当前位置:文档之家› 生物质与废轮胎共热解催化热解油蒸发过程及其动力学研究

生物质与废轮胎共热解催化热解油蒸发过程及其动力学研究

第35卷第5期燃料化学学报vol35№.5

1竺:至些!型!!坠!坐竺堡型塑塾!!!些竺:竺文章编号:0253.240912007)05_0534-05

生物质与废轮胎共热解催化热解油蒸发过程及其动力学研究

靳利娥1,刘岗1,鲍卫仁1,曹青2

(1.太原理工大学煤科学与技术教育部山西省重点实验室,山西太原030024;2.太原理工大学化工学院,山西太原030024)

摘要:采用热重微商(TG-dTG)法考察生物质稻壳与废轮胎共热解经催化与非催化热解油的热失重行为.并同o‘柴油的热失重行为进行了比较;同时采用Ach盯微分法和coats-Rcdfem积分法对热解油热失重蒸发过程的蒸发热进行了计算,并结合satava和Bagchi法确定了热失重蒸发过程的机理函数,建立了O。柴油和在催化与非催化条件下得到的热解油蒸发过程的动力学方程.得出了在催化与非催化条件下热解油热失重过程的机理函数,其动力学方程为如/出=^e吐耐”“(1一“)2;而0。柴油的热失重蒸发过程动力学方程为彬出=15^e-△V牛删朋(1一a)∽[1一(1一“)”3]~。蒸发热的顺序由大到小依次为,柴油>非催化热解油>sBA—15热解油>McM41热解油。结果表明,通过建立的模型函数得到的蒸发热与实验值非常接近。催化剂sBA.15和McM_4l的存在对降低高沸点馏分的物质具有一定作用,而sBA-15催化作用强于McM-4l。

关键词:生物质;废轮胎;共热解;催化;热重分析;热解油

中图分类号:TK6文献标识码:A

Thema:IbehavioranddynamicsofbioInassandwaste钾re

co.pyrolysison

_『INLi.e1,uUGang‘,BAOwei.renl,CAOQin矿

n.x印L曲omtoq对Coalscietlcen耐亿htlolo野.Mt讹竹鹰Ed忱mt帆n孔dsh埘nPM}抽ce、Tnl,毗nUn¨ers啤蝉nc}t∞to科,而咖眦n03【m4,c^批;2.c妇m缸讲助g砒睹增c硼垤e,孙机脚踟iw巧睁矿m枷蛔科.乃咖坩n030024,o胁)Absn俄t:111erIllalbehaviorsofco咖盯cialdiescloil0’粕dpyrolysisoil0btained晌mco-pymlysisofbiomassandwastety∞blend(witll0rwitlIoutca“ysts)wereinves虹gatedbythe肌09ravimetric蛆alysis(1B?∥I’G).Thmughlinearregfession,meresultsi11us仃atedmatfbrpyrolvsisoilstlle山ennalkinedcfollowstllefonllulad∥出=Ae一6-∥盯(1一d)2aIldfordiesel0iIitfollows岫f0咖ulad∥出=1.5Ae一6v∥盯(1一n)∽[1一(1一a)“’r.111cevap删彻lleatscalcIll砷斑辅雠37.46kJ?mol叫斯SBA_ca协】yzedpymlysis0il.30.60kJ?mol-1fbrMCM_4l-catalyzedpyrolysis0il,41.27kJ?mol叫fbrpymlysis0ilwimoIlt戚ng柚ycatalyst,a11d55.50kJ?rrd叫f研dieseloilO’;山e∞valueswe佗clo∞t0tllo∞化porcediIl血elitemtu∞..nleexistenceofSBA一15锄dMCM-41鹪catalystsin山epymlysisc柚mducetIi曲f瞰n锄softhe碍跚ltaⅡtpyrolysisoil;sBA—15晔晌nTledbetter血anMCM_41inreducillghigh丘ac血)Ils.

I(eywor凼:biom船8;w船tc睁re;co—pyfolysi8;catalysi8;lllem谢锄alysi8;pyrolyticon

能源的安全供应对保证社会的稳定和经济的可持续发展具有重要作用。然而,由于人类对能源的大量消耗和化石燃料资源的日趋减少,寻找可替代能源的研究工作显得非常迫切。生物质和废轮胎均属于来源十分丰富的可再生资源。尤其是生物质,植物每年通过太阳能光合作用生成的生物质能总量约为2200亿t,相当于2.88×10”kJ左右,是目前全球总能耗的10倍”1,并具有c0:接近零排放的优势”1。废轮胎是现代经济发展过程中另一类可再生的废弃资源。尽管众多学者和企业对废轮胎采用了不同的方式进行过探索和利用,但终因各种缺陷,难以形成规模进行利用。单独热解生物质得到的生物油含氧量较高、热值较低、腐蚀性大,从而影

收稿日期

基金项目

蕞系作者

作者简介响生物油作为燃料油的推广”01。单独热解废轮胎,存在热解液体中多环芳烃的含量较高,重质馏分和轻质馏分的比例偏高等问题”““。由于生物质是含氧量较高的一类物质,废轮胎是含碳量较高的一类物质”1,如将其共热解,利用生物质在热解过程中产生的大量含氧自由基组分,破坏热解过程中所不希望存在的某些组分,从而使某些化合物的生成受到抑制,以提高热解液体作为燃料的品质。其中,蒸发热是衡量燃料品质的一个重要指标,但因组成复杂的特点,实验上测定比较困难。为此,本研究通过对生物质和废轮胎混合物共热解,采用热重分析从微观的角度研究两者共热解在催化与未催化条件下得到热解油的蒸发热,并同商业0’柴油进行了比

狮mI_23;惨回日期:2伽叮拼_08。

国家自然科学基金(50576062);山西省自然科学基金(200601120)。

曹青,1讨:0351—∞14钾6;E-m缸l:?t?∞00@163嗍。

靳利娥(1964一).女,山西大同人,副教授,博士研究生,化学工程与技术专业,E—m缸l:kjin2003@163洲。万方数据

生物质热解技术研究现状及其进展

能源研究与信息 第17卷第4期 Energy Research and Information Vol. 17 No. 4 2001 文章编号 1008-8857(2001)04-0210-07 生物质热解技术研究现状及其进展 李伍刚,李瑞阳,郁鸿凌,徐开义 (上海理工大学上海 200093)  摘要生物质热解技术是把低能量密度生物质转化为高能量密度气、液、固产物的 一种新型生物质能利用技术。其中液体产物具有便于运输、储存等优点,可替代燃料 油用于发电、供暖系统以及可代替矿物油提炼某些重要的化学物质。介绍了国内外对 这一技术的各种研究及其进展,并简要介绍了上海理工大学独立研制开发的生物质闪 速液化实验装置。 关键词生物质热解; 生物油 中图法分类号 TK6文献标识码A 1 引言 能源是人类生存与发展的前提和基础,从远古时代原始人钻木取火到近代以蒸汽机为代表的工业革命,人类文明的每一跨越和进步都与所用能源种类及其利用方式紧密相连。目前人类赖以生存和进行经济建设的一次能源主要是矿物能源(煤、石油、天然气、核能等)。矿物能源的使用隐藏着两个严重问题,其一:根据目前的全球能耗量和矿物能源已探明的储量,煤、石油、天然气、核燃料可使用年限分别为220、40、60和260年[1],从长远来看人类必将面临能源危机。其二:矿物能源对环境有巨大破坏作用,矿物能源燃烧产生大量CO2、SO x、NO x等气体。CO2属温室效应气体,会造成全球变暖及臭氧层破坏。NO x、SO x等有害气体会直接对环境、设备和人体健康构成危害。故此,作为有重要长远意义和战略意义的技术储备,寻求清洁的可再生能源及其利用技术,已成为全球有识之士的共识,受到各国政府和研究机构的广泛关注。 生物质是一种清洁的可再生能源,生物质快速热解技术是生物质利用的重要途径,所谓热解就是利用热能打断大分子量有机物、碳氢化合物的分子键,使之转变为含碳原子数目较少的低分子量物质的过程。生物质热解是生物质在完全缺氧条件下,产生液体(生物油)、气体(可燃气)、固体(焦碳)三种产物的生物质热降解过程。 收稿日期:2001-6-10 基金项目:上海市重点学科建设资助项目 作者简介:李伍刚(1974-),男,上海理工大学热能工程专业硕士研究生。

生物质热解液化制备生物油技术研究进展_路冉冉(精)

第44卷第3期 2010年5月生物质化学工程B iomass Che m ical Eng i n eering V o.l 44N o .3 M ay 2010 生物质热解液化制备生物油技术研究进展 收稿日期:2010-02-03 基金项目:高等学校博士学科点专项科研基金资助(200804251020 作者简介:路冉冉(1987-,女,山东聊城人,硕士生,研究方向为微波生物质热解技术*通讯作者:商辉(1974-,女,河北保定人,副研究员,博士,从事生物能源与微波化学研究;E -m ai:l shangh l@j m sn .co m 。 路冉冉1,商辉1*,李军2 (1.中国石油大学(北京重质油国家重点实验室,北京102249;2.中国石油规划总院,北京100083 摘要:介绍了国内外生物质热解液化工艺、主要反应器及其应用现状;简述了生物质催化热解、生物质与煤共热解液化、微波生物质热解、热等离子体生物质热解几种新型热解工艺;并对目前生物质热解动力学研究进行了总结;对未来生物质热解液化技术的研究进行了展望。 关键词:生物质;热解;液化;生物油 中图分类号:TQ351 文献标识码:A 文章编号:1673-5854(201003-0054-06 Research Progress on Bi o mass Pyr ol ysis Technol ogy f or L i qui d O il Producti on

LU Ran -ran 1,SHANG H u i 1,LI Jun 2 (1.S tate K ey L aboratory of H eavy O il Processing ,China U n i versity of Pe tro leum (Be iji ng,Be iji ng 102249,Ch i na ; 2.Ch i na P etro l eu m Eng i nee ri ng and P l ann i ng Instit ute ,Be iji ng 100083,Chi na Abstrac t :B i om ass li que facti on techno logy,m ai n reactor types for b i om ass pyro lysis and t he ir deve lop m ent status i n do m estic and aboard we re descr i bed .Cata l y ti c py ro l y si s of b i omass ,co -li que facti on o f bio m ass and coa,l m i crowave assi sted pyro l ysis as w ell as ther m a l plas m a b i o m ass pyro l ysis techno l og ies were descri bed ,and t he curren t k i neti cs o f b i om ass pyro lysisw ere su mm ar ized .T he future o f bio m ass li que facti on techno log i es w ere prospected . K ey word s :b i o m ass ;pyrolysis ;lique facti on ;b i o -o il 能源是社会经济发展和人类赖以生存的基础,当前社会的主要能源是化石能源,属不可再生资源。同时,化石能源的迅速消耗造成生态环境不断恶化,排放的温室气体导致全球气候变化,严重威胁人类社会的可持续发展。从能源发展和环境保护角度来看,寻找一种新型可再生的清洁能源已迫在眉 睫[1]。生物质能是以化学能形式储存的太阳能,具有分布广泛、可再生和无污染等特点,它的高效转换和清洁利用受到广泛重视。但是从自然界直接获得的生物质能量密度低,直接利用有很多缺点,如:燃烧效率低,需要寻求更为有效的方式加以 利用。生物质的利用技术主要包括生物转化技术和热化学转化技术,热化学转化包括直接燃烧、气化和热解液化技术,其中热解液化技术将生物质转化成液体生物油加以利用,是开发利用生物质能有效途径之一。该技术所得油品基本上不含硫、氮和金属成分,是一种绿色燃料,生产过程在常压、中温下进行,工艺简单,装置容易小型化,液体产品便于运输和存储。因此,在生物质转化的高新技术中,生物质热解液化技术受到广泛重视[2-6]。

轮胎裂解技术

3 工程分析 3.1 工艺原理简述 本项目的核心工艺为废轮胎的热裂解处理工艺。 轮胎主要由橡胶(包括天然橡胶、合成橡胶)、炭黑及多种有机、无机助剂(包括增塑剂、防老剂、硫磺和氧化锌等)组成。废轮胎的热裂解是指在无氧或缺氧工况及适当的温度下,橡胶中主链具有不饱和键的高分子断裂,产物主要是单体、二聚物和碎片,生成物再聚合为多种烯烃,从而脱出挥发性物质并形成固体炭的过程,其产物主要是燃料油、裂解气等可贮存性能源和炭黑、钢丝,各产物成分随热解方式、热解温度等变化而不同。 裂解方程式如下: (-CH2-CH2-)n n[C+H2+CH4+C2H6+C3H8+C4H10+C5H12+…+C11H24+…C20H42+…] (说明:C5H12~C11H24为汽油馏分,C12H26~C20H42为柴油馏分,C20以上为重油)本项目轮胎热解温度为200~450℃,热解炉采用炉外加热、微负压、贫氧热裂解工艺操作,炉体密闭,在生产过程中确保气体不外泄,提高热裂解效率,同时从根本上消除了生产过程中由于气体外泄而引起的不安全隐患和二次污染。 3.2 生产工艺流程 本项目主要原料为外购的干净废旧轮胎(每条已切成4~5块),无需清洗、破碎、抽钢丝等预处理工序,直接经人工进料进入裂解炉内,进料工段约2小时,每台设备每天进料10t。裂解炉内是一个持续升温的环境,炉体内部在4小时内升温至200~300℃,此时裂解气开始处于稳定生成状态,接下来的5~8小时内温度缓慢爬升,当温度到达450℃时,可认为轮胎裂解已基本完成。裂解过程中产生大量烟气,其成分主要包含重油(液态)、轻油(气态)、裂解气和少量水蒸气等,烟气经管道流入分汽包。在分汽包内,重油(约占废轮胎质量的2%)下沉至渣油罐,通过油泵储存在储油罐内;气态成分经管道进入循环水冷却系统。在管道内冷却后的烟气分为液体和气体,其中气体为裂解气,液体为轻油和水的混合物。液体流入油水分离器,分离出的轻质油分经油泵进入油罐储存,少量含油废水经雾化后喷入裂解炉燃烧室作为燃料使用;裂解气经管道输送至裂解炉燃烧室作为燃料使用。 经过12小时的裂解,除燃料油、裂解气外,裂解炉内还会生成炭黑和钢丝。炉体停止加热后,项目采用空气冷却的方式,通过风机抽风不断带走炉体外壁热量,冷却工段持续时间约8小时。待炉体冷却至45~55℃,操作人员打开进料门上的出钢丝口(1.1m ×1.7m),将缠绕在一起的钢丝整体拖出。由于本项目轮胎进料时为整条轮胎,无切割

生物质快速热解技术

生物质快速热解技术 摘要:生物质能源是可再生能源的重要组成部分,有丰富的资源和低污染的特点,它的开发与利用已成为2l世纪研究的重要课题。本文概述了生物质转化利用的方法,并重点阐述了生物质热化学转化法中的快速热解技术,同时综述了国内外快速热解反应器的现状,以度其产物——生物油的收集与特征分析,并提出了我国在快速热解研究方面应采取的有关措施。 生物质是地球上绿色植物通过光合作用获得的各种有机物质,它是以化学方式储存太阳能,也是以可再生形式储存在生物圈的碳。主要包括林业生物质、农业废弃物、水生植物、能源作物、城市垃圾、有机废水和人、畜粪便等。 据统计,世界每年生物质产量约l460亿吨,其中农村每年的生物质产量就有300亿吨,而生物质的利用却仅占世界能源消耗总量的l4%,发达国家占3%,发展中国家占35%,是继石油、煤炭、天然气等化石能源之后,当今全球第四大能源。但随着化石能源利用中产生诸如“酸雨”、“温室效应”等环境问题的日益突出,以及化石燃料本身可开采量的逐渐减少,生物质能源凭借其是一种环境友好型能源,及其利用中较低的SO、NO产出和CO净排放量为零等优点,引起了越来越多人的关注。 不言而喻,生物质能源将是未来可持续发展能源体系的重要组成部分,无论是从环境,还是从资源方面考虑,研究生物质能源的转化与利用都是一项迫在眉睫的重大课题。 1生物质转化利用方法 1.1生物法或称为微生物法 生物质(主要是农作物秸秆、粪便、有机废水等)在厌氧条件下发酵制得沼气,主要成分是甲烷;糖类、淀粉类原料水解发酵制取酒精。 1.2化学处理法 生物质中的半纤维素在酸l生条件下加热水解获得重要的化工原料糠醛;利用稻壳生产白炭黑等。 1.3热化学转化法 1.3.1热解生物质在隔绝或少量氧气的条件下,热解反应获得气体、固体、液体3类产品。近几十年来国外研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,其得率高达70%以上,是一种很有开发前景的生物质应用技术。 1.3.2液化分直接液化和间接液化两类,直接液化是生物质在高压设备中,添加适宜的催化剂,反应制得液化油,作为汽车用燃料,或者分离加工成化工用品,这是近年来生物质能利用研究的热点。间接液化是把生物质先气化成气体后,再进一步合成液体产品;或者把生物质中的纤维素、半纤维素水解,然后再发酵制取酒精。 1.3.3气化生物质在较高的温度(700—900℃)下,与气化剂(如空气、氧气或水蒸气)反应得到小分子可燃气体的过程。目前使用最广泛的是空气作气化剂,产生的气体主要作为燃料使用,可用于锅炉、民用炉灶、发电等场合,也可作为合成甲醇、氨的化工原料。气化技术在国外已实现大规模工业化,主要有气化发电技术,目前我国在此方面已基本完成中试与小规模生产,现正走向大型产业化生产阶段。 1.3.4直接燃烧生物质在充足氧气的环境下直接燃烧,把化学能转变为热能。近年来还出现了生物质固化成型技术,通过机械加压的方法将分散、无定形生物质转化为一定形状和密度的固体燃料,然后再燃烧。 热化学转化法可用图1表示:

生物质热解燃料油

生物质热解燃料油制备和精制技术 摘要:能源问题在世界经济中具有战略意义。据预测,地球上可利用的石油将在今后几十年内耗竭,从长远看液体燃料短缺仍将是困扰人类发展的大问题。在此背景下,生物质能作为唯一可转化为液体燃料的可再生资源,正日益受到重视。由生物质转化而来的燃料比较干净,有利于环境保护。同时使用这类燃料也有助于减少温室气体的排放。实际上这也是很多发达国家开发生物质能的主要动力。生物质能是通过光合作用以生物形态储存的太阳能,可作为能源利用的生物质包括林产品下脚料,薪柴,农作物秸秆及城市垃圾中的生物质废弃物等。目前生物质的直接燃烧已不能满足人们对能量的需求,由生物质直接液化制取燃料油将是下世纪有发展潜力的技术,它主要包括生物质的裂解和高压液化两类。此外还可将生物质气化后再由气体产品生产液体燃料,也可将生物质水解后发酵制燃料酒精。 关键词:生物质废弃物热解燃料油制备精制技术可再生 一、生物质燃料油的制备 1. 生物质裂解制燃料油 裂解是在无氧或缺氧条件下,利用热能切断生物质大分子中的化学键,使之转变为低分子物质的过程。裂解中生物质中的碳氢化合物都可转化为能源形式。和焚烧相比,热解温度相对较低,处理装置较小,便于造在原料产地附近。生物废弃物的热解是复杂的化学过程,包含分子键断裂,异构化和小分子的聚合等反应。通过控制反应条件(主要是加热速率,反应气氛,最终温度和反应时间),可得不同的产物分布。据试验,中等温度(500-600℃)下的快速裂解有利与生产液体产品,其收率可达80%。裂解中产生的少量中热值气体可用作系统内部的热源,气体中氮氧化合物的浓度很低,无污染问题。 国际上近来很重视这类技术,除了从能源利用考虑外,还因生物油含有较多的醇类化合物,作汽车用油时不必为提高辛烷值而外加添加剂。其油品基本上不含硫,氮和金属成分,可看作绿色燃料,对环境影响小。 1.1 裂解工艺

生物质热解总结

一、热解分类 根据反应温度和加热速率的不同,生物质热解工艺可分成慢速、常规、快速或闪速几种。慢速裂解工艺已经具有了几千年的历史,是一种以生成木炭为目的的炭化过程川,低温和长期的慢速裂解可以得到30%的焦炭产量;低于600℃的中等温度及中等反应速率(0.1-1℃)的常规热 裂解可制成相同比例的气体、液体和固体产品: 快速热裂解大致在10-200℃/S的升温速率,小于5秒的气相停留时间;闪速热裂解相比于快速热裂解的反应条件更为严格,气相停留时间通常小于1秒,升温速率要求大于1护'C/S.并以102-1护Vs的冷却速率对产物进行快速冷却。但是闪速热裂解和快速热裂解的操作条件并没有严格的区分,有些学者将闪速热裂解也归纳到快速热裂解一类中,两者都是以获得最大化液体产物收率为目的而开发。 事实上,现在人们在考虑生物质的热解机理时,常常假设生物质的三种主要组成物独立进行裂解。纤维素主要在325℃-375℃之间裂解,半纤维素主要在225℃-325℃之间发生裂解,而木质素则在250℃-500℃之间发生裂解(大多数木质素裂解发生在310℃-400℃之间)(shafizadch和Chin. 1977)。纤维素和半纤维素的裂解产生大多数的挥发物,而木质素裂解产生大多数的碳。 二、纤维素热解机理 1、纤维素结构 纤维素是由D-葡萄糖通过β(1-4)一糖苷键相连形成的高分子聚合物。不同的分子通过氢键形成大的聚集结构。目前的研究表明纤维素存在五种结晶变体,即纤维素I,Ⅱ,Ⅲ, IV和V。其中纤维素I是纤维素的天然存在形式。 纤维素是自然界中大量存在的天然高分子物质,是自然界分布最广、含量最多的一种多糖。纤维素是植物细胞壁的主要成分,它是由吡喃葡萄糖普通过0-1, 4-搪昔联结成的线性大分子,一般可用通式(C6HioO5)n表示, n称为聚合度,通常情况下在104左右. 纤维素是由β-D-葡萄糖为聚合单元构成的直状高聚物, 分子通式为(C6H10O5)n。它是具有饱和糖结构的典型碳水化合物,为生物质细胞壁的主组成部分。在高温作用下, 纤维素会发生一系列复杂的脱水、解聚、脱挥发分和结构重整等变化。纤素热解动力学涉及这一系列复杂变化中包含的各反应机理。但是, 由于热解过程中并行或者顺序发生的反应数目众多,实际上不可能、对工程应用来说没有必要建立一个考虑了所有这些反应的详尽的动力学模型. 因此, 该领域内的研究者关注的大多是谓的“准机理模型(pseudo-mechanistic model) ”, 在这一类模型中, 热解产物被笼统地划分为挥发分、固定碳等几大类. 总体上, 准机理模型有两种:单步全局模型和半全局动力学模型[]。 [ 7 ]余春江, 骆仲泱, 方梦祥, 廖燕芬, 王树荣, 岑可法;一种改进的纤维素热解动力学模型;浙江大学学报(工学板),2002:36,509-515 2、纤维素热解机理 由于纤维素在生物质原料中占据了几乎一半的含量,其热裂解行为在很大程度上体现出生物质整体的热裂解规律,纤维素具有最为简单的结构且在不同的材质中其结构和化学特性变化最小,因而当前研究基本上都从纤维素的热解行为入手开展工作。 纤维素热解动力学模型体现了纤维素热解化学反应的本征过程,是整个热解模型的核心部分。动力学模型的可靠性对于颗粒热解模型是否能正确反映真实过程至关重要。 2.1源于对纤维素燃烧过程的研究 纤维素热裂解机理的探索,最早源于对纤维素燃烧过程的研究,通过纤维素燃烧试验,Broido发现纤维素在低温加热条件下,经由吸热反应一部分纤维素转化为脱水纤维素。热裂解

生物质快速热裂解工艺及其影响因素

Ξ 生物质快速热裂解工艺及其影响因素 黑龙江省人民政府农村能源办公室 潘丽娜 摘 要 介绍了目前生物质快速热裂解的工艺及其影响因素,表明了生物质快速热裂解工艺及技术是目前生物质能利用各种方式中很有前途的利用方式。以小型流化床为例着重介绍了生物质快速裂解装置组成及设备工作原理,并分析了影响生物质快速热裂解过程及产物的主要因素,分析表明,温度是影响热裂解过程中最主要因素。 关键词 生物质快速热裂解 应用 工艺类型 装置组成 影响因素 中图分类号:Q941 文献标识码:A 文章编号:1009—3230(2004)02—0007—02 0 前言 生物质是一种潜在的能源资源,是人类未来能源和化学原料的重要来源,生物质资源包括:农作物秸秆,柴薪、水生植物、油料作物和各种有机废弃物。在我国农村能源消费中生物质占70%。而在我国生物质能利用技术的研究和开发较晚,农村能源中的生物质的很大部分都以直接燃烧的形式利用,这种利用方式不仅能源利用率低,平均热效率不到25%,而且燃烧带来的大量烟雾给空气造成严重的污染。 1 生物质热裂解概念及其基本原理 111 生物质热裂解的概念 生物质热裂解(热分解)是指在隔绝空气或只通入少量空气的条件下,使生物质受热而发生分解的过程。生物质发生热裂解时将生物质分解成3种产物:气体(不可冷凝的挥分份)、液体(可冷凝的挥发份)和固体(炭)。 2 生物质热裂解的工艺 流化床快速热裂解的工艺流程较为简单,结合图1所示流程图对其工艺流程加以分析:上线为生物质颗粒一定的速率进入流化床反应器,在反应器内与高温的砂子流化充分接触,高温发生热裂解反应,反应生成的固体小颗粒随气流向上流入旋转分离器,在旋风分离器中因离心力,器壁摩擦力,以及小颗粒自身的重力作用下落入旋风分离器底部的集炭箱中,并收集。下线为气相流,空气经压缩机打入贫氧发生器,再经反应得贫氧气体充当载气,在压力的作用下,载气先通入螺旋进料器以保持进料器系统有一个足够的送风压力以保证预料顺利进入反应器,两路气体在床内一起流化砂子和原料混合物,经热裂解之后生成的气体与载气一起通过旋风分离器分离,从旋风分离器流出的气体在金属冷凝器,球型玻璃管冷凝可液化的气体,之后,剩余的气体由转子流量计再经过滤器进入收集装置。 3 生物质快速热裂解工艺主要影响因素分析 不同的工艺类型对产物及产物的比例有着重要的影响,不同的反应条件对热裂解的过程和产物亦有不同的影响。就目前的研究而言,总的讲来,影响热裂解的主要因素包括化学和物理两大方面。化学因素包括一系列复杂的一次反应和二次化学反应;物理因素主要是反应过程中的传热、传质以及原料的物理特性等。在具体的操作方面表现为:温度、升温速率、物料特征以及反应的滞留时间和压力等等。 311 滞留时间的影响 滞留时间在生物质快速热裂解反应中有生物质颗粒的固相滞留时间和气相滞留时间之分,而 7 2004年第2期(总第86期) 应用能源技术 Ξ收稿日期:2004—01— 21

生物质热解技术

生物质压缩成型技术 1 压缩成型原理 生物质主要有纤维素、半纤维素和木质素组成。木质素为光合作用形成的天然聚合体,具有复杂的三维结构,属于高分子化合物,它在植物中的含量一般为15%~30%。木质素不是晶体,没有熔点但有软化点,当温度为70-110℃时开始软化,木质素有一定的黏度;在200-300℃呈熔融状、黏度高,此时施加一定的压力,增强分子间的内聚力,可将它与纤维素紧密粘接并与相邻颗粒互相黏结,使植物体变得致密均匀,体积大幅度减少,密度显著增加,当取消外部压力后,由于非弹性的纤维分子之间相互缠绕,一般不能恢复原来的结构和形状。在冷却以后强度增加,成为成型燃料。压缩时如果对生物质原料进行加热,有利于减少成型时的挤压力。 对于木质素含量较低的原料,在压缩成型过程中,可掺入少量的黏结剂,使成型燃料保持给定形状。当加入黏结剂时,原料颗粒表面会形成吸附层,颗粒之间产生引力,使生物质粒子之间形成连锁的结构。这种成型方法所需的压力较小,可供选择的黏结剂包括黏土、淀粉、糖蜜、植物油和造纸黑液等。 2 压缩成型生产工艺 压缩成型技术按生产工艺分为黏结成型、压缩颗粒燃料和热压缩成型工艺,可制成棒状、块状、颗粒状等各种成型燃料。 生物质—-干燥—-粉碎—-调湿—-成型—-冷却—-成型燃料 主要操作步骤如下: (1)干燥 生物质的含水率在20%-40%之间,一般通过滚筒干燥机进行烘干,将原料

的含水率降低至8%-10%。如果原料太干,压缩过程中颗粒表面的炭化和龟裂有可能会引起自燃;而原料水分过高时,加热过程中产生的水蒸气就不能顺利排出,会增加体积,降低机械强度。 (2)粉碎 木屑及稻壳等原料的粒度较小,经筛选后可直接使用。而秸秆类原料则需通过粉碎机进行粉碎处理,通常使用锤片式粉碎机,粉碎的粒度由成型燃料的尺寸和成型工艺所决定。 (3)调湿 加入一定量的水分后,可以使原料表面覆盖薄薄的一层液体,增加黏结力,便于压缩成型。 (4)成型 生物质通过压缩成型,一般不使用添加剂,此时木质素充当了黏合剂。生物质压缩成型的设备一般分为螺旋挤压式、活塞冲压式和换模滚压成型。 螺旋挤压机源于日本,是目前国内比较常见的技术,生产的成型燃料为棒状,直径50-70mm。将已经粉碎的生物质通过螺旋推进器连续不断推向锥形成型筒的前端,挤压成型。因为生产过程是连续进行的,所以成型燃料的质量比较均匀,外表面在挤压过程中发生炭化,容易点燃。但是,由于螺杆处在较高温度和压力下工作,螺杆与物料始终处于摩擦状态,导致压缩区螺纹的磨损非常严重。当螺杆磨损到一定程度,螺杆与出料筒失去尺寸配合,原料就无法完成成型。因此,压缩区螺纹的磨损决定了螺杆的使用寿命,螺杆使用寿命成为生物质压缩成型技术实用化决定性因素。对螺杆磨损,由于受工艺技术的制约,目前没有从根本上解决问题,平均寿命仅为60-80h。

(完整版)花生壳生物质热解特性研究毕业设计

毕业论文 学院:材料科学与工程学院 专业年级:08级高分子二班 题目:花生壳生物质热解特征研究 指导教师:杨素文博士 评阅教师: 2012年5月

摘要 生物质能是重要的可再生资源之一,而热解是未来最有前景的生物质利用方式之一。通过对生物质的热解动力学研究,可以获得热解反应动力学参数,对于判断热解反应机理和影响因素以及优化反应条件具有重要意义。利用热分析仪,在氮气气氛下,采用不同升温速率对花生壳热解行为进行了研究。通过热重分析实验了解生物质受热过程中的基本变化规律及其影响因素,结果表明,随升温速率的增大,达到最高热解速率时所对应的温度也越高,且升温速率越高热解越快,达到相同热解程度所需的时间越短。通过热重曲线研究花生壳的热解动力学,求出动力学参数。 关键词:生物质, 热解、热重分析,动力学 ABSTRACT Biomass energy is one of most important renewable energies. Paralysis is one of most promising methods of biomass utilization in the future. Study on biomass paralysis kinetics which can obtain paralysis kinetic parameters is of great important significance toward judging paralysis mechanism and influence factors and optimizing reaction

生物质热解技术

生物质热解技术 按温度,升温速率,固定停留时间(反应时间)和颗粒大小等实验条件可将热解分为炭化(慢热解),快速热解和气化。由于液体产物的诸多优点和随之而来的人们对其研究兴趣的日益高涨,对液体产物收率相对较高的快速热解技术的研究和应用越来越受到人们的重视。快速热解过程在几秒或更短的时间内完成。所以,化学反应,传热传质以及相变现象都起重要作用。关键问题是使生物质颗粒只在极短的时间内处于较低温度(此种低温利于生成焦炭),然后一直处于热解过程最优温度。要达到此目的的一种方法是使用小生物质颗粒(应用于流化床反应器),另一种方法是通过热源直接与生物质颗粒表面接触达到快速传热(这一方法应用于生物质烧蚀热解技术中)。由众多实验研究得知,较低的加热温度和较长气体停留时间会有利于炭的生成,高温和较长停留时间会增加生物质转化为气体的量,中温和短停留时间对液体产物增加最有利。 秸秆发电商品化前景分析 解决浪费性生物质能资源的唯一出路在于商品化。生物质能秸秆发电技术,不仅为农村提供更多电力,更有意义的是将使生物质能资源的商品化成为可能,一方面农民可通过出售秸秆获得更多的收入;另一方面过去农村使用直接燃烧秸秆的方式进行炊事,要为秸秆的收集、运输、储存以及在直接燃烧时花费大量的时间和劳力。如果能使用秸秆发电,农村使用更多的商品能源,农民将获得更多的时间从事生产性劳动,以尽早脱贫致富。因此,将秸秆发电进行能源方式转化,是一件利国利民的好事。 1 生物质能秸秆发电的工艺流程 农作物秸秆在很久以前就开始作为燃料,直至1973年第一次石油危机时丹麦开始研究利用秸秆作为发电燃料。在这个领域丹麦BWE公司是世界领先者,第一家秸秆燃烧发电厂于1998年投入运行(Haslev,5Mw)。此后,BWE公司在西欧设计并建造了大量的生物发电厂,其中最大的发电厂是英国的Elyan发电厂,装机容量为38Mw。 1.1 秸秆的处理、输送和燃烧 发电厂内建设两个独立的秸秆仓库。每个仓库都有大门,运输货车可从大门驶入,然后停在地磅上称重,秸秆同时要测试含水量。任何一包秸秆的含水量超过25%,则为不合格。在欧洲的发电厂中,这项测试由安装在自动起重机上的红外传感器来实现。在国内,可以手动将探测器插入每一个秸秆捆中测试水分,该探测器能存储99组测量值,测量完所有秸秆捆之后,测量结果可以存入连接至地磅的计算机。然后使用叉车卸货,并将运输货车的空车重量输入计算机。计算机可根据前后的重量以及含水量计算出秸秆的净重。 货车卸货时,叉车将秸秆包放入预先确定的位置;在仓库的另一端,叉车将秸秆包放在进料输送机上;进料输送机有一个缓冲台,可保艚崭?分钟;秸秆从进料台通过带密封闸门(防火)的进料输送机传送至进料系统;秸秆包被推压到两个立式螺杆上,通过螺杆的旋转扯碎秸秆,然后将秸秆传

热解在城市生活垃圾处理中的应用:进展与展望

热解在城市生活垃圾处理中的应用:进展与展望 平帆 (浙江大学环境与资源学院农业资源与环境,杭州 310058) 摘要:热解是目前城市生活垃圾(MSW)处理处置中,相比于焚烧更为环保节能的处理技术。本文综述了近年来研究与应用中涉及的MSW热解技术与反应器,并对其终产物和环境影响进行简单比较。具体而言,总结反应温度、热耗率(HR)和滞留时间等运行参数对于热解过程与其终产物的影响;并归纳比较近年来理论研究与实际应用中的热解技术和反应器。由此得出结论:单一的热解技术或者反应器的确能实现MSW的高效处理,但其清洁环保程度有待商榷。本文最后对各项MSW热解技术与反应器的应用前景作总体评估与展望。 关键词:城市生活垃圾;热解技术;反应器;热解终产物 Review on pyrolysis technologies for municipal solid waste: progress and prospect Ping FAN (College of Environment & Resource Science of Zhejiang University, Hangzhou, Zhejiang 310058, China) Abstract:Pyrolysis has been proved to be amore attractive and sustainable compared to incineration for municipal solid waste (MSW)disposal. This review demonstrates the state-of-the-art ofMSW pyrolysis regarding to its technologies, reactors, products and environmental impacts. To be specific, the influence of important operating parameters such as temperature, heating rate(HR) and residence time in the reaction zone on the pyrolysis behaviors and products is summed up; thenthe technologies and reactors referred in literatures and scale-up plants are shown and assessed. Based on these information, we concluded the single pyrolysis process is an effective waste-to-energyconvertor except for its emission of pollutant. Finally,the prospects of various pyrolysis technologies to dealing with MSW are examined and suggested. Key words:municipal solid waste, pyrolysis technology, reactor, pyrolysis products 1.引言 城市生活垃圾(MSW)的处理处置是目前各国最为关心的问题之一。热解(Pyrolysis)是实现MSW资源化利用,获得多种高附加值终产物(如石油燃料或者沥青等)的创新性废弃物处理处置方法(Malkow, 2004)。相比与传统焚烧,热解能在减少氮氧化物(NO x)和硫氧化物(SO x)排放的同时,获得清洁且利用率较高的固、液、气态能源产品。 热解是指在缺氧条件下,将废弃物置于反应器中经高温降解或裂解,得到可再生利用的终产物(如炭、石蜡、柴油、汽油或燃气等)。对于热解反应器运行参数或环境条件的优化,可使终产物中的木炭或气液态燃料的品质得到提升。因此,热解反应器亦被称之为高效的废弃物-能源转化器。与大规模(以千吨为单位)的传统焚烧发电厂相比,热解厂的规模可根据日处理量与辐射城市面积而灵活调整。近年来,由于城市周边焚烧发电厂

生物质热解

生物质热解 通过生物质能转换技术可高效地利用生物质能源,生产各种清洁能源和化工产品,从而减少人类对于化石能源的依赖,减轻化石能源消费给环境造成的污染。目前,世界各国尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。 生物质热解是指生物质在没有氧化剂(空气、氧气、水蒸气等)存在或只提供有限氧的条件下,加热到逾500?,通过热化学反应将生物质大分子物质(木质素、纤维素和半纤维素)分解成较小分子的燃料物质(固态炭、可燃气、生物油)的热化学转化技术方法。生物质热解的燃料能源转化率可达95.5%,最大限度的将生物质能量转化为能源产品,物尽其用,而热解也是燃烧和气化必不可少的初始阶段。 1 热解技术原理 1.1 热解原理 从化学反应的角度对其进行分析,生物质在热解过程中发生了复杂的热化学反应,包括分子键断裂、异构化和小分子聚合等反应。木材、林业废弃物和农作物废弃物等的主要成分是纤维素、半纤维素和木质素。热重分析结果表明,纤维素在52?时开始热解,随着温度的升高,热解反应速度加快,到350,370?时,分解为低分子产物,其热解过程为: (C6H10O5)n?nC6H10O5 C6H10O5?H2O+2CH3-CO-CHO CH3-CO-CHO+H2?CH3-CO-CH2OH CH3-CO-CH2OH+H2?CH3-CHOH-CH2+H2O 半纤维素结构上带有支链,是木材中最不稳定的组分,在225,325?分解,比纤维素更易热分解,其热解机理与纤维素相似。

从物质迁移、能量传递的角度对其进行分析,在生物质热解过程中,热量首先传递到颗粒表面,再由表面传到颗粒内部。热解过程由外至内逐层进行,生物质颗粒被加热的成分迅速裂解成木炭和挥发分。其中,挥发分由可冷凝气体和不可冷凝气体组成,可冷凝气体经过快速冷凝可以得到生物油。一次裂解反应生成生物质炭、一次生物油和不可冷凝气体。在多孔隙生物质颗粒内部的挥发分将进一步裂解,形成不可冷凝气体和热稳定的二次生物油。同时,当挥发分气体离开生物颗粒时,还将穿越周围的气相组分,在这里进一步裂化分解,称为二次裂解反应。生物质热解过程最终形成生物油、不可冷凝气体和生物质。 1.2 热解反应基本过程 根据热解过程的温度变化和生成产物的情况等,可以分为干燥阶段、预热解阶段、固体分解阶段和煅烧阶段。 1.2.1 干燥阶段(温度为120,150?),生物质中的水分进行蒸发,物料的化学组成几乎不变。 1.2.2 预热解阶段(温度为150,275?),物料的热反应比较明显,化学组成开始变化,生物质中的不稳定成分如半纤维素分解成二氧化碳、一氧化碳和少量醋酸等物质。上述两个阶段均为吸热反应阶段。 1.2.3 固体分解阶段(温度为275,475?),热解的主要阶段,物料发生了各种复杂的物理、化学反应,产生大量的分解产物。生成的液体产物中含有醋酸、木焦油和甲醇(冷却时析出来);气体产物中有CO2、CO、CH4、H2等,可燃成分含量增加。这个阶段要放出大量的热。 1.2.4 煅烧阶段(温度为450,500?),生物质依靠外部供给的热量进行木炭的燃烧,使木炭中的挥发物质减少,固定碳含量增加,为放热阶段。实际上,上述四个阶段的界限难以明确划分,各阶段的反应过程会相互交叉进。 2 热解工艺及影响因素

生物质热解制取生物油的研究进展

生物质热解制取生物油的研究进展 生物质热解制取生物油的研究进展 摘要:文章介绍了国内外生物质热解的发展现状与趋势,概述了我国生物质热解制取生物油的潜力。文章对生物质热解制取生物油进行了展望,并指出了生物质热解制取生物油的发展战略。 关键词:生物质热解生物油 一、引言 维持现代文明社会正常运转的主要能源来自石油、煤和天然气。然而,这些化石燃料的广泛使用造成了严重环境污染和温室效应。为了保护环境,实现温室气体减排,缓解能源供需的紧张状况,世界各国均在加紧开发包括生物质能在内的各种可再生能源。 我国农林废弃资源丰富,直接燃烧对环境污染大。利用生物质热解技术原理可以将麦秸秆、玉米杆、谷壳等废气生物质转化为生物油。生物油是一种褐色液体,热值约为15MJ/kg,能够用于工业锅炉或窑炉燃烧供热,也可用于涡轮机或透平中燃烧发电。生物油经过品质提升后(如催化加氢、催化裂解和气化-费托合成),可以转化为汽油或柴油。该文主要对生物质热解液化研究进展进行介绍,综述了这类可再生资源的利用现状、潜力及今后发展的方向。 二、国内外生物质热解研究现状 20 世纪70年代的石油危机,世界各国纷纷寻求可替代化石能源的可再生能源,“生物质”渐渐引起人们的注意,因此对生物质的研究由此开始,尤其是对生物质热解的研究更是引起广大研究者的重视。上世纪80年代早期,北美首先开展了热解技术的研究工作。此后,世界各国先后建立了多种热解装置和相关工艺路线,力图实现热解技术的产业化。 生物质快速热解技术是生物质利用的重要途径,许多研究者用闪解来增加热解的液体产物和气体产物。任铮伟等[1]在最大进料速率为5kg/h的快速裂解流化床内进行了快速热解生物质制取液体燃料 的研究。反应在常压和420~525℃温度范围内进行,以木屑为原料,

重油热解

2 实验装置与流程 重油快速热解反应在小型流化床反应装置上进行,实验流程如图2-1所示。原料油由油泵抽出送经预热炉加热到预定温度,从下部进入流化床反应器与加热好的高温催化剂接触进行催化裂解反应。反应油气在反应器扩大段内经过过滤器与催化剂分离,进入冷凝器将气体产物冷凝分离,经气液分离器后,液体产物被收集,气体产物进入湿式流量计,测量体积,然后进入集气袋,留作取样分析。 整个反应系统可分为进样系统,反应系统,分离系统,测量分析系统四部分。 1.进样系统 包括一台自加热双通道柱塞式计量泵、原料油瓶、储水瓶和两台电子天平。通过调节计量泵改变反应的水油比,进常压渣油时要边加热边输送,防止渣油冷凝堵塞管路。 2.反应系统 包括流化床反应器、预热炉、加热炉、热电偶等。反应器是反应系统的核心,为了保证流化床内的流化状态,在反应器底端设置不锈钢分布板。反应器中心是一端封闭的热电偶盲管,内置测量反应管芯温度的热电偶,测温点处于加热炉的恒温区域内,以保证反应温度的准确性。反应器出口设有200目丝网过滤器,防止磨损的石油焦被气流带出反应器。预热炉与加热炉是反应的热源,为了保证流化床内的反应温度均匀温度,加热炉采用四段控温加热,分别由四个温度控制器控制并指示温度,通过对加热炉四段温度的调节,可以保证在反应器中重油裂解反应所需热量。

图2-1 重油快速裂解反应流程图 1.柱塞式计量泵 2.气瓶 3.预热炉 4.电加热炉 5.流化床反应器 6.热电偶 7.冷凝器 8.气液分离器9.电子天平10.湿式流量计11.集气袋12.气相色谱仪 Fig 2-1 Reaction flowsheet of heavy oil fast cracking 1.pluger meter ring pump 2.gas bottle 3.preheating furnace 4.electric heating furnace 5.fluidized reator 6. thermocouple 7.condensator 8.gas-liquid separator 9.electronical balance 10.water-sealed flowmeter 11.gas collection bag 12. Gas chromatograhy 3.分离系统 包括冷凝器、气液分离器两部分。裂解产生的高温油气先经过水冷,将温度降至常温,液相冷凝在气液分离器底部,气体产品从分离器顶部排出,进入后续测量分析系统。 4.测量分析系统 包括气相色谱仪、湿式流量计、电子天平。气相色谱仪用来分析气体产物的组成,其中,氢火焰检测器分析可燃组分,热导检测器分析氢气、一氧化碳和二氧化碳。湿式流量计用来测量气相产物的体积。电子天平用来称量反应过程中,反应中进入反应系统的水和原料油的质量,以及反应后液体产物的质量。 2.1.3 实验步骤与数据处理方法 2.1. 3.1 实验步骤

生物质热解原理与技术(朱锡锋)

《生物质热解原理与技术》可作为高等学校和科研院所相关专业的研究生和高年级本科生的教材使用,也可以作为生物质能领域工程技术人员的参考资料使用。 目录 目录 《21 世纪新能源丛书》序 前言 第1 章概述 1 1.1 能源的基本概念 1 1.2 绿色植物光合作用 3 1.3 生物质资源与分类 6 1.4 生物质的物理性质. 10 1.4.1 生物质的含水率.10 1.4.2 生物质的密度.10 1.4.3 堆积角、内摩擦角和滑落角 11 1.4.4 生物质炭的机械强度.12 1.4.5 生物质的比表面积.13 1.4.6 生物质的孔隙率.13 1.4.7 生物质的比热容.13 1.4.8 生物质的导热系数.13 1.5 生物质的燃料特性. 14 1.5.1 生物质的燃烧.14 1.5.2 生物质的发热量.15 1.5.3 生物质燃料的化学当量比 17 1.6 生物质能源转换技术. 18 参考文献 22 附录1-1 我国农作物秸秆资源及其分布 22 附录1-2 固体生物质燃料全水分测定方法 27 第2 章生物质的组成与结构. 30 2.1 生物质的组成和结构. 30 2.2 生物质的元素分析. 36 2.3 生物质的工业分析. 41 参考文献 47 附录2-1 纤维素聚合度的测定方法及常见生物质原料的组成成分 48 附录2-2 常见生物质原料的分析结果 56

第3 章生物质的热解原理. 80 3.1 纤维素热解机理 80 3.1.1 纤维素热解机理概述. 80 3.1.2 纤维素热解液体产物组成 81 3.1.3 LG 的形成 81 3.1.4 其他脱水糖衍生物的形成 90 3.1.5 呋喃类产物的形成. 93 3.1.6 小分子醛酮类产物的形成 94 3.1.7 纤维素快速热解的整体反应途径 97 3.2 半纤维素热解机理.100 3.2.1 半纤维素热解机理概述 100 3.2.2 半纤维素热解液体产物组成 100 3.2.3 脱水糖衍生物以及呋喃类产物的形成 100 3.2.4 小分子物质的形成.104 3.2.5 木聚糖快速热解的整体反应途径 104 3.3 木质素热解机理 107 3.3.1 木质素热解机理概述.107 3.3.2 木质素模型化合物及其热解机理.107 3.4 生物质热解的主要影响因素 118 3.4.1 加热速率的影响. 118 3.4.2 热解温度的影响. 118 3.4.3 热解时间的影响.122 3.4.4 原料种类的影响.122 3.4.5 原料性质的影响.123 3.4.6 其他因素的影响.124 参考文献 125 第4 章生物质的热解炭化.130 4.1 概述 130 4.2 生物质热解炭化原理.130 4.3 生物质热解炭化装置.132 4.3.1 传统生物质热解炭化装置 133 4.3.2 新型生物质热解炭化装置 140 4.4 生物质炭的性质与应用.146 4.4.1 生物质炭的组成.146 4.4.2 生物质炭的性质.147 4.4.3 生物质炭的应用.149 4.5 醋液与焦油的性质与应用.152 4.5.1 醋液的组成与性质.152

相关主题
文本预览
相关文档 最新文档