当前位置:文档之家› 特性阻抗与频率的关系

特性阻抗与频率的关系

特性阻抗与频率的关系
特性阻抗与频率的关系

特性阻抗和频率有关吗?

时间:2010-05-21 22:59来源:未知作者:于博士点击:3718次难得半日清闲,看到留言板有网友留言问道这个问题,留一篇随笔,与各位网友共享。

当我们提到特性阻抗的时候,通常很少考虑它与频率的关系。其原因在于,特性阻抗是传输线的一个相当稳定的属性,主要和传输线的结构也就是横截面的形状有关。从工程的角度来说,把特性阻抗作为一个恒定量是合理的。说实话,搞了这么长时间的SI设计,还没碰到需要考虑特性阻抗变化的情况。

既然有网友一定要考虑这个问题,今天我们就稍稍深入一下,看看特性阻抗的真实面目。虽然没有太大的工程应用价值,但是对于理解问题还是有好处的。

特性阻抗是从理论上分析传输线时经常提到的一个量,从传输线的角度来说,它可以用下面的公式表示

---------------

Z0 = / L

/ ------

^/ C

L表示传输线的单位长度电感,C为单位长度电容。乍一看,似乎公式中没有任何变化的量。但是特性阻抗真的是个恒定的量吗?我们使用Polar软件对横截面固定的传输线进行扫频计算,频率范围定在100MHz~10GHz,来看看场求解器给出的结果,如下图:

你可能感到惊讶,特性阻抗随着频率的升高变小了,why?阻抗公式中那个量发生了变化?

其实这涉及到电磁学方面的一个深层次的问题。罪魁祸首是电感!!电感问题是个很复杂的问题,对电感的理论计算很繁琐,有兴趣的网友可以找资料看看电感的计算,详细的推导过程我就不在这里写了。简单的说,导线的电感由两部分组成:导线的内部电感和导线的外部电感。当频率升高时,导线的内部电感减小,外部电感不变,总电感减小,因而导致了特性阻抗减小。

我们知道,电感的定义是指围绕在电流周围的磁力线匝数。电感随频率减小,直觉告诉我们一定是导线中电流分布发生了变化。到这里我想各位网友应该豁然开朗了。趋肤效应(skin effect)你一定不会陌生。看看下面的这张图你会有更直观的感受,这是用二维场求解器仿真出来的高频时导体中电流的分布。黄色部分是电流所在位置。

当频率升高时,电流向导线表面集中,在导线内部电流密度减小,当然电感减小。电感的本质,是围绕在电流周围的磁力线匝数,注意“围绕在电流周围”这个说法。假设存在极端情况,导线内部电流完全消失,所有的电流集中在导体表面,磁力线当然没法再内部去环绕电流,内部电感消失。导线总电感减小,减小的那一部分就是导线的内部电感。当然这种说法不严谨,不过对直观的理解问题非常有帮助。

结论:

1、传输线的特性阻抗确实和频率有关,随着频率升高,特性阻抗减小,但会逐渐趋于稳定。

2、特性阻抗的变化的原因是导线的单位长度电感随频率升高而减小。

3、这种特性阻抗的变化很小,在工程应用中一般不用考虑它的影响。知道有这个事就是了。

电容器阻抗

电容器阻抗/ESR频率特性是指什么? 本专栏为解说电容器基础的技术专栏。 现就电容器的阻抗大小|Z|和等价串联电阻(ESR)的频率特性进行阐述。 通过了解电容器的频率特性,可对诸如电源线消除噪音能力和抑制电压波动能力进行判断,可以说是设计回路时不可或缺的重要参数。此处对频率特性中的阻抗大小|Z|和ESR进行说明。 1.电容器的频率特性 如假设角频率为ω,电容器的静电容量为C,则理想状态下电容器(图1)的阻抗Z可用公式 (1)表示。 图1.理想电容器 由公式(1)可看出,阻抗大小|Z|如图2所示,与频率呈反比趋势減少。由于理想电容器中无损耗,故等价串联电阻(ESR)为零。 图2.理想电容器的频率特性 但实际电容器(图3)中除有容量成分C外,还有因电介质或电极损耗产生的电阻(ESR)及电极或导线产生的寄生电感(ESL)。因此,|Z|的频率特性如图4所示呈V字型(部分电容器可能会变为U字型)曲线,ESR也显示出与损耗值相应的频率特性。

图3.实际电容器 图4.实际电容器的 |Z|/ESR频率特性(例) |Z|和ESR变为图4曲线的原因如下。 低频率范围:低频率范围的|Z|与理想电容器相同,都与频率呈反比趋势减少。ESR值也显示出与电介质分极延迟产生的介质损耗相应的特性。 共振点附近:频率升高,则|Z|将受寄生电感或电极的比电阻等产生的ESR影响,偏离理想电容器(红色虚线),显示最小值。|Z|为最小值时的频率称为自振频率,此时|Z|=ESR。若大于自振频率,则元件特性由电容器转变为电感,|Z|转而增加。低于自振频率的范围称作容性领域,反之则称作感性领域。 ESR除了受介电损耗的影响,还受电极自身抵抗行程的损耗影响。 高频范围:共振点以上的高频率范围中的|Z|的特性由寄生电感(L)决定。高频范围的|Z|可由公式(2)近似得出,与频率成正比趋势增加。 ESR逐渐表现出电极趋肤效应及接近效应的影响。 以上为实际电容器的频率特性。重要的是,频率越高,就越不能忽视寄生成分ESR或ESL的影响。随着电容器在高频领域的应用越来越多,ESR和ESL与静电容量值一样,成为表示电容器性能的重要参数。

特征阻抗

一、50ohm特征阻抗 终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。 终端电阻示图 B.终端电阻的作用: 1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2、减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 C.终端电阻取决于电缆的特性阻抗。 D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容. E.有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er 决定:

另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻构成 只有当同轴电缆的特性阻抗Zo和终端阻抗FT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

传输线特性阻抗基知识

什么叫传输线的特性阻抗?传输线特性阻抗基知识 传输线的基本特性是特性阻抗和信号的传输延迟, 在这里,我们主要讨论特性阻 抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传 输线的分布参数通常用单位长度的电感 L 和单位长度的电容C 以及单位长度上 的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。 分布的电容、电感和电阻是传输线本身固有的参数, 给定某一种传输线,这些参 数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输 线的一系列重要特性。 一个传输线的微分线段可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就 是微分线段的特性阻抗。 卄联原抗为: Z F = ------- --------- - =— i(G + joe) 传输线可等效为: IR IL U_ IR IR IL iR IL 半耻用比巧: 乙、iR + jE)

Z E,¥=Z Z Z O Zc + Zr 叭鬲■独返 呼4阳粽 內为1是懒井14*F J9(可 产5 =卩5=爲 G + j 肚 |G + Jex 皆赖宰址骼窩时<f^lOOKHZ). 3=2n監掘借損女.3. uefg±. R、G可黑略.L 中单懂怅度线的固打电臥住为肛拉忙度蜒的H有电皐此的 当墓車迥惟艸rf^lKHZh 肛2卫片櫃水.可以耐.此时 Z0就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路下图为典型的单端(通常称为非平衡式)传输线电路。 心J 4 电路窗化 m —

交流阻抗怎么测量

交流阻抗怎么测量 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 (1)交流阻抗:交流阻抗即阻抗,在电子学中,是指电子部件对交流激励信号呈现出的电阻和电抗的复合特性;在电化学中,是指电极系统对所施加的交流激励信号呈现出的电阻和电抗的复合特性。阻抗模的单位为欧姆,阻抗辐角(相角)的单位为弧度或度。 (2)交流阻抗谱:在测量阻抗的过程中,如果不断地改变交流激励信号的频率,则可测得随频率而变化的一系列阻抗数据。这种随频率而变的阻抗数据的集合被称为阻抗频率谱或阻抗谱。阻抗谱是频率的复函数,可用幅频特性和相频特性的组合来表示;也可在复平面上以频率为参变量将阻抗的实部和虚部展示出来。测量频率范围越宽,所能获得的阻抗谱信息越完整。RST5200电化学工作站的频率范围为:0.00001Hz~1MHz,可以很好地完成阻抗谱的测量。 (3)电化学阻抗谱:电化学阻抗谱是一种电化学测试方法,采用的技术是小信号交流稳态测量法。对于电化学电极体系中的溶液电阻、双电层电容以及法拉第电阻等参量,用电化学阻抗谱方法可以很精确地测定;而用电流阶跃、电位阶跃等暂态方法测定,则精度要低一些。另外,像扩散传质过程等需要用较长时间才能测定的特性,用暂态法是无法实现的,而这却是电化学阻抗谱的长项。 (4)电化学阻抗谱测量的特殊性:就测量原理而言,在电化学中测量电极体系的阻抗谱与在电子学中测量电子部件的阻抗谱并没有本质区别。通常,我们希望获得电极体系处于某一状态时的电化学阻抗谱。而维持电极体系的状态,须使电极电位保持不变。通常认为,电极电位变化50mV以上将会破坏现有的状态。因此,在电化学阻抗谱测量中,必须注意两个关键点,即:偏置电位和正弦交流信号幅度。 (5)正弦交流信号的幅度:为了避免对电化学电极体系产生大的影响以及希望其具有较好的线性响应,正弦交流信号的幅度通常可设在2~20mV之间。 (6)自动去偏:在电化学阻抗谱测量过程中,由于偏置电位不一定等于开路电位以及少量的非线性作用,在工作电极电流中还会含有直流成分。去除这个直流成分(偏流),可扩大交流信号的动态范围、提高信噪比。RST5200电化学工作站,可在测量过程中动态地调整去偏电流,使获得的阻抗谱数据更精准。另外,在软件界面的状态栏中,可实时显示工作电极的极化电流,供操作者参考。 以上为交流阻抗的相关说明,下面我们就实验设置过程中遇到的专业名词

阻抗特性

https://www.doczj.com/doc/f915455130.html,微机继电保护仪 阻抗特性 本测试模块主要是针对距离保护的动作特性,搜索其阻抗动作边界。可以搜索出圆特性、多边形特性、弧形以及直线等各种特性的阻抗动作边界。本测试模块提供了“单向搜索”和“双向搜索”两种不同的搜索方式。如下图所示: ●可搜索圆、多变形,及其它阻抗特性图 ●依提示设定定参数,由软件能画出大概的图形,方便与搜索的图形对照 第一节界面说明 测试项目 每次试验只能选择“阻抗边界搜索”、“Z(I)特性曲线”或“Z(V)特性曲线”中的一个项目进行试验。 ●故障类型提供了各种故障类型,用于测试各种类型距离保护。对接地型距离继电器应选择单相接地故障,对相间型距离保护,应选择相间故障。 ●计算模型有“电流不变”和“电压不变”两种计算模型。选择“电流不变”时,在下面的方框内可以设置短路电流,软件根据短路电流和短路阻抗计算出相应的短路电压;选择“电压不变”时,在下面的方框内可以设置短路电压,软件根据短路电压和短路阻抗计算出相应的短路电流。 ●搜索方式有“单相搜索”和“双向搜索”两种方法。详细介绍请参考“差动保护”章节的相关说明。“分辨率”只对双向搜索方式有效,它决定了双向搜索方式的测试精度。 ●故障触发方式在“时间控制”触发方式下,软件按“故障前延时”—“最

https://www.doczj.com/doc/f915455130.html,微机继电保护仪 大故障时间”—“测试间断时间”这样的顺序循环测试,详细说明请参考“线路保护”章节的有关说明。 ●最小动作确认时间在“最大故障时间”内,保护多段可能动作。如果保护动作的时间小于“最小动作确认时间”,则尽管是保护的动作信号,软件也不予认可,因可能是其他段抢动。这个时间专门用来在“双向搜索”方式下,躲开某段阻抗动作。例如,要搜索Ⅱ段阻抗边界,“双向搜索”方式下扫描点肯定会进入Ⅰ段阻抗范围,而Ⅰ段的动作时间较Ⅱ段要短,从而造成Ⅰ段保护抢动。 ●故障方向依据保护定值菜单进行设置,适用于方向性阻抗保护。 ●零序补偿系数若做接地距离继电器的试验,要注意正确设置零序补偿系数,请参考“线路保护”章节的有关说明。 ●自动设定搜索线参数在“整定参数”页中有这个按钮,点击此按钮后,软件会根据所设定的整定阻抗自动计算出搜索线的长度以及搜索中心。可以在“搜索阻抗边界”页面中查看。 搜索阻抗边界 选择“搜索阻抗边界”测试项目时,需设置 放射状扫描线,如右图所示。扫描线的设置参照 以下方法: ●扫描中心扫描中心应尽可能设置在保护的 理论阻抗特性图的中心位置附近。扫描中心可以 直接输入数据,也可以用鼠标直接点击选择扫描 中心。修改扫描中心后,坐标系的坐标轴将自动 调整,以保证扫描圆始终在图形中心位置,即扫 描中心在图形中心。 ●扫描半径扫描半径应大于保护阻抗整定值 的一半,以保证扫描圆覆盖保护的各个动作边界。搜索时是从非动作区(扫描线外侧点)开始扫描。试验期间,如果发现在扫描某条搜索线的外侧起点时,保护 就动作了,则说明这条扫描线没有跨过实际的阻抗 边界,即整个搜索线都在动作区内,不符合“每条 搜索线都应一部分在动作区内,另一部分在动作区 外”的原则。这时,请适当增大“扫描半径”。 ●扫描步长只对“单向搜索”方式有效,直接影 响“单向搜索”方式时的测试精度。

上海交通大学---电路元件交流阻抗频率特性

SHANGHAIJIAOTONG UNIVERSITY 电路元件交流阻抗频率特性 一、实验目的 (1)加深了解R 、L 、C 元件的频率与阻抗的关系。 (2)加深理解R 、L 、C 元件端电压与电流间的相位关系。 (3)熟悉低频信号发生器等常用电子仪器的使用方法。 二、实验内容 正弦交流可用三角函数表示,即由最大值(U m 或I m );频率f(或角频率ω=2πf)和初相位三要素来决定。在正弦稳态电路的分析中,由于电路中各处电压、电流都是同频率的交流电,所以电流、电压可用相量表示。 在频率较低的情况下,电阻元件通常略去其电感及分布电容而看成是纯电阻。此时其电压与电流可用复数欧姆定律来描述: U ? =R I ? 式中R 为线性电阻元件。U ? 与I ? 之间无相角差。电阻中吸收的功率为 P=UI=I 2R 因为略去附加电感和分布电容,所以电阻元件的阻值与频率无关。即R-f 关系如图1.11-1。 电容元件在低频也可略去其附加电感及电容极板间介质的功率损耗,因而可认为只具有电容C 。在正弦电压作用下流过电容的电流之间也可用复数欧姆定律来表示: U ?=X C I ? 式中X C 是电容的容抗,其值为X C =1/j ωc 所以有U ? =1/j ωc ·I ? = I ωc ∠-90° 电压U 滞后电流I 的相角为90°,电容所吸收的功率平均为零。 电容的容抗与频率的关系X C -f 曲线如图1.11-2。 电感元件因其由导线绕成,导线有电阻,在低频时如略去其分布电容则它仅由电阻R L 与电感L 组成。 在正弦电流的情况下其复阻抗为 Z=R L + j ωL=Z ∠Φ 式中R L 为线圈导线电阻。阻抗角Φ可由R L 及L 参数来决定: ..。

元件阻抗特性测定实验报告

竭诚为您提供优质文档/双击可除元件阻抗特性测定实验报告 篇一:电路基础实验实验十一_R、L、c元件阻抗特性的测定 实验十一R、L、c元件阻抗特性的 测定 实验成员:班级:整理人员: 实验十一R、L、c元件阻抗特性的测定 一、实验目的 1.验证电阻,感抗、容抗与频率的关系,测定R~f,xL~f 与xc~f特性曲线。2.加深理解R、L、c元件端电压与电流间的相位关系。 二、原理说明 1.在正弦交变信号作用下,电阻元件R两端电压与流过的电流有关系式 u?RI 在信号源频率f较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值信号源频率无关,其阻抗频率特性

R~f如图9-1。 如果不计线圈本身的电阻RL,又在低频时略去电容的影响,可将电感元件视为电感,有关系式 ? ? ?? u L ? jxI感抗x L L ?2?fL 感抗随信号源频率而变,阻抗频率特性xL~f如图9-1。 在低频时略去附加电感的影响,将电容元件视为纯电容,有关系式 u ? c ?? jx c

I容抗 ? xc? 12?fc 容抗随信号源频率而变,阻抗频率特性xc~f如图 9-1. c f 图9-1 图9-2 2.单一参数R、L、c阻抗频率特性的测试电路如图9-2所示。 途中R、L、c为被测元件,r为电流取样电阻。改变信号源频率,测量R、 L、c元件两端电压uR、uL、uc,流过被测元件的电流则可由r两端电压除以r得到。 3.元件的阻抗角(即相位差φ)随输入信号的频率变化而改变同样可用实验方法测得阻抗角的频率特性曲线φ ~f。 用双踪示波器测量阻抗角(相位差)的方法。 将欲测量相位差的两个信号分别接到双踪示波器YA和Yb两个输入端。调节示波器有关旋钮,使示波器屏幕上出现

实验十 RLC电路的阻抗特性分析

实验十 RLC 电路的阻抗频率特性分析 一实验目的 1、掌握交流电路中电阻、电容和电感的阻抗与频率的关系。 2、加深理解三个元件的电压与电流相位关系。 3、观察RLC 串联谐振现象,了解谐振电路特性,加深其理论知识的理解。 二 实验原理 1、R 、L 、C 元件的阻抗频率特性 正弦交流信号包含最大值、频率和初相位,在正弦稳态交流电路中,通过元件的电流有效值和加于该元件两端电压有效值之间的关系U =f (I ),称为元件的交流伏安特性,每个元件不仅讨论电压、电流有效值关系,还要观察两者相位之间的关系。 线性电阻欧姆定律的相量形式为:U RI = 。说明电阻两端电压的有效值与流过电流的有效值成正比,R 大小与频率无关,相位差为0,即同相位。 (2)电容 线性电容电压电流关系的相量形式为:1U j I C ω=- 。表明电容两端电压有效值与流过电流有效值关系为1 U I C ω=,相位差为-90 ,即电流超前电压90度。 (3)电感 线性电感的电压电流关系的相量形式为:U j LI ω= 。说明电感两端电压的有效值与流过电流的有效值关系为U LI ω=,相位差为90 ,即电压超前电流90度。 正弦稳态电路中,RLC 元件的阻抗频率特性曲线如图10-1所示。 图10-1 R 、L 、C 元件的阻抗频率特性曲线

RLC串联电路中,当正弦交流信号源的频率f改变时,电路中的感抗、容抗随之而变,电路中的电流I也随频率f而变。交流电压 S U(有效值)的角频率 为ω,则电路的阻抗为 1 () Z R j L C ω ω =+-, 阻抗的模:Z= 阻抗的幅角 1 arctan L C R ω ω ? - =,即该电路总电压与电流的相位差。 图10-3(a)、(b)分别为RLC串联电路的阻抗、相位差随频率的变化曲线。 图10-3(a)z f -曲线图10-3(b)f ?-曲线 由曲线图可以看出,存在一个特殊的频率 f,特点为: (1)当 f f <时,0 ?<,电流相位超前于电压,整个电路呈电容性; (2)当 f f >时,0 ?>,电流相位滞后于电压,整个电路呈电感性; (3)当 1 L C ω ω -=时,即 ω= f=时,阻抗Z R =,此时0 ?=,表明电路中电流I和电压U同相位,整个电路呈现纯电阻性。

实验5 阻抗特性

实验5 R、L、C单个元件阻抗频率特性测试 一、实验目的 1、掌握交流电路中R、L、C单个元件阻抗与频率间的关系,测绘R-f、X L-f、X C-f特性曲线。 2、掌握交流电路中R、L、C元件各自的端电压与电流间的相位关系。 3、观察在正弦激励下,R、L、C三元件各自的伏安关系。 二、实验设备 1、电路分析综合实验箱 2、低频信号发生器 3、双踪示波器 三、实验内容 图5、1 测试电路如图5、1所示,R、L、C三个元件分别作为被测元件与10Ω采样电阻相串联,其中电阻R =2kΩ,电感L =2、7mH,电容C = 0、1μF,信号源输出电压的有效值为2V。 1、测绘R、L、C单个元件阻抗频率特性曲线 1)按照图5、1接好线路。注意:信号源输出电压的幅度须始终保持2V有效值,即每改变一次输出电压的频率,均须监测其幅度就是否为2V有效值。 2)改变信号源的输出频率f如表5、1所示,利用示波器的自动测量功能监测2通道信号

的电压有效值,并将测量数据填入表中相应位置。 3)计算通过被测元件的电流值I AB 以及阻抗的模Z ,并填入表5、1 中相应位置。 BC AB BC 10U I I == S AB AB 2U Z I I == 4)在图5、2上绘制R 、L 、C 单个元件阻抗频率特性曲线,要求:将三条曲线画在同一坐标轴中。 表5、1 f (K Hz) 10 20 30 40 50 U S (V ) 2 U BC (mV ) R L C I AB (mA ) R L C Z (K Ω) R L C 图5、2 2、 R 、L 、C 单个元件的相位测量

1)测试电路不变,信号源的输出电压有效值为2V ,输出频率为10kHz 。 2)在示波器上观察R 、L 、C 三个元件各自端电压与电流的相位关系,将波形存储到U 盘,课后打印并贴在图5、3上相应方框处。 3)计算R 、L 、C 三个元件各自的相位差 ,并用文字描述R 、L 、C 三个元件各自电压、 电流的相位关系。 R : 360?=?=CD AB Φ 结论: L : 360?=?=CD AB Φ 结论: C : 360?=?=C D AB Φ 结论:

实验7.8.9.RLC特性阻抗测试

实训项目七 R 、L 、C 元件阻抗特性的测定 一、实验目的 1.验证电阻、感抗、容抗与频率的关系,测定R ~f 、L X ~f 、C X ~f 特性曲线。 2.加深理解R 、L 、C 元件端电压与电流间的相位关系。 二、原理说明 1.在正弦交变信号作用下,电阻元件两端电压与流过的电流有关系式 在信号源频率f 较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值与信号源频率无关,其阻抗频率特性R ~f 如图3-20。 如果不计线圈本身的电阻1R ,又在低频时略去电容的影响,可将电感元件视为纯电感,有关系式, I jX U L 感抗 fL X L 2 感抗随信号源频率而变,阻抗频率特性L X ~f 如图3-20所示。 在低频时略去附加电感的影响,将电容元件视为纯电容,有关系式, I jX U C 容抗 fC X C 21 容抗随信号源频率而变,阻抗频率特性C X ~f 如图3-20。 图3-20 阻抗特性测试电路 2.单一参数R 、L 、C 阻抗率特性的测试电路如图3-20所示。 图中R 、L 、C 为被测元件,r 为电流取样电阻。改变信号源频率,测量R 、L 、C 元件两端电压R U 、L U 、C U 流过被测元件的电流则可由r 两端电压除以r 得到。 元件的阻抗角(即相位差 )随输入信号的频率变化而改变,同样可用实验方法测得阻抗角频率特性曲线 ~f 。 3.用双踪示波器测量阻抗角(相位差)的方法。 将欲测量相位差的两个信号分别接到双踪示波器A Y 和B Y 两个端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,如下图3-21所示,荧光屏上数得水 平方向一个周期占n 格,相位差占m 格,则实际的相位差 (阻抗角)为n m 360 。

R、L、C元件阻抗特性的测定

电路理论基础实验报告 实验十一R、L、C元件阻抗特性的测定 刘健阁指导教师杨智 中山大学信息科学与技术学院广东省广州市510006 实验时间地点: 2014年5月6日中山大学东校区实验中心C103 实验操作人: 刘健阁(学号13348073)、乐云天、雷弛 (此实验报告由刘健阁撰写,乐云天、雷弛另行独自撰写实验报告) 实验目的: 1. 验证电阻,感抗、容抗与频率的关系,测定R~f , X L~f与X C~f特性曲线。 2. 加深理解R、L、C元件端电压与电流间的相位关系。 实验原理: 1. 在正弦交变信号作用下,电阻元件R两端电压与流过的电流有关系式U=RI 在信号源频率f较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值与信号源频率无关,其阻抗频率特性R~f如图11-1。 如果不计线圈本身的电阻RL,又在低频时略去电容的影响,可将电感元件视为纯电感,有关系式U L= jX L I感抗X L=2πfL 感抗随信号源频率而变,阻抗频率特性X L~f如图11-1。 在低频时略去附加电感的影响,将电容元件视为纯电容,有关系式 U C=-jX C I容抗X C=1/2πf c 容抗随信号源频率而变,阻抗频率特性X C~f如图11-1

2. 单一参数R、L、C阻抗频率特性的测试电路如图11-2所示。 图中R、L、C为被测元件,r为电流取样电阻。改变信号源频率,测量R、L元件两端电压U R、 U L、U C,流过被测元件的电流则可由r两端电压除以r得到。 3. 元件的阻抗角(即相位差φ)随输入信号的频率变化而改变,同样可用实验方法测得阻抗角的频率特性曲线φ~f。 用双踪示波器测量阻抗角(相位差)的方法: 将欲测量相位差的两个信号分别接到双踪示波器Y A和Y B两个输入端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,如图11-3所示,荧光屏上得不平方向一个周期占n格,相位差m格,则实际的相位差φ(阻抗角)为φ=m×(360/n)。 实验设备: 1. 函数信号发生器 1 2. 交流毫伏表 1 2. 双踪示波器 1 3. 实验电路元件R、L 1 DGJ-05 实验内容及步骤: 1. 测量单一参数R、L、C元件的阻抗频率特性 实验线路如图11-2所示,取R=1KΩ,L=10mH,C =1μF,r=200Ω。通过电缆线将函数信号发生器输出的正弦波信号接至输入端,作为激励源u,并用交流毫伏表测量,使激励电压的有效值为U=3V,并在整个实验过程中保持不变。 改变信号源的输出频率从200Hz逐渐增至50Hz(用频率计测量),分别接通R、L、C三个元件,用交流毫伏表分别测U R、U r、U L、U r;U C、U r,并通过计算得到各频率点时的R、X L与X C之值,记入表中。

交流阻抗实验报告

正弦交流电路中的阻抗和频率特性研究 1、实验目的 1)加深对正弦交流电路的KVL 定律认识。 2)学习正弦交流电路中阻抗的测量方法。 3)掌握L c X X 、阻抗频率特性测量方法。 2.实验原理及步骤 (1)测量阻抗 1)用“向量法”测量空心电感线圈两端的阻抗Lr Z ,如图3-1所示,r 是电感线圈的直流电阻。输入电压的频率在200~300Hz 中任选两个,分别测量计算。 测量出R U 、Lr U 的值,选取R U 作为参考相量,做出回路的向量图。相量图如图3-2所示。显然,θ满足Lr R Lr R U U U U U 2cos 2 2 2-+=θ。通过计算θ从而求出L U 、r U 的 值进而可求出电阻电感值。 2)按下图所示电路,从a ,b 端口用“向量法”测量内带电容的阻抗ab Z ,输入电压的频率在1~3kHz 中任选两个,分别测量计算。 Lr U U R U θ r U U 图3-2 电感阻抗测量电路向量图 图3-1 测量阻抗电路原

测量出R U 、Cr U 以及I 的值,选取Cr U 为参考相量,作出由回路的向量图。相量图如图3-4所示,同理,通过求出θ角可得到电容阻抗值。 (2)测量频率特性 测量L X 、C X 阻抗频率特性,做频率特性曲线。 1)点测—L X f 特性。自选电感(L :50~400mH )与电阻R 串联(R :200Ω~1k Ω)自拟表格,做—L X f 特性曲线(f 从50Hz~3kHz )。 2)点测—C X f 特性。自选电容(C :0.1~2μF )与电阻R 串联(R :200Ω~1k Ω)自拟表格,做—C X f 特性曲线(f 从50Hz~3kHz )。 (3)观察电压、电流相位关系 如图3-5、3-6所示,用示波器分别观察下面电感、电容中电压、电流相位。 图3-5 电感阻抗测量电路 I U 图3-2 电容阻抗测量电路向量图 图3-3 电容阻抗测量电路原理图 R Cr U 2+ -

RLC阻抗特性测量

实验五 R 、L 、C 元件阻抗特性的研究 一、实验目的 1.验证电阻、感抗、容抗、与频率的关系,测定R~f 、L X ~f 及C X ~f 特性曲线。 2.加深理解R 、L 、C 元件端电压与电流间的相位关系。 二、原理说明 1. 在正弦交变信号作用下,R 、L 、C 电路元件在电路中的抗流作用与信号的频率有关,它们的阻抗频率特性R~f ,L X ~f ,C X ~f 曲线如图1所示。 图1 图2 2. 单一参数R 、L 、C 阻抗频率特性的测量电路如图2所示。R=1K Ω,r=200Ω,C=1uF ,L=10mH 等取自《二阶电路动态过程的研究》单元中的部分元件。 图中R 、L 、C 为被测元件,r 为电流取样电阻。改变信号源频率,测量R 、L 、C 元件两端电压R U 、L U 、C U ,流过被测元件的电流可由r 两端电压除以r 得到。 3. 元件的阻抗角(即相位差φ)随输入信号的频率 变化而改变,将各个不同频率下的相位差画在以频率f 为横坐标、阻抗角φ为纵坐标的坐标纸上,并用光滑的曲线连接这些店,即得到阻抗角的频率特性曲线。 用双踪示波器测量阻抗角的方法如图3所示。从荧光屏上数得一个周期站n 格,相位差占m 格,则实际的相位差φ(阻抗角)为 n 360m ?=φ

三、实验内容 1. 测量R 、L 、C 元件的阻抗频率特性 通过电缆线将函数信号发生器输出的正弦信号接至如图2电路,作为激励源u ,并用交流毫伏表测量,使激励电压的有效值为U=3V ,并在实验过程中保持不变。 使信号源的输出频率从200Hz 逐渐增至5KHz 左右,并使端点S 分别接通R 、L 、C 三个元件,并用交流毫伏表分别测量R U 、r U ;C U ,r U ;L U 、r U ,并通过计算得到各频率点时的R 、 L X 与C X 之值,记入附表中。 注意:在接通C 测试时,信号源的频率应控制在200~2500Hz 之间。 2. 用双踪示波器观察RL 串联和RC 串联电路在不同频率下的阻抗角的变化情况,按图3记录n 和m ,算出 ,自拟表格记录之。

实验十 R、L、C元件的阻抗频率特性

实验十 R 、L 、C 元件的阻抗频率特性 一、实验目的 1. 验证电阻,感抗、容抗与频率的关系,测定R ~f ,X L ~f 与Xc ~f 特性曲线。 2. 加深理解阻抗元件端电压与电流间的相位关系。 二、实验原理 1.在正弦交变信号作用下,R 、L 、C 电路元件在电路中的抗流作用与信号的频率有关,如图10-1所示。三种电路元件伏安关系的相量形式分别为: ⑴纯电阻元件R 的伏安关系为I R U = 阻抗Z=R 上式说明电阻两端的电压U 与流过的电流I 同相位,阻值R 与频率无关,其阻抗频率 特性R ~f 是一条平行于f 轴的直线。 ⑵ 纯电感元件L 的伏安关系为I jX U L L = 感抗XL =2πfL 上式说明电感两端的电压L U 超前于电流I 一个90°的相位,感抗X随频率而变,其阻抗频率特性X L ~f 是一条过原点的直线。电感对低频电流呈现的感抗较小,而对高频电流呈 现的感抗较大,对直流电f=0,则感抗X L =0,相当于“短路”。 ⑶纯电容元件C 的伏安关系为I jXc U C -= 容抗Xc =1/2πfC 上式说明电容两端的电压c U 落后于电流I 一个90°的相位,容抗Xc 随频率而变,其 阻抗频率特性Xc ~f 是一条曲线。电容对高频电流呈现的容抗较小,而对低频电流呈现的容抗较大,对直流电f=0,则容抗Xc ~∞,相当于“断路”,即所谓“隔直、通交”的作用。 三种元件阻抗频率特性的测量电路如图10-2 所示。 图中R、L、C为被测元件,r 为电流取样电阻。改变信号源频率,分别测量每一元件两端的电压,而流过被测元件的电流I,则可由Ur/r计算得到。 2. 用双踪示波器测量阻抗角 元件的阻抗角(即被测信号u和i的相位差φ)随输入信号的频率变化而改变, 阻抗角的频率特性曲线可以用双踪示波器来测量,如图10-3所示。 阻抗角(即相位差φ)的测量方法如下: ⑴在“交替”状态下,先将两个“Y轴输入方式”开关置于“⊥”位置,使之显示两条直线,调YA和YB移位,使二直线重合,再将两个Y轴输入方式置于“AC ”或“DC ”位置,然后再进行相位差的观测。测量过程中两个“Y轴移位”钮不可再调动。 图 10-1

8欧姆喇叭的阻抗频率特性

8欧姆喇叭的阻抗频率特性 8欧姆喇叭在400Hz时产生自谐振,其阻抗从8欧姆上升至10欧姆,在10KHz时,其阻抗开始上升,到1MHz时,达到100欧姆。在没有音频信号时,末级输出是对称的方波,尽管喇叭阻抗为100欧姆,它仍然消耗功率,这样就会使效率降低。而且,因为这时候高频脉冲信号直接加到喇叭上,会引起较严重的射频辐射。当喇叭引线较长时,引线还会呈现分布电容,一方面使得送到的信号减弱,另一方面也会增大辐射。这些都是不希望的。 所以,通常还是希望在输出端加上一个滤波器。假如在高频时,负载呈现电容性,那么串联一个电感就可以改善其特性。这个串联电感可以使高频分量不流向负载,从而减少了辐射,也提高了效率。我们可以简单地假设这个电感应当在30KHz时的感抗等于8欧姆,从而可以计算出其电感值为42.4 uH。 假如这个D类放大器工作在250KHz的开关频率,那么在这个频率上,它的感抗为66.7欧姆,大约比喇叭的阻抗大8倍。所以,它在开关频率下的损耗并不很严重。但是,必须注意,这个电感因为要流过比较大的电流,所以应当采用较粗的导线。假如在8欧姆上要产生1.2瓦特的功率,那么,其电流就相当于387mA(rms),其峰值电流将会达到550mA。必须保证在这样大的电流下,这个电感不会因为饱和而降低了电感量。假如把开关频率提高4倍到1MHz,那么电感量就可以减小4倍,变成10uH。这时候电感的尺寸可以减小,但是提高频率以后,其效率也会有所降低,失真也会有所加大。

只用一个串联电感并不能有效地解决高频辐射的问题。有时甚至还会使得电磁辐射更为严重。电磁辐射在携带型产品更为敏感。因为它有可能会干扰机内的其他射频电路。为了减小高频辐射还必须再用一个并联电容,以便直接把射频干扰信号滤去。

电路实验:实验七R.L.C元件阻抗频率特性

实验七项目名称:R.L.C元件阻抗频率特性 一、实验目的 1、验证R.L.C元件的频率特性. 2、熟悉低频信号发生器/函数信号发生器等常用电子仪器的使用方法. 二、实验原理 正弦交流电可用三角函数表示,由最大值,频率f和初相三要素来决定。在正弦稳态电路的分析中,由于电路中各处电压、电流都是同频率的交流电,所以电流、电压可用相量表示。 在频率较低的情况下,电阻元件通常略去其电感及分布电容而看成是纯电阻。此时端电压与电流可用复数欧姆定律来描述:ù=Rì 式中R为线性电阻元件,U与I之间无相角差。电阻中吸收的功率为: P=UI=RI2 因为略去附加电感和分布电容,所以电阻元件的电阻值与频率无关。R-f关系如图8-1。 电容元件在低频也可略去其附加电感及电容极板间介质的功率损耗,因而可认为具有电容C。在正弦电压作用下流过电容的电流与电压之间也可用复数欧姆定律来表示:ù=X Cì式中X C是电容的容抗,其值为: X C=1/jωc 所以有ù=(1/jωc)*ì=(ì/ωc)∠-900,电压U滞后于电流I的相角为900,电容中所吸收的平均功率为零。 电容的容抗与频率的关系X C-f曲线如图8-1 电感元件因其导线绕成,导线有电阻,在低频时如略去其分布电容则它仅由电阻R L与 L组成。 在正弦电流的情况下其复阻抗为: Z=R L+jωL=√ R2+(ωL) 2∠Φ=z∠Φ 其中R L为线圈导线电阻.阻抗角φ可由R L及L参数来决定: φ=tg-1ωL/R 电感线圈上电压与流过的电流间关系为: ù= (R L+jωL) ì= z∠Φì 电压超前电流900,电感线圈所吸收的平均功率为: P= UI cosφ= RI2 X L与频率的关系如图8-1. 图8-1 R-f、X C-f、X L-f曲线 三、实验设备

电容电感的频率特性

电感电容的频率特性 结论 电感:通直流阻交流,通低频阻高频,其感抗XL=wL; 电容:通交流阻直流,通高频阻低频,其容抗Xc=1/wC。(匹配要点) 电感越大,阻抗越大,交流信号更不易通过;电容越大,阻抗越小,交流信号更易通过。 当工作频率达到电感(电容)的自谐振频率(w=√LC),对电流的阻抗Z最大(最小)。 磁珠 对低频基本没什么衰减(相当于电感),对高频有较强衰减。 解释 1、当交流信号通过线圈时,线圈两端将会产生自感电动势,自感电动势的方向与外 加电压的方向相反,阻碍交流的通过,频率越高,自感电动势越大,线圈阻抗越大。 采用容抗公式分析电容,当频率越高,容抗(阻抗)越小,高频更容易通过。 2、电容器有一个充放电的时间问题。当交流电的正半周,给电容器充电的瞬间,电 路是有电流流过的,相当于通路,一旦电容器充电完毕,则电路就没有电流流过了,相当 于断路。当交流电的负半周到来时,又将产生电流,先抵消掉原来充在电容上的那个相反 的电荷,在继续充电至充满。 现在假设电容器需要的充电时间t一定,则 (1)当一个频率较高的交流电正半周结束时,假设电容器容量够大,还未充满电,

负半周就到来了,则这电路会一直流着电流,相当于这电容器对这个高频的交流电来说, 是通路的。 (2)如果这个交流电的频率较低,正半周将电容器充满电荷以后,负半周仍未到来,则电流会在中途断流,则电容器对于这个低频的交流电来说,就不是完全通路了,只是有 一定的阻抗 (3)如果充电的时间相对于那个频率的交流电的半周期来讲,是极短的,那么电容 器就可以认为完全断路,没有电流流过。 阻抗概念 1、在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。 阻抗常用Z表示,是一个复数,实部为电阻,虚部为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在 电路中对交流电引起的阻碍作用总称为电抗。阻抗的单位是欧姆。 电容越小,容抗越大,能通过的电流越小。 2、Z=R+j(wL-1/wC),若wL>1/wC,则为感性负载;否则容性负载。 3、交流电通过纯电感或纯电容时,电能并没有减少,而是在电能—磁场能(电感),或电能—电场能(电容)之间不停地转化。 电容/感等效特性 1、电容的概念:电路学里,给定电势差,电容器储存电荷的能力,称为电容。 C=Q/U 2、器件上不可避免得带有寄生电感和寄生电容,电容等效为电阻+寄生电感+电容,

R、L、C元件阻抗特性的测定

实验十一 R 、L 、C 元件阻抗特性的测定 姓名 学号 专业 实验日期 1. 验证电阻、感抗、容抗与频率的关系,测定R ~f 、X L ~f 及Xc ~ f 特性曲线。 2. 加深理解R 、L 、C 元件端电压与电流间的相位关系。 二、原理说明 1. 在正弦交变信号作用下,R 、L 、C 电路元件在电路中的抗流作用与信号的频率有关,它们的阻抗频率特性R ~f ,X L ~f ,Xc ~f 曲线如图11-1所示。 2、单一参数R 、L 、C 阻抗频率特性的测量电路如图11-2所示。 图中R 、L 、C 为被测元件,r 为电流取样电阻。改变信号源频率,测量R 、L 、C 元件两端电压U R 、U L 、U C ,流过被测元件的电流则可由r 两端电压除以r 得到。 3元件的阻抗角(即相位差φ)随输入信号的频率变化而改变,将各个不同频 率下的相位差画在以频率f 为横坐标、阻抗角φ为纵座标的座标纸上,并用光滑的曲 线连接这些点,即得到阻抗角的频率特性曲线。 用双中示波器测量阻抗角(相位差)的方法。 将欲测量相位差的两个信号分别接到双中示波器Y A 和Y B 两个输入端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,如图11-3所示,荧光屏上数的水平方向一个周期占n 格,相位差占m 格,实际的相位差φ(阻抗角)为 φ=m ×n 360 Z X L R f L C R 30 r u ~ r i R A S B u f i L i C i 图 1 2-1 图 1 1-2 u i 占m 格 T ωt t φ 图 1 1-3 图11-1

1. 测量单一参数R、L、C元件的阻抗频率特性 取R=1K?,L=10Mh,C=1μF,r=200?。通过电缆线将低频信号发生器输出的正弦信号接至如图11-2的电路,作为激励源u,并用交流毫伏表测量,使激励电压的有效值为U=3V,并保持不变。 使信号源的输出频率从200Hz逐渐增至5KHz(用频率计测量),并使开关S分别接通R、L、C三个元件,用交流毫伏表测量Ur,并计算各频率点时的I R、I L和I C ( 即 2、用双踪示波器观察rL串联和rC串联电路在不同频率下阻抗角的变化情况,并作记

有关单一元件阻抗频率特性与相位差测量探究 (2)

有关单一元件阻抗频率特性与相位差测量 的探究 作者:夕阳挂山腰 (吉林大学通信工程学院长春130012) 摘要:交流电学是现代电子科技发展的基础,交流电元件在实际应用中就更显得尤为重要。了解R、L、C元件的阻抗频率特性,掌握简单R、L、C网络的阻抗和阻抗角的测量方法更是电学实验的必备基本技能。 关键字:阻抗;阻抗角;测量方法 About the measurement and research of the angle of an Electrical element Author: (The College of Communication Engineerings,JiLin University Changchun,JiLin 130012) Abstrct:AC electricity is the foundation of the modern electronic technology development .So communication electrical component will be morn important In practical application. Master simple R, L, C network impedance and impedance measurement method is the Angle of basic skills necessary electricalexperiments. Keywords: Impedance; Impedance Angle; Measurement method

PCB阻抗测量技术

PCB阻抗测量技术 安捷伦科技(中国)有限公司:孙灯亮 PCB传输线的特征阻抗和差分阻抗 现代的智能手机,计算机,通信设备等电子产品都内含复杂的PCB,这些PCB上的传输线负责把各种芯片连接在一起,并进行互相通信。 图1 现代高速电路中的传输线互连 衡量PCB上传输线的最重要指标是特征阻抗,或叫特性阻抗,简称阻抗。PCB传输线的特征阻抗不是直流电阻,它属于长线传输中的概念。在高频范围内,信号传输过程中,信号边沿到达的地方,信号线和参考平面(电源或地平面)间由于电场的建立,会产生一个瞬间电流,如果传输线是各向同性的,那么只要信号在传输,就始终存在一个瞬态电流I,而如果信号的瞬态电压为V,在信号传输过程中,传输线就会等效成一 个电阻,大小为,把这个等效的电阻称为传输线的特性阻抗。信号在传输的过程 中,如果传输路径上的特性阻抗发生变化,信号就会在阻抗不连续的结点产生反射。 图2 传输线用等效的集中参数电路RLCG描述 传输线的特征阻抗主要与传输线的结构有关系。把传输线分成一小段一下段,如图2所示,每一段用等效的集中参数RLCG电路表示,传输线即可用电报方程来表达: 电报方程的通解为: 其中:

为传播常数 为特征阻抗由于R, G 远小于jwL,jwC,所以通常所说的特征阻抗或阻抗是指: 这个是最终的特征阻抗公式,从公式中可见,传输线的特征阻抗只与寄生电感和寄生电容有关,而与频率没有关系,单位也直接用欧姆来表示。 寄生电感和寄生电容与传输线结构和介电常数有关,而介电常数与频率也有一些关系,所以特征阻抗与频率也有微弱的关系。 PCB中常见的几种传输线结构如图3所示。 图3 PCB中常见的单端传输线结构 微带线指的是处于PCB板外层的线路。微带线的电场穿透两种不同的介电质,相对较难控制阻抗。空气的介电常数较PCB为低,所以整体微带线的等效介电常数较低(约为2)。信号在微带线上的传输速率较快(约为每英寸145ps)。因为在微带线分布在PCB的表面,可以节省层数进行高密度布线,但是较容易受到干扰。 带状线是指处于PCB板内层的线路。带状线的电场只在PCB的范围内,相对较易控制阻抗。带状线周围介质的介电常数较高(约为 4.4),信号传输速度相对较慢(约为每英寸185ps)。因为在PCB的里面,所以不容易受干扰。 图4 微带线和带状线电场和磁场分布 对于微带线或带状线,都有如下特征:阻抗与走线宽度和走线厚度成反比;阻抗与叠层

相关主题
文本预览
相关文档 最新文档