当前位置:文档之家› 《指数函数》说课稿

《指数函数》说课稿

《指数函数》说课稿
《指数函数》说课稿

《指数函数》说课稿

一、教材分析

1.《指数函数》在教材中的地位、作用和特点

2.教学目标、重点和难点

(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

(2)技能目标:①渗透分类讨论、数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归一、教材分析

1.《指数函数》在教材中的地位、作用和特点

《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容是在学习了《指数》一节内容之后编排的通过本节课的学习既可以对指数和函数的概念等知识进一步巩固和深化又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数对高中阶段研究对数函数、三角函数等完整的函数知识初步培养函数的应用意识打下了良好的学习基础所以《指数函数》不仅是本章《函数》的重点内容也是高中学段的主要研究内容之一有着不可替代的重要作用此外《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系尤其体现在细胞分裂、借贷利率的计算和考古中的年代测算等方面因此学习这部分知识还有着广泛的现实意义本节内容

的特点之一是概念性强特点之二是凸显了数学图形在研究函数性质

时的重要作用

2.教学目标、重点和难点

通过初中学段的学习和高中对集合、函数等知识的系统学习学生对函数和图象的关系已经构建了一定的认知结构主要体现在三个

方面:

知识维度:对正比例函数、反比例函数、一次函数二次函数等最简单的函数概念和性质已有了初步认识能够从初中运动变化的角

度认识函数初步转化到从集合与对应的观点来认识函数

技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握能够为研究《指数函数》的性质做好准备

素质维度:由观察到抽象的数学活动过程已有一定的体会已初步了解了数形结合的思想

鉴于对学生已有的知识基础和认知能力的分析根据《教学大纲》的要求我确定本节课的教学目标、教学重点和难点如下:

(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

(3)情感目标:①体验从特殊到一般的学习规律认识事物之间的普遍联系与相互转化培养学生用联系的观点看问题②通过教学互

动促进师生情感激发学生的学习兴趣提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值

(4)教学重点:指数函数的图象和性质

(5)教学难点:指数函数的图象性质与底数a的关系

突破难点的关键:寻找新知生长点建立新旧知识的联系在理解概念的基础上充分结合图象利用数形结合来扫清障碍

二、教法设计

由于《指数函数》这节课的特殊地位在本节课的教法设计中我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识更期望能引领学生掌握研究初等函数图象性质的一般思路和方法为今后研究其它的函数做好准备从而达到培养学生学习能力的目的我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识将二者结合起来主要突出了几个方面:

1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例充分调动学生的学习兴趣激发学生的探究心理顺利引入课题而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备

2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义并向学生指出指数函数的形式特点请学生思考对于底数a是否需要限制如不限制会有什么问题出现这样避免了学生对于底数a范围分类的不清楚也为研究指数函数的图象做了“分类讨论”的铺垫

3.突出图象的作用.在数学学习过程中图形始终使我们需要借助的重要辅助手段一位数学家曾经说过“数离形时少直观形离数时难入微”而在研究指数函数的性质时更是直接由图象观察得出性质因此图象发挥了主要的作用

4.注意数学与生活和实践的联系.数学的本质是来源于生活服务于实践在课堂教学的引入、例题的讲解和课外知识的拓展部分都介绍了与指数函数息息相关的生活问题力图使学生了解到数学的基础学科作用培养学生的数学应用意识

三、学法指导

本节课是在学习完“指数”的概念和运算后编排的针对学生实际情况我主要在以下几个方面做了尝试:

1.再现原有认知结构在引入两个生活实例后请学生有关指数的概念帮助学生再现原有认知结构为理解指数函数的概念做好准备

2.领会常见数学思想方法在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法这些方法将会贯穿整个高中的数学学习

3.在互相交流和自主探究中获得发展在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动让学生变被动的接受和记忆知识为合作学习的乐趣中主动地建构新知识的框架和体系从而完成知识的内化过程

4.注意学习过程的循序渐进在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进让学生感到有挑战、有收获跳一跳够得着不同难度的题目设计将尽可能照顾到课堂学生的个体差异

四、程序设计

在设计本节课的教学过程中本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则我设计了如下的教学程序启发学生逐步发现和认识指数函数的图象和性质

1.创设情景、导入新课

教师活动:①用电脑展示两个实例第一个是计算机价格下降问题第二个是生物中细胞分裂的例子②将学生按奇数列、偶数列分组学生活动:①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式并互相交流;②指数的概念;③归纳指数函数的概念;④分析出对指数函数底数讨论的必要性以及分类的方法

设计意图:通过生活实例激发学生的学习动机扫清由概念不清而造成的知识障碍培养学生思维的主动性为突破难点做好准备;

2.启发诱导、探求新知

教师活动:①给出两个简单的指数函数并要求学生画它们的图象②在准备好的小黑板上规范地画出这两个指数函数的图象③板书指数函数的性质

学生活动:①画出两个简单的指数函数图象②交流、讨论③归纳出研究函数性质涉及的方面④总结出指数函数的性质

设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用在学生完成基本作图之后教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法达到进一步规范学生的作图习惯的目的然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情况学生就会很自然的通过观察图象总结出指数函数的性质同时对于底数的讨论也就变得顺理成章

3.巩固新知、反馈回授

教师活动:①板书例1②板书例2第一问③介绍有关考古的拓展知识

学生活动:①学习解题的规范步骤②完成例2的第二问、第三问③完成分组练习④扩展视野体会数学的应用价值

设计意图:本环节的设计目的是实现学生对指数函数知识的初步应用完成学生学习的“实践―――认识―――再实践”过程力求通过例题的讲授、规范的板书养成学生良好地解题习惯起到教师的示范作用通过例2的第二问、第三问巩固学生对指数函数性质的理解、实现会用指数函数的性质解决数学问题通过三个分组练习实现教师的再指导和学生的渐进式提高指数函数与借贷利率的计算、化学中半衰期的计算和考古技术的现代运用有紧密的联系本环节介绍的“化学中的14C在考古中的应用”既开拓了学生的视野又为下一步学习“计算分期付款的利率”等问题埋下伏笔

4.归纳小结、深化目标

教师活动:①引导学生对课堂知识进行归纳完成对分类讨论、数形结合等数学方法的归纳;②布置课后及拓展作业

学生活动:完成对指数函数的概念和性质的课内小结并通过课后作业进一步深化学习目标有能力的同学完成网上调研并在下节课

与同学交流我国在利用14C进行考古所取得的成果

设计意图:教师在本环节引导学生对指数函数的知识进行梳理深化知识与技能目标并通过作业实现目标的巩固

5.板书设计

考虑到板书在教学过程中发挥的功能本节课我设计了由三个板块构成的板书板面分配比例为2:1:1第一大板块包含了两部分一是指数函数的定义二是课前准备的画有坐标系和表格的小黑板;第二板块书写了例1和例2的第一问;第三板块由学生完成例2的后两问、练习和课堂小结组成

五、教学评价

教学评价的及时有效能调动课堂的气氛、感染学生的情绪对课堂教学发挥着积极的推动作用因此我将教学评价将贯穿于本节课的

每个教学环节中例如情景导入的表达式评价、指数知识的记忆评价、得出指数函数概念的归纳评价、作图时的准确性评价、解题时的规范性评价、小结时的表述性评价等在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评通过多种评价方式让更多的学生获

得学习的自信在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务

当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思并在后续的时间里修订课堂设计方案达到预期的教学效果实现学生的能力发展以上是我对指数函数这节课的设计和思考敬请批评指正!

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

指数函数典型例题

典型例题 比较大小 例1、比较下列各组数的大小: (1)和 ; (2)和 ; (3)和 ; (4)和 , . 分析:当两个幂形数底数相同时,要比较这两个数的大小可根据它们的特征构造相应的指数函数,借助函数的单调性来比较大小. 解: (1)在上是减函数,又 ,故 < . (2) = ,由的单调性可得, >即 > . (3)由 >1而 <1,可知 > . (4)当时, < ,当时, > . 小结:此题中第(3)小题的两个数不能看成某个指数函数的两个函数值,此时可以借助一些特殊数如0或1来搭桥间接比较两个数的大小,而(2)小题则可以通过指数运算化为底数相同的两个幂,可构造指数函数来比较大小. 根据条件比较字母的大小 例1、比较下列各组数的大小: (1)若,比较与;

(2)若,比较与; (3)若,比较与; (4)若,且,比较a与b; (5)若,且,比较a与b. 分析:设均为正数,则,即比较两个正数的大小,可比较它们的商与1的大小.掌握指数函数的图象规律,还要掌握底的变化对图象形 状的影响.这主要有两方面:其一是对;对 .用语言叙述即在y轴右侧,底越大其图象越远离x轴;在y轴左侧,底越大,其图象越接近x轴.这部分内容即本题(2),(3)所说的内容.其二是当底均大于1时,底越大,其图象越接近y轴;当底均小于1时,底越小,其图象越接近y轴.一个便于记忆的方法是:若以离1远者为底,则其图象接近y轴.当然这是指底数均大于1或均小于1.这部分内容即本题(4)与(5). 解:(1)由,故,此时函数为减函数.由,故. (2)由,故.又,故.从而. (3)由,因,故.又,故.从而. (4)应有.因若,则.又,故,这样 .又因,故.从而,这与已知矛盾. (5)应有.因若,则.又,故,这样有 .又因,且,故.从而,这与已知 矛盾.

1、指数函数与对数函数对比分析总结---答案

指数函数与对数函数总结 一、[知识要点]: 1. 指数函数y=a x与对数函数y=a log x的比较: 定义图象 定义 域 值域 性质 奇 偶 性 单 调 性 过定 点 值的分布最值 y=a x (a>0且a≠1)叫指数函数 a>1 (- ∞,+ ∞) (0, +∞) 非 奇 非 偶 增 函 数(0, 1) 即a0 =1 x>0时 y>1; 00时 01 y= a log (a>0 且a≠ 1) 叫对 数函 数a>1O y x (0, +∞) (- ∞,+ ∞) 非 奇 非 偶 增 函 数 (1, 0) 即 log a1 =0 x>1时 y>0; 01时 y<0; 00 对称性函数y=ax 与y=a-x (a>0且a≠1)关于y轴对称;函数y=a x与y =log a x关于y=x对称 函数y=log a x与y=1log a x(a>0且a≠1)关于x轴对称 2. 记住常见指数函数的图形及相互关系以及常见对数函数的图形及相互关系 ①②

3. 几个注意点 (1)函数y =a x 与对数函数y =log a x (a>0,a ≠1)互为反函数,从概念、图象、性质去理解它们的区别和联系;(2)比较几个数的大小是对数函数性质应用的常见题型。在具体比较时,可以首先将它们与零比较,分出正负;正数通常可再与1比较分出大于1还是小于1,然后在各类中间两两相比较;(3)在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用。研究指数、对数函数问题,尽量化为同底,并注意对数问题中的定义域限制。 【典型例题】 例1. (1)下图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则a 、b 、c 、d 与1 A. a <b <1<c <d B. b <a <1<d <c C. 1<a <b <c <d D. a <b <1<d <c 剖析:可先分两类,即(3)(4)的底数一定大于1,(1)(2)的底数小于1,然后再从(3)(4)中比较c 、d 的大小,从(1)(2)中比较a 、b 的大小。 解法一:当指数函数底数大于1时,图象上升,且底数越大,图象向上越靠近于y 轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近于x 轴.得b <a <1<d <c 。故选B 。 解法二:令x =1,由图知c 1>d 1>a 1>b 1,∴b <a <1<d <c 。 例2. 已知2x x +2 ≤(41 )x -2,求函数 y =2x -2-x 的值域。 解:∵2x x +2 ≤2-2(x -2),∴x 2+x ≤4-2x , 即x 2+3x -4≤0,得-4≤x ≤1。 又∵y =2x -2-x 是[-4,1]上的增函数, ∴2-4-24≤y ≤2-2-1。 故所求函数y 的值域是[-16255,23 ]。 例3. 要使函数y =1+2x +4x a 在x ∈(-∞,1)上y >0恒成立,求a 的取值范围。 解:由题意,得1+2x +4x a >0在x ∈(-∞,1)上恒成立, 即 a >-x x 421+在x ∈(-∞,1)上恒成立。 又∵-x x 421+=-(21)2x -(21 )x =-[(21)x +21]2+41 , 当 x ∈(-∞,1)时值域为(-∞,-43 ),

函数大小比较

㈠ 与幂函数αx y =有关的大小比较 ⑴ 两个幂函数的指数相同(底数为负数时须先化为正数),利用幂函数的单调性判定大小; ⑵ 两个幂函数的指数不同,能化为同指数的,利用幂函数的单调性判定大小,不能化为同指数的,利用中间数0来比较大小; 幂函数αx y =的性质: ⑴ 在),0(∞上,0>α时是增函数,0<α时是减函数: ⑵ 1>x 时,指数大的图象在上方,10<α时,图象过(0,0),(1,1),0<α时,图象过(1,1)。 ㈡ 与指数函数x a y =有关的大小比较 ⑴ 两个指数函数的底数相同指数不同时,利用指数函数的单调性判定大小; ⑵ 两个指数函数的底数不同指数相同时,可根据图象与底数的关系进行比较; ⑶ 两个指数函数的底数和指数都不同时,可引进第3个数(如0,1)分别与之比较,通过常数传递比较大小。 指数函数的性质: ⑴ 1>a 时,x a y =是增函数,10<a 时,a 越大图象上升越快,10<a 时,x y a log =是增函数,10<a 时,010,01?>y x y x ,10<?<<y x y x ; ⑶ x y a log =的图象过(1,0)点,),0(,∞∈∈x R y 。 对数的性质:N a a N a a a ===log ,1log ,01log ,零和负数没有对数。 对数运算公式: ⑴ N M MN a a a log log )(log += ⑵ N M N M a a a log log )(log -= ⑶ M n M a n a log log = ⑷ 换底公式:)1,0,1,0(,log log log ≠>≠>=c c a a a N N a a a ⑸ a b b a log 1log = ⑹ )1,0,1,0(,log log ≠>≠>=b b a a b n m M a m a n

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

指数运算、指数函数

§1.4指数运算、指数函数 【复习要点】 1.指数、对数的概念、运算法则; 2.指数函数的概念, 性质和图象. 【知识整理】 1.指数的概念;运算法则:n n n mn n m n m n m b a ab a a a a a ===?+)(,)(, )1,,,0(* >∈>= n N n m a a a n m n m )1,,,0(1 1 * >∈>= = - n N n m a a a a n m n m n m 2.指数函数的概念, 性质和图象如表: 中利用函数的图象来比较大小是一般的方法。 4.会求函数y =a f (x)的单调区间。 5.含参数的指数函数问题,是函数中的难点,应初步熟悉简单的分类讨论。 【基础训练】 1]43 的结果为 ( ) A.5 B.5 C.-5 D.-5 2.将3 22-化为分数指数幂的形式为 ( ) A .21 2- B .31 2- C .2 12 - - D .65 2-

3.下列等式一定成立的是 ( ) A .2 33 1a a ?=a B .2 12 1a a ?- =0 C .(a 3)2=a 9 D .61 3 12 1a a a =÷ 4.下列命题中,正确命题的个数为 ( ) ①n n a =a ②若a ∈R ,则(a 2-a +1)0 =1 ③y x y x +=+34 33 4 ④6 2 3)5(5-=- A .0 B .1 C .2 D .3 5.化简11111321684 2 1212121212-----?????????? +++++ ? ? ? ? ????? ??????,结果是 ( ) A .1 1 321122--? ?- ? ?? B .1 13212--??- ? ?? C .1 3212-- D .1 321 122-??- ??? 6 .4 4 ? ? ? ? 等 于 ( ) A .16 a B .8 a C .4 a D .2a 【例题选讲】 1.设3 2212 ,-==x x a y a y ,其中a >0,a ≠1,问x 为何值时有 (1)y 1=y 2 ? (2)y 1<y 2? 2.比较下列各组数的大小,并说明理由 (1)43 1.1,43 4.1,32 1.1 (2)4 316.0- ,2 35 .0- ,8325.6 (3)53 2 )1(+a ,43 2 )1(+a 3.已知函数3234+?-=x x y 的值域为[7,43],试确定x 的取值范围. 4.设01a <<,解关于x 的不等式2 2 232 223 x x x x a a -++->

指数函数与对数函数对比分析总结---答案

指数函数与对数函数总结 一、 [知识要点]: x a log x 定义 图象 定义域 值域 性质 奇偶性 单 调 性 过定 点 值的分布 最值 y =a x (a>0且a ≠1) 叫指数函数 a>1 (-∞,+ ∞) (0,+∞) 非奇 非偶 增 函数 (0,1) 即a 0 =1 x>0时y>1;00时01 y = a log (a>0且a ≠1) 叫对数函数 a>1O y x (0,+∞) (- ∞,+∞) 非奇 非偶 增 函数 (1,0) 即 log a 1=0 x>1时 y>0; 01时 y<0; 00 对称性 函数y =ax 与y =a -x (a>0且a ≠1)关于y 轴对称;函数y =a x 与y =log a x 关于y =x 对称 函数y =log a x 与y =1log a x (a>0且a ≠1)关于x 轴对称 2. ① ② 3. 几个注意点 (1)函数y =a x 与对数函数y =log a x (a>0,a ≠1)互为反函数,从概念、图象、性质去理解它们的区别和联系;(2)比较几个数的大小是对数函数性质应用的常见题型。在具体比较时,可以首先将它们与零比较,分出正负;正数通常可再与1比较分出大于1还是小于1,然后在各类中间两两相比较;(3)在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用。研究指数、对数函数问题,尽量化为同底,并注意对数问题中的定义域限制。 【典型例题】 例1. (1)下图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则a 、b 、c 、d 与1的大小关系是( )

指数函数对数函数比较大小题型总结

1、 已知0707..m n >,则m n 、的关系是( ) A 、 10>>>m n B 、 10>>>n m C 、 m n > D 、 m n < 2、三个数a b c =-==(.)(.).030320203,,,则a b c 、、的关系是( ) A 、 a b c << B 、 a c b << C 、 b a c << D 、 b c a << 3、三个数6log ,7.0,67.067.0的大小顺序是 ( ) A 、60.70.70.7log 66<< B 、60.70.70.76log 6<< B 、0.760.7log 660.7<< D 、60.70.7log 60.76<< 4 、 设 1.5 0.9 0.48 12314,8 ,2y y y -??=== ? ?? ,则 ( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、 123y y y >> 5、当10<> B 、a a a a a a >> C 、a a a a a a >> D 、a a a a a a >>

6.设y 1=,y 2=,y 3=(12 )- ,则( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2 7.设13<(13)b <(13 )a <1,则( ) A .a a b >c B .a 0,且a ≠1). 12.设y 1=,y 2=,y 3=(12)- ,则( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3

指数及指数函数知识点

指数函数 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . (二)分数指数幂 1.分数指数幂:()102 5 0a a a ==>()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a =45a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。

《指数函数比较大小》专题

《指数函数比较大小》专题 2014年()月()日班级:姓名 每道错题做三遍。第一遍:讲评时;第二遍:一周后;第三遍:考试前。 【类型一】比较大小 1.比较下列各组数中两个值的大小: (1) 30.8,30.7;(2) 0.75-0.1,0.750.1;(3) 1.012.7,1.013.5;(4) 0.993.3,0.994.5. 2. (1)已知3x≥30.5,求实数x的取值范围;(2)已知0.2x<25,求实数x的取值范围. 3.已知下列不等式,比较m、n的大小. (1)2m<2n; (2)0.2m>0.2n; (3)a ma n(a>1).

4.比较下列各组数中两个值的大小: (21)32和(21)31 (21)32和 (51)32 (21)31和 (5 1)32 5.将下列各数排列起来 (21)31,(21)32,(5 1)32 6.已知a>b,ab 0≠下列不等式①a 2>b 2, ②2a >2b , ③b a 11<, ④a 31>b 31 ,⑤(31)a <(31)b 中恒成立的有( )A.1个 B.2个 C.3个 D.4个 7.若a 23

指数函数的基础知识

指数函数基础知识 指数函数施我们学习的基本函数之一,对于指数函数的学习,概念非常重要,因此一定要弄懂指数函数的定义。 一、指数函数的定义: 函数 )10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R 。 注意点1:为什么要规定01a a >≠且呢? ①若0a =,则当0x >时,0x a =;当0x <时,x a 无意义. ②若0a <,则对于x 的某些数值,可使x a 无意义. 如x )2(-,这时对于 14x = ,1 2x =,…等等,在 实数范围内函数值不存在. ③若1a =,则对于任何x R ∈,1x a =,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定01a a >≠且。在规定以后,对于任何x R ∈,x a 都有意义,且0x a >. 因此指数函数的定义域是R ,值域是(0,)+∞ 。 注意点2: 上述指数函数的定义是形式上的定义,它实质上是一种指数的对应关系,以a 为底数 作为指数对应过去。从对应的角度看指数函数的话,就能很容易理解为什么函数1 3+=x y 不 是指数函数,也能理解指数函数的解析式x y a =中,x a 的系数为什么是1. 有些函数貌似指数函数,实际上却不是,如 x y a k =+ (01a a >≠且,k Z ∈);有些函数看起来不像指数函数,实际上却是,如x y a -= (01a a >≠且),因为它可以化为 1x y a ?? = ???,其中10a >,且1 1 a ≠。 二、函数的图象 (1)①特征点:指数函数y =a x (a >0且a ≠1)的图象经过两点(0,1)和(1,a),我们称这两点为指数函数的两个特征点. ②指数函数y =a x (a >0且a ≠1)的图象中,y =1反映了它的分布特征;而直线x =1与指数函数图象的交点(1,a)的纵坐标则直观反映了指数函数的底数特征,我们称直线x =1和y =1为指数函数的两条特征线(如右图所示). (2)、函数的图象单调性 当a >1时,函数在定义域范围内呈单调递增; 当0<a <1时,函数在定义域范围内呈单调递减;

指数函数大全.doc

高一数学测试题(指数函数)1 一、选择题 1. 设指数函数/(Q = /(d 〉O,dHl ),则下列等式中令疋硒的是 () A. fix+y)=f(x) ? J(y) C. f(nx) = [f(x)]lJ (neg) D. [/(厂)]"=[/(x)]“?[/(),)]” gNJ 2. 函数), =(兀一5)°+(兀一2「2 ( ) A. [x\x^ 5,x^ 2} B. {x\x>2} C. {x\x>5} D. {兀 | 2 v 兀 v 5或x > 5} A. 2 B. 3 C. 4 D.-- 8 A 循+1 D V5-1 V5±l c 1土石 A. ----------- C. D. 2 2 2 2 4.方程=x 2 (0<6Z

偶函数, 在R 上为减函数 8.函数 ^ =(-) 一x^+x+2 得单调递增区间是 偶函数, -A* 7. 已知HQ = " _幺,则下列正确的是 A.奇函数,在R 上为增函数 B. 上为增函数 C.奇函数,在R 上为减函数 D.

2 48 100 ; ( 2 ) 血Zb 十―上 忖+ 2畅+ 4莎I % 2 = 6f 3 ([、.广-8 13 不等式冷 <3?的解集是. 、L +av 恒成立,则a 的取值范围是 a?h = 15.定义运算: 12 . 计算: (7、0.5 2- < 9丿 (a ~b \则函数/(x) = 2P2f 的值域为— b (d 〉b) 16.已知 f (x)二 实数a 的収值范围是 (2-°严+ 1 (兀G ),满足对任意的XZ ,都有、/(")—、/(£)>0成立,则 a (x > 1) 16.如图所示的是某池塘屮的浮萍蔓延的面枳伽2)与时间/(月) 的关系:y = R,有以下叙述: ①这个指数函数的底数是2; ②第5个月吋,浮萍的面积就会超过30m 2: ③浮萍从牛/蔓延到12加2需要经过1.5个月; ④浮萍每个月增加的面积都相等; 9?已知a>0,且Ef (x )宀?当x*l,l )时,均有f (x )冷,则实如的取值范围是() A ?[*,l]u(l,2] B. [*, 1] C.(0,*] u[4,+co) 10.已知偶函数 f(x),且 f(x+2)=f(2-x),当-2WxW0 时,f(x)=2x ,则 f(2010) = () A. 2010 B.4 C. - D. -4 4 、填空题(每小题4分,共计28分) 11.当口>0且oHl 时,函数/⑴二护一2—3必过定点 B ? [2,+oo) C. [1,2] D. D. R 0 12 3

指数函数对数函数比较大小题型总结

指数函数对数函数比较大小 题型总结 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

1、 已知0707..m n >,则m n 、的关系是( ) A 、 10>>>m n B 、 10>>>n m C 、 m n > D 、 m n < 2、三个数a b c =-==(.)(.).030320203,,,则a b c 、、的关系是( ) A 、 a b c << B 、 a c b << C 、 b a c << D 、 b c a << 3、三个数6log ,7.0,67.067.0的大小顺序是 ( ) A 、60.70.70.7log 66<< B 、60.70.70.76log 6<< B 、0.760.7log 660.7<< D 、60.70.7log 60.76<< 4、设 1.50.90.4812314,8,2y y y -??=== ???,则 ( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 5、当10<> B 、a a a a a a >> C 、a a a a a a >> D 、a a a a a a >> 6.设y 1=,y 2=,y 3=(12)-,则( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2 7.设13<(13)b <(13)a <1,则( )

知识讲解_指数函数及其性质_基础

指数函数及其性质 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>? ?≤??x x 时,a 恒等于,时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释: (1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1)

① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1,a a a a ?-+=?>≠? 且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断; (2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x . 举一反三: 【变式1】指出下列函数哪些是指数函数? (1)4x y =;(2)4 y x =;(3)4x y =-;(4)(4)x y =-; (5)1 (21)(1)2 x y a a a =-> ≠且;(6)4x y -=.

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

指数函数及其性质

2.1.2 指数函数及其性质 整体设计 教学分析 有了前面的知识储备,我们就可以顺理成章地学习指数函数的概念,作指数函数的图象以及研究指数函数的性质. 教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫. 本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,编写时充分关注与实际问题的结合,体现数学的应用价值. 根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情景,为学生的数学探究与数学思维提供支持. 三维目标 1.通过实际问题了解指数函数的实际背景,理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质,体会具体到一般数学讨论方式及数形结合的思想. 2.让学生了解数学来自生活,数学又服务于生活的哲理.培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力. 3.通过训练点评,让学生更能熟练指数幂运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美. 重点难点 教学重点:指数函数的概念和性质及其应用. 教学难点:指数函数性质的归纳、概括及其应用. 课时安排 3课时 教学过程 第1课时指数函数及其性质(1) 导入新课 思路1.用清水漂洗衣服,若每次能洗去污垢的,写出存留污垢y与漂洗次数x的关系式,它是函数关系式吗?若是,请计算若要使存留的污垢不超过原有的,则至少要漂洗几次?教师引导学生分析,列出关系式y=()x,发现这个关系式是个函数关系且它的自变量在指数的位置上,这样的函数叫指数函数,引出本节课题. 思路2.教师复习提问指数幂的运算性质,并要求学生计算23,20,2-2,16,27,49.再提问怎样画函数的图象,学生思考,分组交流,写出自己的答案8,1, ,2,9,,先建立平面直角坐标系,再描点,最后连线.点出本节课题. 思路3.在本章的开头,问题(2)中时间t和碳14含量P的对应关系P=[()]t,如果我们用x 表示时间,y表示碳14的含量,则上述关系可表示为y=[()]x,这是我们习惯上的函数形式,像这种自变量在指数的位置上的函数,我们称为指数函数,下面我们给出指数函数的确切概念,从而引出课题. 推进新课 新知探究

幂函数与指数函数的区别

幂函数与指数函数的区别 1、指数函数:自变量x在指数的位置上,y=a^x(a>0,a不等于1) 性质比较单一,当a>1时,函数就是递增函数,且y>0; 当00、 2、幂函数:自变量x在底数的位置上,y=x^a(a不等于1)、 a不等于1,但可正可负,取不同的值,图像及性质就是不一样的。 高中数学里面,主要要掌握a=-1、2、3、1/2时的图像即可。其中当a=2时,函数就是过原点的二次函数。其她a值的图像可自己通过描点法画下并了解下基本图像的走向即可。 3、y=8^(-0、7)就是一个具体数值,并不就是函数,如果要与指数函数或者幂函数联系起来也就是可以的。首先您可以将其瞧成:指数函数y=8^x(a=8),当x=-0、7时,y的值;或者将其瞧成:幂函数y=x^(-0、7)(a=-0、7),当x=8时,y的值。

幂函数的性质: 根据图象,幂函数性质归纳如下: (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点 (1,1); (2)当a>0时,幂函数的图象通过原点,并且在区间[0,+ ∞)上就是增函数. 特别地,当a>1时,幂函数的图象下凸;当0

相关主题
文本预览