当前位置:文档之家› 电声学中的物理量与级

电声学中的物理量与级

电声学中的物理量与级
电声学中的物理量与级

教案-----电路中的基本物理量

教案电路中的基本物理量 教学目的: 知识目标: (1)熟悉基本电路的组成和作用 (2)理解电压、电流、电动势的概念 (3)掌握电压、电流方向的判别 (4)理解电阻的定义和作用 技能目标: 熟识万用表测量电压、电流、电位的方法 教学重点、难点: 教学重点:电压、电流、电位、电动势、电阻概念的理解 教学难点:(1)电压、电流方向的判别 (2)电动势概念的理解 课型:讲练结合 教学分析: 本次课先由一个手电筒电路引入电路的组成和作用,通过对电流、电压、电动势的实际测试,根据测试的结果来体验分析电流、电压、电位、电动势的存在和方向。再辅以理论讲解来阐明电流、电压、电动势的概念及电流、电压参考方向的应用和电流、电压实际方向 的判别。 复习、提问: (1)手电筒电路是怎么工作的? (2)你认为电压、电流有方向吗?什么情况下有方向呢? 教学过程: 一、电路的组成和作用 导入:(先在黑板上画一手电筒电路的示意图如1(a))

(c) 图1 手电筒电路 手电筒大家都很熟悉,由电池、开关、灯泡、导线四部分组成。电池给灯泡供电,但只有在开关闭合的前提下,才会发亮。所以电池相当于电源,灯泡是供电的对象,称为负载,开关决定着灯亮与灭,所以开关便是控制元件,导线连接整个电路,使其为一闭合回路。电源、负载、控制元件、回路为组成电路的四要素。所以手电筒电路的电路模型如图1(c)。 1、电路组成的四要素: (1)电源(2)负载(3)控制元件(4)回路 2、电路的作用: (1)能量的传输和转换。如手电筒电路,灯泡发光,电池能转换为光能和热能。 (2)信号的传递和处理。如扩音机电路,如图(b),放大器用来放大电信号,而后传递到扬声器,把电信号还原为语言或音乐,实现“声-电-声”的放大、传输和转换作用。 前面我们了解了电路的组成和作用,然而描述一个电路的特性光以上这些是不够的,还需要一些其他的物理量来描述电路的特征。电流、电压、电动势便是描述电路特征的最基本的物理量。下面先通过实际测试来体验一下这些物理量的存在及他们的方向。 二、电流 这一小节的教学方法:(1)先让学生按照教师给定的方法测试试验电路1中流过电阻的电流,让学生先感性认识电流存在的形式,再理论分析电流的定义及计算。(2)再让学生用同样的测试方法反向测量,指针式万用表表笔反偏(数字式显示负值),使学生感性认识直流电流是有方向的,再理论分析电流方向的确定。 先测量试验电路1中流过电阻的电流大小。让学生感受电流在电路中存在的形式。

电声学基础知识

电声学基础知识 (参考资料之一) 《音频声学简介》(5页)《电声学名词及物理意义》(4页) 深圳市美欧电子股份有限公司 南京电声技术中心

《音频声学简介》 §1声波的概念 右运动时,使空气层质点产生压缩,空气层的密度增加,压强增大,使空气层处于“稠密”状态;活塞向左运动时,则空气层质点膨胀,空气层的密度将减小,压强亦将减小,使空气层处于“稀疏”状态。活塞不断地来回运动,将使空气层交替地产生疏密的变化。由于空气分子之间的相互作用,这种交替的疏密状态,将由近及远地沿管子向右传播。这种疏密状态的传播,就形成了声波。 §2描述声波的物理量 一、声压 大气静止时的压强即为大气压强。当有声波存在时,局部空气产生稠密或稀

疏。在稠密的地方,压强将增加,在稀疏的地方压强将减小;这样,就在原有的大气压上又附加了一个压强的起伏。这个压强的起伏是由于声波的作用而引起的,所以称它为声压;用p 表示。声压的大小与物体(如前述的活塞)的振动状态有关;物体振动的振幅愈大、则压强的起伏也愈大,声压也就愈大。然而,声压与大气压强相比,是及其微弱的。 存在声压的空间,称为声场。声场中某一瞬时的声压值,称为瞬时声压)(t p 。在一定的时间间隔中最大的瞬时声压值,称为峰值声压。如果,声压随时间的变化是按简谐规律的,则峰值声压就是声压的振幅。瞬时声压)(t p 对时间取方均根值,即 ?=T e dt t p T p 02) (1 〔1〕 称为声压的有效值或有效声压。T 为取平均的时间间隔。它可以是一个周期或比周期大得多的时间间隔。一般我们用电子仪器所测得的声压值,就是声压的有效值;而人们习惯上所指的声压值,也是声压的有效值。 声压的大小,表示了声波的强弱。目前国际上采用帕(a P )作为声压的单位。以往也用微巴作为单位,它们的换算关系为; 1帕=1牛顿/米2 (MKS 制) 1微巴=1达因/厘米2 CGS (制) 1微巴=0.1帕 1大气压=a P 5100325.1? (常温下) 为了对声压的大小数值,有一个感性的了解,在表一中列出了几种声源所发出的声音的声压的大小。 表一

教案-----电路中的基本物理量

教案-----电路中的基本物理量

教案电路中的基本物理量 教学目的: 知识目标: (1)熟悉基本电路的组成和作用 (2)理解电压、电流、电动势的概念 (3)掌握电压、电流方向的判别 (4)理解电阻的定义和作用 技能目标: 熟识万用表测量电压、电流、电位的方法教学重点、难点: 教学重点:电压、电流、电位、电动势、电阻概念的理解 教学难点:(1)电压、电流方向的判别 (2)电动势概念的理解 课型:讲练结合 教学分析: 本次课先由一个手电筒电路引入电路的组成和作用,通过对电流、电压、电动势的实际测试,根据测试的结果来体验分析电流、电压、电位、电动势的存在和方向。再辅以理论讲解来阐明电流、电压、电动势的概念及电流、电压参考方向的应用和电流、电压实际方向的判别。 复习、提问: (1)手电筒电路是怎么工作的? (2)你认为电压、电流有方向吗?什么情况下有方向呢? 教学过程:

一、电路的组成和作用 导入:(先在黑板上画一手电筒电路的示意图如1(a)) (c) 图1 手电筒电路手电筒大家都很熟悉,由电池、开关、灯泡、导线四部分组成。电池给灯泡供电,但只有在开关闭合的前提下,才会发亮。所以电池相当于电源,灯泡是供电的对象,称为负载,开关决定着灯亮与灭,所以开关便是控制元件,导线连接整个电路,使其为一闭合回路。电源、负载、控制元件、回路为组成电路的四要素。所以手电筒电路的电路模型如图1(c)。 1、电路组成的四要素: (1)电源(2)负载(3)控制元件(4)回路 2、电路的作用: (1)能量的传输和转换。如手电筒电路,灯泡发光,电池能转换为光能和热能。 (2)信号的传递和处理。如扩音机电路,如图(b),放大器用来放大电信号,而后传 递到扬声器,把电信号还原为语言或音乐, 实现“声-电-声”的放大、传输和转换作用。

电声学名词及物理意义

电声学名词及物理意义 一、一般名词术语 1.1电声学 electracoustics 研究声电相互转换的原理和技术,以及声信号的存储、加工、传递、测量和应用的科学。它研究的内容覆盖所有的声频范围,从次声到特超声,通常仅局限于可闻声范围。 1.2可闻声 audible sound a.引起听觉的声振动。 b.由声振动引起的听觉。 1.3 音调 pitch 听觉的属性。根据它可以把声音排成由低到高的序列。 1.4 响度 loudness 听觉的属性。根据它可以把声音排成由轻到响的序列。 1.5 音品、音色 timbre 是声觉的属性,它使听者区别同时存在的同样响度和音调的两个声音之所以不同。 1.6 纯音 pure sound,pure tone,simple tone a.有单一音调的声觉。 b.简谐声振动。 1.7 噪声 noice a.紊乱不定的或统计上随机的振荡。 b.不希望的或不需要的声音,或其他干扰。 1.8 声压 sound pressure 指由声扰动产生的压强增量(逾压)。 1.9参考声压 reference sound pressure 用级来表示声压时所选用的基准,通常选用20μPa。 1.10 级 level 某一量与该量的参考量之比的对数。对数的底、参考量和级的类别必须加以说明。 注:①级的类别用复合名词来表示,如声压级或声功率级; ②不论所选的是峰值、均方根值还是其他的量,参考量应保持不变;

③对数的底通常用与该底有关的级的单位来说明。 1.11 贝〔尔〕 bel 是一种级的单位,其对数的底是10,适用于功率类的量;当对数的底是10的平方根时,也是场量的级的单位。 注:例如功率类的量是声功率和声能量,场量是声压和电压。 1.12 分贝 decibel 贝〔尔〕的十分之一。 注:分贝是比贝〔尔〕更常用的级的单位。; 1.13 声压级 sound pressure level 声压与参考声压之比的对数,以分贝表示的声压级是20乘以该比率的以10为底的对数。 1.14 声级 sound level,weighted sound pressure level 在一定的时间内,通过标准化的频率计权和时间计权得到的声压与基准声压之比的对数。用分贝表示的声级为20乘以该比率的以10为底的对数。 1.15 响应 response 在一定条件下,器件或系统由激励所引起的运动或其他输出。所用的输入和输出的类别必须表明。 1.16 失真 distortion 不希望的波形变化。 注:①输入和输出之间的非线性关系; ②不同频率的传输的不一致; ③相移与频率不成比例。 1.17共振 resonance 系统受迫振动时的一种现象,激励频率的微小变化都将导致该系统的响应减小。 注:应说明所测响应的量,例如,速度共振。 1.18 共振频率 resonance frequency 共振时的频率。 注:在可能混淆时,则应说明共振的类型,例如,速度共振频率。 1.19 品质因数 quality factor 系统的共振尖锐度的度量,是在一周内储存的最大能量与耗散的能量之比的2π倍。 注:历史上,字母Q是一个任意选择的符号,以表示一个电路单元的阻抗与阻之比,后来才引入“品质因

电声学是研究声电相互转换的原理和技术

耳机之基本常识

耳机线技术 音乐在我们的日常生活中无处不在,美妙的乐声使枯橾的或烦闷的心情带来了欢乐.音乐使人们对生活充满希望.要想掌握耳机(电声)技术.必须对以下几个方面有有入的了解. 1.电声基础知识 2.仪器使用 3.维修技巧 以下将在这三个方面进入电声知识这个领域. 一,电声基础知识 所要知道的概念 电声学是研究声电相互转换的原理和技术,以及声信号的存储、加工、传递、测量和利用的科学。它所涉及的频率范围很广泛,从极低频的次声一直延伸到几十亿赫的特超声。不过通 常所指的电声,都属于可听声范围。 电声技术的历史最早可以追溯到19世纪,由爱迪生发明留声机和贝尔发明用于电话机的碳粒传声器开始,1881年曾有人以两个碳粒传声器连接几对耳机,作了双通路的立体声传递表演。大约在1919年第一次用电子管放大器和电磁式扬声器做了扩声实验。 在第一次世界大战以后,科学家们把机电方面的研究成果应用于电声领域中,于是电声学就有了理论基础。随着电声换能器理论的发展,较为完善的各类电声设备和电声测量仪器相继问世,较别是20世纪70年代来,电子计算机和激光技术在电声领域中的应用,大大促进了电声学的发展。

电声转换器是把声能转换成电能或电能转换成声能的器件,对它的研究是电声学的一个重要内容分支。广义的电声换能器应用的频率范围很宽,包括次声、可听声、超声换能器。属于可听声频率范围内的电声换能器有传声器、扬声器、送受话器、助听器等等。按照换能方式,它们又可以分成电动式、静电式、压电式、电磁式、碳粒式、离子式和调制气流式等。其中后三种是不可逆的,碳粒式只能把声能变成电能,离子式和调制气流式的只能产生声能。而其他类型换能器则是可逆的,即可用作声接收器,也可用作声发射器。 各种电声换能器,尽管其类型、功用或工作状态不同,它们都包含两个基本组成部分,即电系统和机械振动系统。在换能器内部,电系统和机械振动系统之间通过某种物理效应相互联系,以完成能量的转换;在其外部,换能器的电系统与信号发生器的输出回路,或前级放大器的输入回路相匹配;而换能器的机械振动系统,以其振动表面与声场相匹配。所以设计电声换能器要同时考虑到力-电-声三个体系。 这三种体系是互相牵制的,处理得不好往往会顾此失彼。例如,一个有效的磁系统可能会非常笨重,变成一种令人不能接受的声障碍物;或者声输入阻抗或电输出阻抗的数值,可能根本不能与周围媒质或附属设备相匹配。由此可见,电声换能器的设计总是在许多相互矛盾的因素中采取折衷的办法,因而在一定程度上可能还带有许多主观判断的技巧在内。 电声技术是电声领域中发展得比较快的一个分支,在政治、军事、文化各个领域内有着广泛的应用。例如,应用于有线或无线通信系统,有线或无线广播系统以及会场、剧院的扩声;录音棚、高保真录放系统等;此外还应用于发展中的声控语控技术;以及语言识别和声测等新技术。总起来说,它主要包括录放声技术、扩声技术以及与它们有关的电声仪器和电声测试技术等。 录放声技术是指把自然声音经过一系列技术设备(如传声器、录音机、拾声器等)进行接收、放大、传送、存储、记录和复制加工,然后再重放出来供人聆听的技术。它研究的主要问题是如何保持自然声的优良的音质,即在各个环带以及整个系统,都具有逼真地保持声音信号原来面貌的能力,包括对声音信号进行必要的美化和加工。

声学排名

070206 声学 声学是研究媒质中机械波的产生、传播、接收和效应的物理学分支学科。媒质包括各种状态的物质,可也可以是非弹性媒质;机械波是指质点运动变化的传播现象。 就该词的本义,系指任何与听觉有关的事物。但依通常所用,其一系指物理学中关于声音的属性、产生学科;其二系指建筑物适合清晰地听讲话、听音乐的质量。 声音由物体(比如乐器)的振动而产生,通过空气传播到耳鼓,耳鼓也产生同率振动。声音的高低(p 体振动的速度。物体振动快就产生“高音”,振动慢就产生“低音”。物体每秒钟的振动速率,叫做声音的“频率的响度(loudness)取决于振动的“振幅”。比如,用力地用琴弓拉一根小提琴弦时,这根弦就大距离地向左右此产生强振动,发出一个响亮的声音;而轻轻地用琴弓拉一根弦时,这根弦仅仅小距离左右摆动,产生的振个轻柔的声音。 较小的乐器产生的振动较快,较大的乐器产生的振动较慢。如双簧管的发音比它同类的大管要高。同样琴的发音比大提琴高;按指的发音比空弦音高;小男孩的嗓音比成年男子的嗓音高等等。制约音高的还有其如振动体的质量和张力。总的说,较细的小提琴弦比较粗的振动快,发音也高;一根弦的发音会随着弦轴拧不同的乐器和人声会发出各种音质(quality)不同的声音,这是因为几乎所有的振动都是复合的。如一小提琴弦不仅全长振动,各分段同时也在振动,根据分段各自不同的长度发音。这些分段振动发出的音不易来,然而这些音都纳入了整体音响效果。泛音列中的任何一个音(如G,D或B)的泛音的数目都是随八度增。泛音的级数还可说明各泛音的频率与基音频率的比率。如大字组“G”的频率是每秒钟振动96次,高音谱五泛音)的振动次数是5*96=480,即每秒钟振动480次。 声学是物理学中很早就得到发展的学科。声音是自然界中非常普遍、直观的现象,它很早就被人们所认国还是古代希腊,对声音、特别是在音律方面都有相当的研究。我国在3400多年以前的商代对乐器的制造和丰富的知识,以后在声音的产生、传播、乐器制造、乐律学以及建筑和生产技术中声学效应的应用等方面,的经验总结和卓越的发现和发明。国外对声的研究亦开始得很早,早在公元前500年,毕达哥拉斯就研究了题,而对声学的系统研究则始于17世纪初伽利略对单摆周期和物体振动的研究。17世纪牛顿力学形成,把械运动统一起来,促进了声学的发展。声学的基本理论早在19世纪中叶就已相当完善,当时许多优秀的数学都对它作出过卓越的贡献。1877年英国物理学家瑞利(Lord John William Rayleigh,1842~1919)发表理》集其大成,使声学成为物理学中一门严谨的相对独立的分支学科,并由此拉开了现代声学的序幕。 声学又是当前物理学中最活跃的学科之一。声学日益密切地同声多种领域的现代科学技术紧密联系,形独立的分支学科,从最早形成的建筑声学、电声学直到目前仍在“定型”的“分子—量子声学”、“等离子体声学等等,目前已超过20个,并且还有新的分支在不断产生。其中不仅涉及包括生命科学在内的几乎所有主要的还在相当程度上涉及若干人文科学。这种广泛性在物理学的其它学科中,甚至在整个自然科学中也是不多见在发展初期,声学原是为听觉服务的。理论上,声学研究声的产生、传播和接收;应用上,声学研究如音响效果,如何避免妨碍健康和影响工作的噪声,如何提高乐器和电声仪器的音质等等。随着科学技术的发声波的很多特性和作用,有的对听觉有影响,有的虽然对听觉并无影响,但对科学研究和生产技术却很重要声的传播特性来研究媒质的微观结构,利用声的作用来促进化学反应等等。因此,在近代声学中,一方面为究和应用得到了进一步的发展,另一方面也开展了许多有关物理、化学、工程技术方面的研究和应用。声的在听觉范围以内,声振动和声波有更广泛的含义,几乎就是机械振动和机械波的同义词了。 自然界从宏观世界到微观世界,从简单的机械运动到复杂的生命运动,从工程技术到医学、生物学,从言、音乐、艺术,都是现代声学研究和应用的领域。 声学的分支可以归纳为如下几个方面: 从频率上看,最早被人认识的自然是人耳能听到的“可听声”,即频率在20Hz~20000Hz的声波,它们涉房间音质、噪声等,分别对应于语言声学、音乐声学、房间声学以及噪声控制;另外还涉及人的听觉和生物生理声学、心理声学和生物声学;还有人耳听不到的声音,一是频率高于可听声上限的,即频率超过20000

电声学基础

电声学基础 绪论 ?什么是声学? ?产生——传播——接收——效应。 ?研究范围 ?人类对声学现象的研究 ?我国,11世纪,沈括 ?西方,17世纪,索沃提出acoustique的名称。如今,acoustics代表声学,音质。 ?人们观察声学现象,研究其规律,几乎是从史前时期开始的。 ?近代声学 ?伽利略(1564~1642)开创 ?1638年,“有关两种科学的对话” ?林赛(R. Bruce Lindsay)在“声学的故事”中提到科学家79人 ?19世纪末,瑞利《声之理论》二卷(1000页) ?20世纪开始,赛宾,建筑声学 ?1936年,莫尔斯《振动和声》一书,反映了声学基础理论的发展 ?古人的声学研究理论成果 ?关于声的知识和分类 ?“音”(即乐音) ?“乐” ?“噪”,“群呼烦扰也” ?“响”,“响之应声” ?乐律 ?在《管子》中首先出现,理论是“三分损益法”。 ?十二律是十二个标准音调,实际上基本的标准音调只有一个,即黄钟,《史记》:“黄钟(管)长八寸一分”,或提:长九寸。 三分损益十二律 ?欧洲乐律起源:毕达哥拉斯(Pythagoras),公元前六世纪 ?1584年,明代王子朱载堉完成《律学新说》,详细提出十二平均律理论 ?荷兰人斯蒂文(Simon Stevin), ?共振、回声、混响 ?“应” ?“鼓宫宫动,鼓角角动,音律同矣” ?11世纪,沈括,“共振指示器” ?波动论 ?亚里士多德(Aristotle,公元前384~322年) ?高度、强度、品质

?空气运动的速度、被激动的空气量、发声器官的构造 ?频率 ?伽利略(Galileo Galilei),单摆及弦的研究 ?声速 ?法国的梅尔新,加桑地 ?1687年,牛顿,《自然哲学的数学原理》 ?1816年,法国数学家拉普拉斯 ?电声学 ?20世纪20年代,电子管 ?1920年,美国肯尼迪(A. E. Kennedy)把类比概念和方法引入电声系统和机械振动系统 ?电声学这门科学主要是研究电能和声能彼此转变的问题。各种换能器的构造和理论,录音和放音的各种方法,都是属于“电声学”的范畴。 ?电声学与其他声学部门的关系 ?电声学和建筑声学、生理声学、超声学、水声学都有很密切的关系。 第一章振动和声波的特性 1-1 振动与声波 1-1-1 振动 ?什么是振动?P6 ?振动的特性 1-1-2 声波 ?几个基本概念: ?声波——物体的振动引起周围媒质质点由近及远的波动 ?声源——发声的物体,即引起声波的物体 ?媒质——传播声波的物质 ?声场——声波传播时所涉及的空间 ?声音——声源振动引起的声波传播到听觉器官所产生的感受 ?声线——声波传播时所沿的方向 ?结论 ?声波的产生应具备两个基本条件:物体的振动,传播振动的媒质 ?声波是一种机械波,媒质 ?传播的只是能量 ?气体中的声波是纵波,即疏密波

电-力-声 类比汇总

电-力-声类比 引言:电-力-声类比是应用电路理论来解决力学与声学问题。 定义:根据描述电振荡系统的微分方程和描述力学振动系统及声振动系统的微分方程在形式上的相似性,常将力学量和声学量与相应的电学量作类比,以便借助电路理论来分析力学振动和声振动的规律,称电-力-声类比。 类比方法有二种:一种为阻抗型类比,也称正类比;另一种为导纳型类比,也称反类比。§5-1电路元件及基本的电振荡器 在电学系统的分析中,经常用电路图来描述元件与元件之间的关系,从而研究电磁运动的规律。通过电路分析,有时不必去求解微分方程,而能直接了解系统的工作情况和特点。即使要作定量分析研究,通过形象的电路图,利用克希霍夫电路定律,再去建立微分方程,也要简单得多。 电路图最容易应用于集中参数的系统,因为集中参数元件的唯一变量是时间。在电声学研究的系统中(如电声换能器),在低频时,大都近似地等效成集中参数系统,只要采用类比的办法,把力学或声学系统画成等效类比线路图,然后利用电路理论来研究系统的工作情况和特点。 1.基本电路元件: 电容元件: 瞬态:E= 1 C e ∫I dt I=Ce dE dt E 瞬态:E= L e dI dt I= 1 L e∫E dt 电阻抗:Z e= E I 2.基本的电振荡器: (1)串联谐振电路: I R L 如左图:I-电流(安培),E-电压(伏特) e Le-电感(享利),Ce-电容(法拉),Re-电阻(欧姆)

由上图可得:E = R eI + L e dI dt + 1 C e ∫I dt 对于作简谐变化的稳态电流值有:I = I 0 e j ωt 则:E =R e I + jωL e I + 1jωC e I=(R e + jωL e + 1 jωC e ) I = Z e I 式中Z e 为串联回路的阻抗 I = E Z e 即为熟知的欧姆定律 (2)并联谐振电路 I '-为电流(安培),E ' -为电压(伏特), E ' e ' L e' -为电感(享利),Ce ' -为电容(法特), ○ R e'-为电阻(欧姆) 由上图可得:I ' =E 'R e ' + 1L e ' ∫E 'dt +C e ' dE ' dt 对于作简谐变化的电压有:E '=E 0' e jωt 则:I ' =E ' R e ' +1jωL e ' E '+ jωC e 'E ' = (1R e ' + 1jωL e 1 + jωC e ')E ' = 1Z e ' E ' 1Z e ' =(1R e ' +1jωL e ' + jωC e ') = 1R e ' + j(ωC e '-1 ωL e ' ) §5-2力学元件和基本的力学振动系统: 1.力学元件: F 表示外力 F K 表示弹性力 F R 表示阻力 M M 表示质点质量 K M 表示弹性系数 C M 表示顺性系数 R M C M =1 K M 又称为力顺 R M 表示阻力系数,又称为力阻

电磁声学基础知识入门

电声学基础知识 《音频声学简介》(5页)《电声学名词及物理意义》(4页)《电声学基础》(31页)

于“稠密”状态;活塞向左运动时,则空气层质点膨胀,空气层的密度将减小,压强亦将减小,使空气层处于“稀疏”状态。活塞不断地来回运动,将使空气层交替地产生疏密的变化。由于空气分子之间的相互作用,这种交替的疏密状态,将由近及远地沿管子向右传播。这种疏密状态的传播,就形成了声波。 §2 描述声波的物理量 一、声压 大气静止时的压强即为大气压强。当有声波存在时,局部空气产生稠密或稀疏。在稠密的地方,压强将增加,在稀疏的地方压强将减小;这样,就在原有的大气压上又附加了一个压强的起伏。这个压强的起伏是由于声波的作用而引起的,所以称它为声压;用p 表示。声压的大小与物体(如前述的活塞)的振动状态有关;物体振动的振幅愈大、则压强的起伏也愈大,声压也就愈大。然而,声压与大气压强相比,是及其微弱的。 存在声压的空间,称为声场。声场中某一瞬时的声压值,称为瞬时声压)(t p 。在一定的时间间隔中最大的瞬时声压值,称为峰值声压。如果,声压随时间的变化是按简谐规律的,则峰值声压就是声压的振幅。瞬时声压)(t p 对时间取方均根值,即 ? = T e dt t p T p 0 2)(1 〔1〕

称为声压的有效值或有效声压。T 为取平均的时间间隔。它可以是一个周期或比周期大得多的时间间隔。一般我们用电子仪器所测得的声压值,就是声压的有效值;而人们习惯上所指的声压值,也是声压的有效值。 声压的大小,表示了声波的强弱。目前国际上采用帕(a P )作为声压的单位。以往也用微巴作为单位,它们的换算关系为; 1帕=1牛顿/米2 (MKS 制) 1微巴=1达因/厘米2 CGS (制) 1微巴=0.1帕 1大气压=a P 5100325.1? (常温下) 为了对声压的大小数值,有一个感性的了解,在表一中列出了几种声源所发出的声音的声压的大小。 大小之间可以相差上亿倍。 二、频率 声源(如上述的活塞)每秒振动的次数称为声波的频率,并用字母f表示,其单位为赫兹(H z)1/秒。虽然在自然界中能产生单频率的声源很少,大多数声源的振动是一个很复杂的过程,产生的大多为复合音。但是,我们可以用频谱分析的方法,把一个复合音分解为一系列幅值不同的单频声的组合。因此研究单频声具有基础性的意义,而频率则是描述单频声的一个重要物理量。 频率的倒数则称为周期。单位为秒。 人耳能听得见的声波的频率范围为20~20000H z,称为可闻声或音频声。低于20H z的声波,称为次声。虽然人耳听不到,但可用仪器接收到,它在研究热带风暴、地震及核爆炸等方面有广泛的应用。高于20000H z的声波称为超声,它在无损探伤、切割、诊断、水下探测等方面,均有广泛的应用。当频率再提高至波长可与物质结构的线度相比较时,就可以用声波来研究物质结构,这样频率的声波则称为特超声。 在音响和通信中所涉及的声波,就是人耳能感知的音频声。而研究音频声的

声学基础知识

声学基础知识 一、声音 声音是空气分子的振动。物体的振动(我们称之为"声源")引起空气分子相应的振动,传入人耳导致鼓膜振动,通过中耳、内耳等一系列听觉器官的共同作用使人听到了声音。 二、声波 把石头扔进平静的水面,会形成一组向四周扩散的水波,这是我们所能见到的比较直观的"波",空气分子振动形成的声波要复杂一点,它是从声源向四周立体扩散的一组疏密波,空气分子并不是从声源一直跑到您的耳朵,而是在它本来的位置振动,从而引起与它相邻的空气分子随之振动,声音就是这样从声源很快地向外传播的,声音在空气中的传播速度是331米/秒。举一个简单的例子,麦浪的运动跟声波很相似,粒子的振动方向与波的运动方向是平行的。波需要通过介质来传播,麦浪的运动到田埂边就自然停止了,声波的传播介质是空气分子,所以,真空里声音是不能传播的。 三、声音的频率 声波每秒的振动次数称为频率,频率在20hz~20khz之间称为声波;频率大于20khz称为超声波;频率小于20hz称为次声波。超声波和次声波人耳是听不到的,地震波和海啸都是次声波。有些动物的耳朵比人类要灵敏得多,比如蝙蝠就能"听到"超声波。 世界上很少存在单一频率的"纯音",我们所听到的声音大都是各种频率的复合音,如乐器发出的单音就是周期性的复合音,语音则是非周期性的复合音。让我们对声音的频率有一个比较直观的概念:大鼓的"蓬蓬"声频率很低,大约在数十赫兹左右;人的语音频率范围主要在200 hz到4000 hz之间;锣声、铃声的频率大约在2000 hz到3000 hz左右;在人类语音中,女声比男声频率要高一点;童声要比成人频率高一点;"啊啊"声频率较低,"咿咿"声频率稍高,"嗤嗤、嘶嘶"声频率最高。知道这一点很有用,在实际选配中,你可以经常用来测试病人戴助听器前后对声音频率的反应。 高频和低频是相对的,在语音范围中,通常把1000 hz以上的区域称为高频区,500 hz -1000 hz的区域称为中频区,低于500 hz的区域称为低频区。而在讨论音乐的时候 四、声音的强度 其一是从物理上来描述:我们知道由于空气分子本身固有的不规则运动及相互排斥会形成一个静态的压力,这个压力就是我们所熟知的大气压。前面我们讲过,声音是空气分子的振动,振动的空气分子对它通过的截面就会产生额外的压力,这种额外的压力我们就称之为声压。声压比之大气压要小得多得多,举个例子,一个声压仅仅相当于大气压的一万分之一的声音就足以把人的耳朵振聋。物理学家引入了声压级(spl)来描述声音的大小:我们把一很小的声压p0=2х10-5帕作为参考声压,把所要测量的声压p与参考声压p0的比值取常用对数后乘以20得到的数值称为声压级,声压级是听力学中最重要的参数之一,单位是分贝(db)。

声学及其特点

声学及其特点 声学是研究媒质中声波的产生、传播、接收、性质及其与其他物质相互作用的科学。 声学是经典物理学中历史最悠久而当前仍在前沿的一个分支学科。因而它既古老而又颇具年轻活力。 声学是物理学中很早就得到发展的学科。声音是自然界中非常普遍、直观的现象,它很早就被人们所认识,无论是中国还是古代希腊,对声音、特别是在音律方面都有相当的研究。我国在3400多年以前的商代对乐器的制造和乐律学就已有丰富的知识,以后在声音的产生、传播、乐器制造、乐律学以及建筑和生产技术中声学效应的应用等方面,都有许多丰富的经验总结和卓越的发现和发明。国外对声的研究亦开始得很早,早在公元前500年,毕达哥拉斯就研究了音阶与和声问题,而对声学的系统研究则始于17世纪初伽利略对单摆周期和物体振动的研究。17世纪牛顿力学形成,把声学现象和机械运动统一起来,促进了声学的发展。声学的基本理论早在19世纪中叶就已相当完善,当时许多优秀的数学家、物理学家都对它作出过卓越的贡献。1877年英国物理学家瑞利(Lord John William Rayleigh,1842~1919)发表巨著《声学原理》集其大成,使声学成为物理学中一门严谨的相对独立的分支学科,并由此拉开了现代声学的序幕。 声学又是当前物理学中最活跃的学科之一。声学日益密切地同声多种领域的现代科学技术紧密联系,形成众多的相对独立的分支学科,从最早形成的建筑声学、电声学直到目前仍在“定型”的“分子—量子声学”、“等离子体声学”和“地声学”等等,目前已超过20个,并且还有新的分支在不断产生。其中不仅涉及包括生命科学在内的几乎所有主要的基础自然科学,还在相当程度上涉及若干人文科学。这种广泛性在物理学的其它学科中,甚至在整个自然科学中也是不多见的。 在发展初期,声学原是为听觉服务的。理论上,声学研究声的产生、传播和接收;应用上,声学研究如何获得悦耳的音响效果,如何避免妨碍健康和影响工作的噪声,如何提高乐器和电声仪器的音质等等。随着科学技术的发展,人们发现声波的很多特性和作用,有的对听觉有影响,有的虽然对听觉并无影响,但对

电声学名词及物理意义

电声学名词及物理意义(部分) 一、一般名词术语 1.1电声学electracoustics 研究声电相互转换的原理和技术,以及声信号的存储、加工、传递、测量和应用的科学。它研究的内容覆盖所有的声频范围,从次声到特超声,通常仅局限于可闻声范围。 1.2可闻声audible sound a.引起听觉的声振动。 b.由声振动引起的听觉。 1.3 音调pitch 听觉的属性。根据它可以把声音排成由低到高的序列。 1.4 响度loudness 听觉的属性。根据它可以把声音排成由轻到响的序列。 1.5 音品、音色timbre 是声觉的属性,它使听者区别同时存在的同样响度和音调的两个声音之所以不同。 1.6 纯音pure sound,pure tone,simple tone a.有单一音调的声觉。 b.简谐声振动。 1.7 噪声noice a.紊乱不定的或统计上随机的振荡。 b.不希望的或不需要的声音,或其他干扰。 1.8 声压sound pressure 指由声扰动产生的压强增量(逾压)。 1.9参考声压reference sound pressure 用级来表示声压时所选用的基准,通常选用20μPa。 1.10 级level 某一量与该量的参考量之比的对数。对数的底、参考量和级的类别必须加以说明。注:①级的类别用复合名词来表示,如声压级或声功率级; ②不论所选的是峰值、均方根值还是其他的量,参考量应保持不变; ③对数的底通常用与该底有关的级的单位来说明。 1.11 贝〔尔〕bel 是一种级的单位,其对数的底是10,适用于功率类的量;当对数的底是10的平方根时,也是场量的级的单位。 注:例如功率类的量是声功率和声能量,场量是声压和电压。 1.12 分贝decibel 贝〔尔〕的十分之一。 注:分贝是比贝〔尔〕更常用的级的单位。; 1.13 声压级sound pressure level 声压与参考声压之比的对数,以分贝表示的声压级是20乘以该比率的以10为底的对数。 1.14 声级sound level,weighted sound pressure level 在一定的时间内,通过标准化的频率计权和时间计权得到的声压与基准声压之比的对数。用分贝表示的声级为20乘以该比率的以10为底的对数。

相关主题
文本预览
相关文档 最新文档