零件。有些单板型材面板的方孔没有圆角,无法铣削,又因为铝合金不能用激光切割,如果没有冲压空间不能冲压,只能采取线切割加工,速度很慢,效率非常低,无法适应批量生产,设计应该避免这种情况。

2.成形设备:普通冲床、网孔机、折床和数控折床。

3.焊接设备:氩弧焊机、二氧化碳保护焊机、点焊机、机器人焊机。

4.表面处理设备:拉丝机、喷沙机、抛光机、电镀槽、氧化槽烤漆线

5.调形设备:校平机

六.典型钣金件加工流程

图面展开编程下料(剪、冲、割)冲网孔校平拉丝冲凸包冲撕裂压铆折弯焊接表处组装

七.钣金加工工艺.钣金加工时会经常遇到一些问题,需要你去优化它的工艺,使其成为一个良品或达到一个特定的目的.下面就简单来介绍一下我们在钣金加工时,经常要注意到的一些工艺问题和技巧。

1.门板类,一般是利用长边包短边的加工方式,然后在相应角落处开工艺孔,工艺孔的大小一般由板厚而定,板厚增大时,工艺孔的大小也要相应增大,否则折弯时会产生棱角.

2.焊接件,一般是利用治具、孔或凸包来定位焊接.可减少定位时所浪费的工时,保证尺寸,提高工作效率,减少成本.在一些比较难定位的焊接时,一般使用凸包或孔定位.

3.电镀件,因电镀液对料件有腐蚀作用,所以一般要在电镀件的角落处,增加工艺孔,方便电镀液及时排出,确保质量.

4.对于一此较大钣金件来说,对材料又会造成一定的浪费时,我们要考虑将其折成几个子件分开加工,然后再将其焊在一起,即保证了质量,又减少了对材料的浪费,节约了成本.

其他:

5. 翻边攻丝.翻边又叫抽孔,就是在一个较小的基孔上抽成一个稍大的孔,再在抽孔上攻丝.这样做可增加其强度,避免滑牙.一般用于板厚比较薄的钣金加工.当板厚较大时,如2.0、2.5等以上的板厚,我们便可直接攻丝,无须翻边.

6. 合理选择间隙及包边方式:开合适的工艺孔(槽)来减小板材的拉伤,同时也方便折弯.包边的方式一般采用长边包短边的方式(视情况而定).

7. 公差的合理性:对于图面要求走公差的地方一定要合理分配公差.若为电镀,可不考虑公差,若为烤漆,则外形必须走负差,孔位须走正差.

8. 毛刺方向:对于门板类及盒体类必须考虑毛刺方向,一般绘制完图后如料件正面在内,可使用镜像命令反转图面再标注尺寸.要保证毛刺在料件反面为原则(数控冲床的排版方向要考虑到正反面及毛刺方向,特别是表面不处理的不锈钢件亮面方向的选择)。

9. 刀具的合理选择:对于需用特殊刀具加工的地方,先查看公司刀具表确定有无此刀具,若无看是否可作工艺上的改进,无法修正时要请购刀具.

10.膜厚:对于烤漆、喷粉的料件一定要考虑膜厚.通常情况下,对于孔烤漆件要加大0.1~0.2喷粉件要加大0.2~0.3(具体视情况而定),根据情况,如未考虑烤漆

掉挂工艺孔,而该类零件又无其它孔,在展开时考虑加开掉挂工艺孔。

11.易出错的地方需重点提示,如那些大体上对称,但有几个处不易明显区别的零件的折弯,一定要加以注明,而且要用较大的文字在展开图较明显的空白地方加以说明,使操作者不会因图面问题而产生制作错误.部分复杂的零件可在展开图上画出折弯示意图,折弯示意图一定要与图面相符,不给操作者产生误导。

附件

GB/T 1804--92“一般线性尺寸的未注尺寸公差”表:

附文

SolidWorks的钣金设计技术基础

本文详细地介绍了几种目前在钣金件的设计与成型加工中常用的计算方法及其基础理论,详述了折弯补偿法、折弯扣除法及K-因子法的区别和互相转换的关联关系,为行业内的广大工程技术人员提供了有效的参考与引用工具。

一、钣金的计算方法概论

钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算法。通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。

另一方面,随着计算机技术的出现与普及,为更好地利用计算机超强的分析与计算能力,人们越来越多地采用计算机辅助设计的手段,但是当计算机程序模拟钣金的折弯或展开时也需要一种计算方法以便准确地模拟该过程。虽然仅为完成某次计算而言,每个商店都可以依据其原来的掐指规则定制出特定的程序实现,但是,如今大多数的商用CAD和三维实体造型系统已经提供了更为通用的和强大功能的解决方案。大多数情况下,这些应用软件还可以兼容原有的基于经验的和掐指规则的方法,并提供途径定制具体输入内容到其计算过程中去。SolidWorks也理所当然地成为了提供这种钣金设计能力的佼佼者。

总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。SolidWorks软件在2003版之前只支持折弯补偿算法,但自2003版以后,两种算法均已支持。

为使读者在一般意义上更好地理解在钣金设计的计算过程中的一些基本概念,同时也介绍SolidWorks中的具体实现方法,本文将在以下几方面予以概括与阐述:

1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系

钣金件折弯展开计算方法

一、折床工作原理 折弯就是将上、下模分别固定于折床的上、下工作台,利用液压伺服电机传输驱动工作台的相对运动,结合上、下模的形状,从而实现对板材的折弯成形。 二、展开的定义和折弯常识 ★折弯展开就是产品的下料尺寸,也就是钣金在折弯过程中发现形变,中间位置不拉伸,也叫被压缩的位置长度,也叫剪口尺寸。 ★折弯V槽选择公式:当R=0.5时,V=5T;当R>0.5时V=5T+R 折弯展开会根据上模和下模的不同而发生相应的变化,在更换模具时必须考虑进去。 ★折床的运动方式有两种: 上动式:下工作台不动,由上面滑块下降实现施压; 下动式:上部机台固定不动,由下工作台上升实现施压。 ★工艺特性 1.折弯加工顺序的基本原则:由内到外进行折弯;由小到大进行折弯;先折弯特殊形状,再折弯一般形状。 2.90°折弯及大于90°小于180°折弯选模:一般在SOP没有特殊要求或没有 特殊避位的最好选用刀口角度为88°或90的折弯上模,这样可以更好的保证折弯角度的稳定性。

三、折弯展开尺寸计算方法,如右图: <1>直角展开的计算 方法 当内R 角为0.5 时折弯系数(K )=0.4*T , 前提是料厚小于5.0MM , 下模为5T L1+L2-2T+0.4*T =展开 <2>钝角展开的计算方法 如图,当R=0.5时的展 开计算 A+B+K=展开 K= ×0.4 a=所有折弯角度 1800-2 900

<3>锐角展开的计算方法 900折弯展开尺寸=L1+L2-2T+折弯系 数(K),如右图: 当内R角为0.5时折弯系数(K) =0.4*T,L1和L2为内交点尺寸 展开=L1+L2+K K=( 180—@) /90 *0.4T <4>压死边的展开计算方法 选模:上模选用刀口角度为300小尖刀,下模根据SOP及材料厚度选择V槽角度为300的下模。 先用 4.4.1所选的模具将折弯角度折到约300-650. 展开=L1+L2-0.5T 死边

钣金件折弯系数计算法

折弯系数折弯扣除K因子值的计算方法 一、钣金的计算方法概论 钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算法。通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。 另一方面,随着计算机技术的出现与普及,为更好地利用计算机超强的分析与计算能力,人们越来越多地采用计算机辅助设计的手段,但是当计算机程序模拟钣金的折弯或展开时也需要一种计算方法以便准确地模拟该过程。虽然仅为完成某次计算而言,每个商店都可以依据其原来的掐指规则定制出特定的程序实现,但是,如今大多数的商用CAD和三维实体造型系统已经提供了更为通用的和强大功能的解决方案。大多数情况下,这些应用软件还可以兼容原有的基于经验的和掐指规则的方法,并提供途径定制具体输入内容到其计算过程中去。SolidWorks也理所当然地成为了提供这种钣金设计能力的佼佼者。 总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。SolidWorks软件在2003版之前只支持折弯补偿算法,但自2003版以后,两种算法均已支持。 为使读者在一般意义上更好地理解在钣金设计的计算过程中的一些基本概念,同时也介绍S olidWorks中的具体实现方法,本文将在以下几方面予以概括与阐述: 1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系 2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法 3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围 二、折弯补偿法 为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。图2是该零件的展开状态。 图1 折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区 域的长度。展平的折弯区域的长度则被表示为“折弯补偿”值(BA)。因此整个零件的长度就表示为方程(1): LT = D1 + D2 + BA(1)

折弯计算公式

买两本书,一本是钣金手册,桔黄色皮的,很厚,另外一本是冷加工手册,绿色封面的,薄一些。 如果是简单的直角折弯,一般来说,算料的时候,数一下有多少个弯就行了,每个弯减一个板厚。 L=外形长-2*R/tan(α/2)+α/180*3.1416*R 其中,α为30度可者90度,R为弯曲半径 展开尺寸是把每段相加,在减去你每道弯有1,8倍SECC,SPCC和如果折弯数连续有4折以上的建议你先试样。折弯件上面折边如果要开孔,一般将它们画出来,找到延长线(按照中线),按几何法计算: L=外形长-2*R/tan(α/2)+α/180*3.1416*R ;其中,α为30度或90度,R为弯曲半径;如你折的是1.0的板子,折弯件的宽度加高度再减1.0X折弯的刀数。 理论计算法:1,圆角很小(R<0.5δ)的弯曲件展开法。 L=L1+L2+Kδ ,式中K——介于0.48~0.5之间,软料取下限,硬料取上限。多角弯曲时:L=L1+L2+.......+Ln+K1δ(n-1), 式中 L1,L2.....Ln——各直边的内线长度(毫米),n——直边的数量。K1——在双角弯曲时,介于0.45~0.48之间;在多角弯曲时为0.25(对于塑 性更大的材料可减至0.125). 如何算折弯尺寸 现在经常要算一些板金及铁线的下料,但碰到折弯的地方,算出来总会差1—2mm(一般用1.6x厚度来减),如果碰上角度问题,那就差更远了。哪位师傅能帮忙讲解一下如何算?越详细越好! 我也有个折弯公式,但不会用。BA=P(R+KT)A/180 算你问对人了。我发明的一个最简单公式: L=k*(1.6r+0.5t) 其中:L----圆弧部分的展开长度;mm k----圆心角除以直角的值; r----工件园角的内半径;mm t----工件板厚;mm 计算板金下料时经常总是相差1-2mm,我想可能有两个原因: 1、可能你在计算长度时,不是用中性层来计算,因为板材在折弯时,里 层组织受压,外层组织受拉,一定要用中性层来计算。 2、你可能没有考虑折弯时的变薄系数,系数可以《板金下料手册》中 查到。 建议去买一本《板金下料手册》来看,里面有详细的介绍。 直角展开公司:0,28*1,57*t(料厚) 角度展开公司:0,28*1,57*t(料厚)*角度/90度 反折平:1,5t(料厚) 以上为五金模具设计经验值。希望能帮上你 Q235B材料的话一般是用材料厚度的1.75至2倍,要求不高的话就用2倍计算,要求高的话那就要看下模大小,还有材料的拉申度的,这个就要在实际工作中去试了,不同批次的材料都不一样的,有时就是同一张钢板上剪下来的也会不一样。比如我做过一批出口产品,414的材料4.75mm,在折四次的情况下公差要在50丝之内,我用的是1.85倍,下模36,供参考。 折弯一次的:外型尺寸相加减去两个材料厚度再加一个材料厚度X折弯系数。

钣金展开图计算方法

钣金展开图计算方法 一般铁板0.5—4MM之内的都是A+B-1.6T。(A,B代表的是折弯的长度,T 就是板厚) 例如用2.5mm的铁板折180mm*180mm的直角,那么你下的料长就是 180mm+180mm再减去2.5mm*1.6也就是4mm就好了,也就是356mm 钣金展开图的计算是要用一个系数来计算的,这个系数一般都用1.645! 计算方法是工件的外形尺寸相加,再减去1.645*板厚*弯的个数, 例如,折一个40*60的槽钢用板厚3的冷板折,那么计算方法就是40+40+60(外形尺寸相加)—1.645(系数)*3(板厚)*2(弯的个数)=130.13(下料尺寸) 一般6毫米之内都是这样计算的了 展开的计算法 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 展开的基本公式: 展开长度=料内+料内+补偿量 一般折弯:(R=0, θ=90°) L=A+B+K 0.3时, K=0≤T'1. 当0 2. 对于铁材:(如GI,SGCC,SECC,CRS,SPTE, SUS等) 1.5时, K=0.4T'T'a. 当0.3 2.5时, K=0.35T'T≤b. 当1.5 2.5时, K=0.3T/c. 当T 3. 对于其它有色金属材料如AL,CU: 0.3时,?当T K=0.5T 2.0时, 按R=0处理.≤注: R 一般折弯(R≠0 θ=90°) L=A+B+K K值取中性层弧长 1.5 时'1. 当T λ=0.5T 1.5时/ 2. 当T λ=0.4T

钣金加工计算公式集合

钣金折弯计算公式 1.生产车间经验值 2.PROE计算公式 PROE钣金展开经验公式 经验公式(车间老师傅的算法,在实际中略有不同,需要调整) 前提条件:r<2 壁厚<2.5 折弯角度90°

展开长度L=L1+L2-2T+0.5T (1)L1 L2为外径T为板厚 也即L=L1'+L2'+0.5T (2) L1' L2'为径T为板厚 还即L=L1"+L2"+2r+0.5T (3) L1" L2"为直段长度r为折弯径 我这里是用的0.5T,大多数人有用0.3T的 如果r/T>2,就直接用中性层K=0.5计算好了再看PROE中的展开 PROE中的展开长度就是: L=L1"+L2"+DL L1" L2"为直段长DL为弧段展开长 请记住这个DL,这个DL就是我们要制作的折弯表的值! 再回过来看看上贴的第三个公式 L=L1"+L2"+2r+0.5T 很容易导出: DL=2r+0.5T DL为弧段展开长r为折弯径现在要制作折弯表了 折弯系数DL弧长=2(R+KT)*3.14*(折弯角/360) K为K因子 T为厚 R为侧半径 折弯系数DL弧长=2R+0.2T =K=0.41因子折弯扣除L=2R-0.2T 折弯系数DL弧长=2R+0.3T =K=0.46因子折弯扣除L=2R-0.3T 折弯系数DL弧长=2R+0.35T =K=0.5因子折弯扣除L=2R-0.35T 钣金展开经验计算方法

声明:本计算方法为本人经验算法,只在本人现工作之处适用,照搬可能会有偏差。先说一个名词:折弯余量 折弯余量这个名词我在论坛别的贴子已经说过,这里再重复一下: 一个已成形的钣金折弯,它有三个尺寸:两个轮廓尺寸和一个厚度尺寸,定义两个轮廓尺寸为L1、L2,厚度尺寸为T,我们都已知道,L1+L2是要大于展开长度L的,它们的差值就是折弯余量,我定义为K,那么一个弯的展开尺寸L=L1+L2-K。一般冷轧钢板的K值(条件:90度弯,标准折弯刀具) T=1.0 K=1.8 T=1.2 K=2.1 T=1.5 K=2.5 T=2.0 K=3.5 T=2.5 K=4.3 T=3.0 K=5.0 3. 3 展开计算原理 板料在弯曲过程中外层受到拉应力,层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准. 中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的侧移动.中性层到板料侧的距离用λ表示. 4 计算方法 展开的基本公式: 展开长度=料+料+补偿量

折弯展开计算公式

K因子计算方法: K系数是指钣金内边缘之间的距离与钣金厚度之间的比率。通常,金属薄板的外层会受到拉应力的拉伸,而内层会因压应力而缩短。在内层和外层之间有一个纤维层,称为中间层。根据中性层的定义,弯曲部分的毛坯长度应等于中性层的展开长度。因为在弯曲过程中坯料的体积保持不变,所以变形大时中性层将向内移动,这就是为什么不能仅使用横截面的中性层来计算展开长度的原因。如果中性层的位置用P表示(见图1),则可以表示为 其中R为内弯曲半径/ mm;t为材料厚度/ mm;K是中性层位移系数。 图1中性层位置 钣金弯曲的示意图如图2所示。根据中性层展开的原理,毛坯的总长度应等于中性层的直线部分和弧形部分的长度之和。弯曲部分

图2钣金弯曲图 其中,l是零件的总展开长度/ mm;α是弯曲中心角/(°);L1和L2分别是超出弯曲部分的起点和终点的部分的直线端长度/ mm。 根据以上公式,我们可以计算出确切的弯曲展开长度。可以看出,只要确定参数k,就可以计算出l,并且参数K取决于钣金厚度T和内部弯曲角度R。通常,当R / T为0.1、0.25、0.5时,1、2、3、4、5,≥6,相应的K因子分别为0.23、0.31、0.37、0.41、0.45、0.46、0.47、0.48、0.5-通用零件的R / T值均在1,因此根据上述对应关系计算出的钣金弯曲的展开长度仍然非常准确。对于R / T≥6的情况,金属板在弯曲时不会再次变形,因此中性层等于中心层,并且K因子相应地变为0.5。计算相对容易。唯一的影响是弯曲过程中的回弹问题。这种繁琐的计算最适合计算机完成。下面的三维软件,如AutoCAD,Solidworks,NX,Pro / E,CATIA等也引入了钣金模块,并且K系数已成为这些软件的首选参数,K系数的合理选择大大地减少了流程设计过程中的工作量。

钣金折弯系数表

钣金折弯系数表 铁材及白铁 钣厚系数-2T+K 适用范围 (内尺寸) 0.3 0 -0.60 > 2.3 0.4 0.1 -0.70 > 2.3 0.5 0.15 -0.85 > 2.3 0.6 0.2 -1.00 > 2.4 0.8 0.3 -1.30 > 2.4 1.0 0.4 -1.60 > 3.5 1.2 0.5 -1.90 > 4.0 1.4 0.55 - 2.25 > 4.5 1.5 0.6 - 2.40 > 4.5 1.6 0.6 - 2.60 > 4.5 1.8 0.7 - 2.90 > 5.5 2 0.7 -3.30 > 6.5 2.3 0.8 - 3.80 > 7.5 2.5 0.8 -4.20 > 8.0 2.6 0.8 -4.40 > 8.0 3.0 1.0 -5.00 > 10.0 4.0 1.2 -6.8 > 13.0 4.5 1.3 -7.7 > 13.0 5.0 1.3 -8.7 > 22.0 6.0 1.5 -10.5 > 22.0 6.3 1.2 -11.4 > 2 7.0 6.35 1.2 -11.5 > 2 7.0 10 3.6 -16.4 > 36.0 铝 钣厚系数-2T+K 适用范围 (内尺寸) 0.50 0.25 -0.75 > 2.3 0.60 0.30 -0.90 > 2.4 0.80 0.40 -1.20 > 2.4 1.00 0.50 -1.50 > 3.5 1.20 0.60 -1.80 > 4.0 1.50 0.75 - 2.25 > 4.5 1.60 0.80 - 2.40 > 4.5 2.00 1.00 - 3.00 > 6.5 2.30 1.10 - 3.50 > 7.5 3.00 1.50 - 4.50 > 10.0 4.00 2.00 -6.00 > 13.0 5.00 2.50 -7.50 > 22.0 举个例子,1mm铁板就按0.4,最后两组数字不用看

折弯展开计算公式【超简单】

折弯展开计算公式【超简单】 内容来源网络,由深圳机械展收集整理! 更多折弯等钣金设备展示,就在深圳机械展! 在钣金展开中,影响展开长度计算精度的因素有: 折弯内弧半径r下模V型槽宽,板料实际厚度t',和弯曲曲角度α。自由折弯板料在展开长度计算时,没有明确的公式来计算折弯系数,只能查到不同折弯内弧半径的折弯系数。而内弧半径与加工工艺有关,使用不同的下模V型槽宽,内弧半径也不相同,导致无法获得折弯系数的准确性。一般是凭经验判断折弯系数,不同的人判断的折弯系数也不相同。 在钣金中折弯中,经常用到形式分为L折N折和Z折几种。下面我们对几种钣金的展开做个探讨。 1、L折,L折分90°折和非90°折。 在90°折方面,根据经验折弯系数总结如下表

在非90°方面,根据经验折弯系数总结如下。 L=A+B+补偿量*仅供参考 T=0.8 R=0.5 120°≤q≤160° 补偿量为0.1 160°<q≤180° 可忽略不计 T=1.0 R=0.5 120°≤q≤145° 补偿量为0.2 145°<q≤170° 补偿量为0.1 170°<q≤180° 可忽略不计

T=1.2 R=0.5 补偿量与T=1.0相同 T=1.5 R=0.5 120°≤q≤130° 补偿量为0.3 130°<q≤150° 补偿量为0.2 150°<q≤170° 补偿量为0.1 170°<q≤180° 可忽略不计 180& deg;-q L=A+B+------ (2*∏*r) 360°

SolidWorks钣金展开计算方法

一、折弯补偿法: 为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。图2是该零件的展开状态。 图1 折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区域的长度。展平的折弯区域的长度则被表示为“折弯补偿”值(BA)。因此整个零件的长度就表示为方程(1): LT = D1 + D2 + BA(1) 折弯区域(图中表示为淡黄色的区域)就是理论上在折弯过程中发生变形的区域。简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考: 1、将折弯区域从折弯零件上切割出来 2、将剩余两段平坦部分平铺到一个桌子上

3、计算出折弯区域在其展平后的长度 4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件 稍有难度的部分就是如何确定展平的弯曲区域的长度,即图中由BA表示的值。很显然,BA的值会随不同的情形如材料类型、材料厚度、折弯半径与角度等而不同。其它可能影响BA 值的因素还有加工过程、机床类型、机床速度等等。 BA值到底从何而来?实际上通常有以下几种来源:钣金材料供应商,实验数据,经验以及一些工程手册等。在SolidWorks中,我们即可以直接输入BA值,提供一个或多个带BA值的表,也可以使用另外的方法如K因子(后面将会深入探讨)来计算BA值。对所有这些方法,根据需要我们既可以为零件中的所有折弯输入相同的信息,也可以为每个折弯单独输入不同的信息。 对于不同的厚度、折弯半径和折弯角度的各种情况,折弯表方法是最为准确的让我们指定不同折弯补偿值的方法。一般来说,对每种材料或每种材料/加工的组合会有一个表。初始表的形成可能会花些时间,但是一旦形成,今后我们就可以不断地重复利用其中的某个部分了。 二、折弯扣除法 折弯扣除,通常是指回退量,也是一种不同的简单算法来描述钣金折弯的过程。还是参照图1和图2,折弯扣除法是指零件的展平长度LT等于理论上的两段平坦部分延伸至“尖点”(两平坦部分的虚拟交点)的长度之和减去折弯扣除(BD)。因此,零件的总长度可以表示为方程(2):LT = L1 + L2 - BD(2) 折弯扣除同样也是通过以下各种途径确定或提供的:钣金材料供应商、试验数据、经验、带方程或表格的针对不同材料的手册等。 三、折弯补偿与折弯扣除之间的关系 由于SolidWorks通常采用折弯补偿法,对熟悉折弯扣除法的用户来说了解两种算法的关系就很重要了。实际上利用零件的折弯和展开的两种几何形状是很容易推导出两个值之间的关系方程的。回顾一下,我们已有两个方程式: LT = D1 + D2 + BA (1) LT = L1 + L2 - BD (2) 以上两个方程右边相等可以变化成方程(3): D1 + D2 + BA = L1 + L2 –BD(3) 在图1的几何形状部分做几条辅助线,形成两个直角三角形,变为如图3所示。

钣金件折弯展开计算方法(改正版)

?折床工作原理 折弯就是将上、下模分别固定于折床的上、下工作台,利用液压伺服电机传输驱动工作台的相对运动,结合上、下模的形状,从而实现对板材的折弯成形。 ? ? ? ?展开的定义和折弯常识 ★折弯展开就是产品的下料尺寸,也就是钣金

在折弯过程中发现形变,中间位置不拉伸,也叫被压缩的位置长度,也叫剪口尺寸。 ★折弯V槽选择公式:当R=0.5时,V=5T;当R>0.5时V=5T+R 折弯展开会根据上模和下模的不同而发生相应的变化,在更换模具时必须考虑进去。 ★折床的运动方式有两种: 上动式:下工作台不动,由上面滑块下降实现施压; 下动式:上部机台固定不动,由下工作台上升实现施压。 ★工艺特性 1.折弯加工顺序的基本原则:l由内到外进行折弯;由小到大进行折弯;先折弯特殊形状,再折弯一般形状。 2.90°折弯及大于90°小于180°折弯选模:一般在SOP没有特殊要求或没有 特殊避位的最好选用刀口角度为88°或90的折弯上模,这样可以更好的保证折弯角度的稳定性。

三、折弯展开尺寸计算方法,如右图: <1>直角展开的计算方法 当内R角为0.5时折弯系数(K)=0.4*T,前提是料厚小于5.0MM,下模为5T L1+L2-2T+0.4*T=展开 <2>钝角展开的计算方法 如图,当 R=0.5时的展开计算 A+B+K=展开

K= 1800-2/900 ×0.4 a=所有折弯角度 <3>锐角展开的计算方法 900折弯展开尺寸=L1+L2-2T+折弯系数(K),如右图: 当内R角为0.5时折弯系数(K)=0.4*T,L1和

L2为内交点尺寸 展开=L1+L2+K K=( 180—@) /90 *0.4T <4>压死边的展开计算方法 选模:上模选用刀口角度为300小 尖刀,下模根据SOP及材料厚度选 择V槽角度为300的下模。先用 4.4.1所选的模具将折弯角度折到约 300-650.

钣金件折弯系数

一、钣金的计算方法概论 钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。其中最常用的方法就是简单的―掐指规则‖,即基于各自经验的算法。通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。 总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。 为了更好地理解在钣金设计的计算过程中的一些基本概念,先了解以下几点: 1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系 2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法 3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围 二、折弯补偿法 为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。图2是该零件的展开状态。 折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区域的长度。展平的折弯区域的长度则被表示为―折弯补偿‖值(BA)。因此整个零件的长度就表示为方程(1): LT = D1 + D2 + BA (1) 折弯区域(图中表示为淡黄色的区域)就是理论上在折弯过程中发生变形的区域。简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考: 1、将折弯区域从折弯零件上切割出来 2、将剩余两段平坦部分平铺到一个桌子上 3、计算出折弯区域在其展平后的长度 4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件

钣金折弯展开系数计算

统一展开计算方法,做到展开的快速准确. 适用范围 NWE 冲件样品中心. 三.展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既 不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一 样保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度 有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚 度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置 逐渐向弯曲中心的内侧移动?中性层到板料内侧的距离用λ表示. 四.计算方法 展开的基本公式: 展开长度=料内+料内+补偿量 一般折弯:(R=0, θ =90 ° ) L=A+B+K 1. 当 0T≤0.3 时,K=O 2. 对于铁材:(如 GI,SGCC,SECC,CRS,SPTE, 3. 对于其它有色金属材料如AL,CU: 当 TE0.3 时, K=0.4T 注:R 兰2.0时,按R=0处理. 一般折弯(R ≠ 0 θ =90 ° ) L=A+B+K K 值取中性层弧长 1. 当「1.5 时 λ =0.5T 2. 当 T 1.5 时 λ =0.4T SUS 等) a.当 0.3 T 1.5 时,K=0.4T b.当 1.5 汀 2.5 时,K=0.35T c.当 T 2.5 时,K=0.3T — 丿 B _i I * / L ------ A ------ 中性層

一般折弯 (R=O L=A+B+K 1. 当 T≤0.3 时 2. 当T 三0.3时 注:K 为90 ° 一般折弯(R ≠ 0 θ ≠ 90 ° ) L=A+B+K 1. 当 T H 1.5 时 λ =0.5T 2. 当 T 1.5 时 λ =0.4T K 值取中性层弧长 注:当R 20,且用折刀加工时,则按R=0来 计算,A 、B 依倒 零角后的直边长度取值 Z 折1(直边段差). 1. 当H.5T 时,分两次成型时,按两个90°折弯计算 2. 当 H "5T 时,一次成型,L=A+B+K K 值依附件中参数取值 Z 折2(斜边段差). 1. 当HNT 时,按直边段差的方式计算,即:展开长 度=展 开前总长度+K K=0.2 2. 当H 2T 时,按两段折弯展开(R=0 θ ≠ 90 ° ). θ ≠ 90 ° ) K ' =0 K ' =( ∕90)*K 时的补偿量

钣金折弯展开快速计算方法【干货】

钣金折弯展开快速计算方法【干货】 内容来源网络,由“深圳机械展(11万m2, 1100多家展商,超10万观众)” 收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、自动化、数字无人 工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展。 钣金折弯跟展平时,材料一侧会被拉长,一侧被压缩,受到的因素影响有:材料类型、材料 厚度、材料热处理及加工折弯的角度。 展开计算原理: 1.板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层称为中性层;中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准. 2.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用入表示. 展开计算的基本公式:展开长度=料内+料内+补偿量

2.1 R=0?折穹角e =90 0 (T<1.2.不含1.2mm) L?(A-T)+(B-T)+K T<1.2mm =A-B ?2T丰0.4T 上式中取:入-T/4 K?A U/2 = T/4e x/2 -0.4T 2.2 R-0? 0 ?90G(T±12含 L?(A?T)+(B?T)+K ?A*B ?2T+O?ST 上式中取:入-T/3 K=A U/2 ■T/3F2 =0.5T 23 R=0 0 =90 f L?(A-T-R)*(B?T?R)+(R*入)?M2 当R M5T 时A =T/2 ITS R : L=A? T+C+B + K (3)当CW3T时<一次成型〉: L=A ?T+C*B + K/2

钣金加工:折弯工艺手册

钣金加工:钣金制造工艺手册—3 1 数控折弯(Numerical Control To Bend) 1、1 折弯机得结构 折弯机由机械、电气控制、电气、液压四大部分构成 1、2 折弯机得工作原理 1、2、1 折弯机得工作就是利用液压传输驱动机身上、下得相对运动,结合折弯上、下模具得形状实现平板绕折弯线被弯曲为具有一定折弯角度与折弯半径得特性功能,与简易模具完成特殊形状成形;其运动方式分为上、下运动两种: a) 上动式:下工作台不动,由上面滑块下降实现施压; b) 下动式:机身上部固定不动,由下工作台上升实现施压; 1、3 折弯机得加工技术数据 机型 项目RG50RG100 工作台长度20003000 最大折弯长度20853100

最大折弯尺寸(深度)500500 D轴行程0~99、990~99、99 最大压力50T100T 工作台开口高度370370 后定位升降量60~14060~140 后定位宽度6060 L轴后定位行程420420 L轴定位精度±0、1±0、1 D轴运行精度±0、1±0、1 折弯加工精度±0、2±0、2 1、4 1、4、1 折弯上模也称为折弯刀具,它有整体式与分割式两种: a) 整体式上模长度(mm):835 b) 分割式上模长度(mm):10、15、20、40、50、100、200、400 1、4、2 常用折弯刀具R为R=0、 2、R=0、6,刀具角度有88o、90o两种,折弯刀具类型(见下图) 大R刀模段差模压平模 88o小弯刀压线模 88o鹅颈刀 88o直弯刀 30o尖刀 88o直刀 1、4、3 折弯下模也称为V槽,它有整体式与分割式两种: a) 整体式上模长度(mm):835 b) 分割式上模长度(mm):10、15、20、40、50、100、200、400 1、4、4 常用折弯下模类型(见下图)

钣金折弯展开的计算方法

钣金折弯展开的计算方法 钣金折弯跟展平时,材料一侧会被拉长,一侧被压缩,受到的因素影响有:材料类型、材料厚度、材料热处理及加工折弯的角度。 展开计算原理: 1、钣金在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既 不受拉力又不受压力的过渡层称为中性层;中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。 2、中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度 较小,中性层位置靠近板料厚度的中心处;当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动,中性层到板料内侧的距离用λ表示。 展开计算的基本公式:展开长度=料内+料内+补偿量 1、一般折弯(R=0,θ=90°) L=A+B+K 1)当0≤T≤0.3时,K=0 2)对于铁材: a、当0.3≤T≤1.5时,K=0.4T b、当1.5≤T≤2.5时,K=0.35T c、当T>2.5时,K=0.3T 3)对于其它有色金属材料如Al,Cu: 当T<0.3时,K=0.4T 注:R≤2.0时,R=0处理 2、一般折弯(R≠0,θ=90°) L=A+B+K,K值取中性层弧长 1)当T≤1.5时,λ=0.5T 2)当T>1.5时,λ=0.4T

3、一般折弯(R=0,θ≠90°) L=A+B+K’ 1)当T≤0.3时,K’=0 2)当T>0.3时,K’=(u/90)*K 注:K为90°时的补偿量 4、一般折弯(R≠0,θ≠90°) L=A+B+K 1)当T≤1.5时,λ=0.5T 2)当T>1.5时,λ=0.4T K值取中性层弧长 注:当R≤2.0,且用折刀加工时,则按R=0来计算,A、B依倒零角后的直边长度取值 5、Z折1(直边段差) 1)当H>5T时,分两次成型时,按两个90°折弯计算 2)当H≤5T时,一次成型,L=A+B+K K值依附件中参数取值 6、Z折2(斜边段差) 1)当H≤2T时,按直边段差的方式计算,即:展开长度=展开前总长度+K K=0.2 2)当H>2T时,按两段折弯展开(R=0,θ≠90°) 7、抽孔 抽孔尺寸计算原理为体积不变原理,即抽孔前后材料体积不变。一般抽孔按下列公式计算,式中参数见右图(设预冲孔为X,并加上修正系数-0.1)

钣金展开计算公式

PROE钣金展开经验公式 经验公式(车间老师傅的算法,在实际中略有不同,需要调整) 前提条件:内r<2 壁厚<2.5 折弯角度90° 展开长度L=L1+L2-2T+0.5T (1)L1 L2为外径 T为板厚 也即L=L1'+L2'+0.5T (2) L1' L2'为内径T为板厚 还即L=L1"+L2"+2r+0.5T (3) L1" L2"为直段长度r为折弯内径 我这里是用的0.5T,大多数人有用0.3T的 如果内r/T>2,就直接用中性层K=0.5计算好了再看PROE中的展开

PROE中的展开长度就是: L=L1"+L2"+DL L1" L2"为直段长DL为弧段展开长 请记住这个DL,这个DL就是我们要制作的折弯表内的值! 再回过来看看上贴的第三个公式 L=L1"+L2"+2r+0.5T 很容易导出: DL=2r+0.5T DL为弧段展开长r为折弯内径现在要制作折弯表了 折弯系数DL弧长=2(R+KT)*3.14*(折弯角/360) K为K因子 T为厚 R为内侧半径 折弯系数DL弧长=2R+0.2T =K=0.41因子折弯扣除L=2R-0.2T 折弯系数DL弧长=2R+0.3T =K=0.46因子折弯扣除L=2R-0.3T 折弯系数DL弧长=2R+0.35T =K=0.5因子折弯扣除L=2R-0.35T 钣金展开经验计算方法 声明:本计算方法为本人经验算法,只在本人现工作之处适用,照搬可能会有偏差。先说一个名词:折弯余量 折弯余量这个名词我在论坛别的贴子已经说过,这里再重复一下: 一个已成形的钣金折弯,它有三个尺寸:两个轮廓尺寸和一个厚度尺寸,定义两个轮廓尺寸为L1、L2,厚度尺寸为T,我们都已知道,L1+L2是要大于展开长度L的,它们的差值就是折弯余量,我定义为K,那么一个弯的展开尺寸L=L1+L2-K。一般冷轧钢板的K值(条件:90度弯,标准折弯刀具) T=1.0 K=1.8 T=1.2 K=2.1 T=1.5 K=2.5 T=2.0 K=3.5 T=2.5 K=4.3 T=3.0 K=5.0

关于钣金折弯的展开计算2007

关于钣金折弯的展开计算 在我国钣金加工行业里,钣金折弯是一种重要方式,钣金弯曲件的数量和种类都很多。关于钣金折弯的加工,计算弯曲零件毛坯长度是制订工艺方案的前提。 以左图(图1)所示,一个已成形的钣金折弯,它有三个尺寸:两个轮廓尺寸和一个厚度尺寸,定义两个轮廓尺寸为A 、B ,厚度尺寸为T ,我们都已知道,A+B 是要大于展开长度L 的,它们的差值就是X (修正系数),那么一个弯的展开尺寸L=A+B+X 。 通常,X (修正系数)与弯曲零件的材料、加工模具的精密度、折弯角度及加工方法等多个因素都有影响,这也造成了钣金展开计算的不确定性。 这里我以常用材料(SPCC :普通钢板)的 弯曲为例,把如何进行钣金折弯的展开计算过程进行分解,制订了《折弯( 15°~165°)的展开修正系数表》,以方便查询。并结合本人实际常见折弯的情况,列举几个折弯展开计算的实例。 一、弯曲过程分析和计算原理 弯曲件毛坯的长度,是根据中性层在弯曲前后长度不变的原则求得的。板料弯曲时,切向毛坯断面的外层被拉伸,里层被压缩,端面上由拉伸向压缩过渡时,必然有一层金属的应力和应变为零,即未发生变化,这就是中性层。 在塑性弯曲时,圆角区材料开始变薄、加宽,造成中性层由弯曲时所处的板料中间位置向内侧转移。相对弯曲半径(内层弯曲半径与板料厚度之比)愈小,圆角区材料变薄的程度也加剧,中性层内移量也越大。 因此,计算弯曲毛坯件长度的关键就在于确定中性层的位置,而中性层的位置,则是根据变形前后毛坯体积不变的条件确定的。 二、弯曲展开长度计算公式 以右图(图2)为例,折弯展开的计算公式:L=A+B+X 式中:L---中性层展开长度, A 、B---折弯后两边长度, X---折弯修正系数 其中,折弯修正系数X 的计算公式 应为: X=π×[(180-α)/180]×(R+K*T )-2×(R+T )tan[(180-α)/2] 式中:T---料厚, R---折弯内半径, α---开口角度, K---中性层系数 从上式可以看出,影响折弯修正系数X 的主要有K 值、α值、R 值、T 值等

关于钣金折弯的展开计算

关于钣金折弯的展开计算 在我国钣金加工行业里,钣金折弯是一种重要方式,钣金弯曲件的数量和种类都很多。关于钣金折弯的加工,计算弯曲零件毛坯长度是制订工艺方案的前提。 以左图(图1)所示,一个已成形的钣金 折弯,它有三个尺寸:两个轮廓尺寸和一个厚 度尺寸,定义两个轮廓尺寸为A、B,厚度尺 寸为T,我们都已知道,A+B是要大于展开长 度L的,它们的差值就是X(修正系数),那 么一个弯的展开尺寸L=A+B+X。 通常,X(修正系数)与弯曲零件的材料、 加工模具的精密度、折弯角度及加工方法等多 个因素都有影响,这也造成了钣金展开计算的 不确定性。 这里我以常用材料(SPCC:普通钢板)的弯曲为例,把如何进行钣金折弯的展开计算过程进行分解,制订了《折弯(15°~165°)的展开修正系数表》,以方便查询。并结合本人实际常见折弯的情况,列举几个折弯展开计算的实例。 一、弯曲过程分析和计算原理 弯曲件毛坯的长度,是根据中性层在弯曲前后长度不变的原则求得的。板料弯曲时,切向毛坯断面的外层被拉伸,里层被压缩,端面上由拉伸向压缩过渡时,必然有一层金属的应力和应变为零,即未发生变化,这就是中性层。 在塑性弯曲时,圆角区材料开始变薄、加宽,造成中性层由弯曲时所处的板料中间位置向内侧转移。相对弯曲半径(内层弯曲半径与板料厚度之比)愈小,圆角区材料变薄的程度也加剧,中性层内移量也越大。 因此,计算弯曲毛坯件长度的关键就在于确定中性层的位置,而中性层的位置,则是根据变形前后毛坯体积不变的条件确定的。 二、弯曲展开长度计算公式 以右图(图2)为例,折弯展开的 计算公式:L=A+B+X 式中:L---中性层展开长度, A、B---折弯后两边长度, X---折弯修正系数 其中,折弯修正系数X的计算公式 应为: X=π×[(180-α)/180]×(R+K*T)-2×(R+T)tan[(180-α)/2] 式中:T---料厚, R---折弯内半径, α---开口角度, K---中性层系数 从上式可以看出,影响折弯修正系数X的主要有K值、α值、R值、T值等

SolidWorks折弯系数的计算方法

折弯系数折弯扣除K因子值的计算方法 招聘(广告) 一、钣金的计算方法概论 钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算法。通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。 另一方面,随着计算机技术的出现与普及,为更好地利用计算机超强的分析与计算能力,人们越来越多地采用计算机辅助设计的手段,但是当计算机程序模拟钣金的折弯或展开时也需要一种计算方法以便准确地模拟该过程。虽然仅为完成某次计算而言,每个商店都可以依据其原来的掐指规则定制出特定的程序实现,但是,如今大多数的商用CAD和三维实体造型系统已经提供了更为通用的和强大功能的解决方案。大多数情况下,这些应用软件还可以兼容原有的基于经验的和掐指规则的方法,并提供途径定制具体输入内容到其计算过程中去。SolidWorks也理所当然地成为了提供这种钣金设计能力的佼佼者。 总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。SolidWorks软件在2003版之前只支持折弯补偿算法,但自2003版以后,两种算法均已支持。 为使读者在一般意义上更好地理解在钣金设计的计算过程中的一些基本概念,同时也介绍S olidWorks中的具体实现方法,本文将在以下几方面予以概括与阐述: 1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系 2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法 3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围 二、折弯补偿法 为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。图2是该零件的展开状态。 图1 折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区 域的长度。展平的折弯区域的长度则被表示为“折弯补偿”值(BA)。因此整个零件的长度就表示为方程(1): LT = D1 + D2 + BA(1)

钣金中的展开计算

钣金中的展开计算 钣金中的展开计算 一、钣金的计算方法概论 钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。其中最常用的方法就是简单的―掐指规则‖,即基于各自经验的算法。通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。 总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。 为了更好地理解在钣金设计的计算过程中的一些基本概念,先了解以下几点: 1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系 2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法 3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围 二、折弯补偿法 为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。图2是该零件的展开状态。 折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区域的长度。展平的折弯区域的长度则被表示为

―折弯补偿‖值(BA)。因此整个零件的长度就表示为方程(1):LT = D1 + D2 + BA (1) 折弯区域(图中表示为淡黄色的区域)就是理论上在折弯过程中发生变形的区域。简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考: 1、将折弯区域从折弯零件上切割出来 2、将剩余两段平坦部分平铺到一个桌子上 3、计算出折弯区域在其展平后的长度 4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件 图1

相关主题
文本预览
相关文档 最新文档