当前位置:文档之家› 裂隙土等效连续介质的渗透张量及表征单元体积

裂隙土等效连续介质的渗透张量及表征单元体积

裂隙土等效连续介质的渗透张量及表征单元体积
裂隙土等效连续介质的渗透张量及表征单元体积

《连续介质力学》期末复习提纲-总

<连续介质力学> QM 复习提纲(2010.12) 一、基本要求 1、掌握自由指标与哑指标的判别方法及表达式按指标展开; 2、掌握ij 与ijk e 的定义、性质及相互关系; 3、掌握二阶张量坐标转换的计算; 4、掌握二阶张量特征值、特征向量与三个不变量的计算方法; 5、掌握哈密顿微分算子及其基本计算; 6、掌握小变形应变张量、转动张量及转动向量的计算; 7、掌握正应变的计算; 8、掌握正应力、剪应力及应力向量的计算; 9、掌握应力张量与应变张量的对称性; 10、掌握能量密度及能通量密度向量的计算; 11、掌握各向同性线弹性体的广义胡克定律的两种形式; 12、掌握应力张量与体积膨胀率的关系; 13、掌握各向同性线弹性体的应变能密度函数; 14、会对材料的各个弹性参数之间的关系进行相互推导; 15、掌握从质点的运动方程推导Navier 方程的过程; 16、掌握从质点的运动方程出发推导纵横波的方程的过程; 17、掌握地震波速度与泊松比的关系; 18、掌握非均匀平面简谐波的传播特征; 19、掌握P 波、SV 波入射到自由界面上的传播特征; 20、掌握利用自由界面边界条件确定反射系数和反射波位移场的方法; 21、掌握Reilaygh 波和Stonely 波的传播特征; 22、掌握P 波入射到两种弹性体接触面上的反射系数和透射系数的计算方法; 二、复习题 简答论述题 1、试解释“连续介质”所必须满足的条件。 2、简述弹性动力学基本假设。 3、说明应力、应变、正应力、正应变、剪应力及剪应变的含义。 4、说明杨氏模量、泊松比、体积模量与剪切模量的物理含义。 5、简述小变形应变张量的几何解释。

张量分析在弹性力学中的应用

张量分析在弹性力学中的应用 自然界的许多问题用数学语言来描述时都需要引入坐标系,但其本质又与坐标无关。当有些自然规律用坐标形式表达后,由于复杂的方程式往往使得人们忽略了它的内在本质。张量是一种特殊的数学表达形式,它描述的结果不会因为坐标系的变化而发生变化[1],因此可以摆脱坐标系的影响,反应事物的本质。此外通过爱因斯坦求和约定、相关记法的规定等常用的表示方法,使得张量的表达形式变得十分简洁。 弹性力学,又称弹性理论,主要是研究弹性体在外力和其它外界因素作用下产生的应力、形变和位移,广泛应用于建筑、机械、化工、航天等工程领域。为了求得一定边界条件下物体的应力、应变和位移,先对构成物体的材料以及物体的变形作了五条基本假设,即:连续性假设、均匀性假设、各向同性假设、完全弹性假设和小变形假设,然后分别从问题的静力学、几何学和物理学方面出发,导得弹性力学的基本方程,即平衡微分方程、几何方程和本构方程,共15个方程[2]。由于方程数目的众多,使得我们在分析过程中往往将大部分注意力集中在了方程的形式上,从而忽略问题的本质。 如果将张量引入到物体的应力、应变和位移中,关于弹性问题的15个方程都可以用相关的符号而不是展开式来表示,一方面可以使得书写简便,更重要的是可以将大部分注意力集中在物理原理上而不是方程本身,从而深化对问题的分析[3,4]。 由于表达简洁、不会改变方程式的本质,张量分析得到了广泛的应用。黄勇对张量的概念做出了具体的分析[5];林诚之利用张量的概念推导了形状比能的表达式[6];赵超先[7]、黄晓琴[8]将张量应用于物理学中,利用应力张量对麦克斯韦磁场力进行了重新推导;明华军等利用监测得到的张量结果得到了岩体破裂面空间方位的计算方法[9];杨天鸿等以现场岩体渗透结构面概率模型统计资料为依据,采用离散介质方法建立典型裂隙网络模型,提出计算岩体结构面网络的等效渗透系数张量方法[10]。 本文的目的并不是概述张量在工程中的应用,而是主要介绍张量在弹性力学中的应用,具体介绍弹性力学中基本方程的张量表达形式以及用张量概念推导的弹性应变能函数的表达式。 2 弹性力学中基本方程的张量表达形式[2,3,4] 2.1 用张量表示弹性力学中的基本物理量 对于空间问题,受力物体在外力作用下,物体的各个点都会长生相应的应 来表示 力、应变和位移。将受力物体上一点的应力状态用应力张量 ij

裂隙岩体渗透张量的特征值扰动分析

收稿日期:2014-08-27;网络出版日期:2015-02-03 网络出版地址:https://www.doczj.com/doc/f913990589.html,/kcms/detail/https://www.doczj.com/doc/f913990589.html,.20150203.1534.006.html 资助项目:国家自然科学基金资助项目(41172204) 作者简介:周志芳(1962-),男,江苏丹阳人,博士,教授,主要从事水文地质、水文水资源方面的教学和科研工作。 E-mail :zhouzf@https://www.doczj.com/doc/f913990589.html, 水 利学报SHUILI XUEBAO 2015年5月 第46卷第5期 文章编号:0559-9350(2015)05-0536-07裂隙岩体渗透张量的特征值扰动分析 周志芳,庄超 (河海大学地球科学与工程学院,江苏南京210098) 摘要:裂隙岩体渗透张量是基岩地区地下水研究中非常重要的水文地质参数。基于裂隙岩体渗透张量的基本表达式和矩阵特征值扰动理论,以青岛黄岛地下洞库现场试验成果为例,在查明了岩体中裂隙的空间产状、位置基础上,建立了裂隙渗透性与岩体整体渗透张量之间的定量关系,分析了单条裂隙和单组裂隙渗透张量特征值的扰动问题,提出了优势裂隙渗透性对岩体整体渗透张量贡献的评价方法。研究结果表明,并非岩体中发育的裂隙对渗流都具有均等的作用,而只有优势裂隙组中的优势裂隙在裂隙渗流问题中占主导地位。这些成果对于基岩地区地下水资源开发和评价、地下水污染预测和控制、地下工程渗流计算和控制都具有重要的意义。 关键词:渗透张量;裂隙岩体;矩阵特征值;扰动 中图分类号:TV221.2文献标识码:A doi :10.13243/https://www.doczj.com/doc/f913990589.html,ki.slxb.201410351研究背景 对于裂隙岩体渗透张量的确定方法已有很多研究成果[1]:早在1969年Snow [2] 就提出了裂隙渗流的立方体定律和依据裂隙倾向、倾角、隙宽、隙间距等几何要素测量值,计算岩体渗透系数张量的裂隙样本法,并在工程中得到应用[3];Papadapulos 、Hantush 、Way 、Neuman 、周志芳等 [4-10]提出了抽水试验方法确定裂隙岩体渗透张量的原理和方法;Snow 、Louis 、Rocha 、Hsieh 等[11-15]提出了确定裂 隙渗透张量的压水试验方法、三段压水试验法和现场交叉孔压水试验法。近来许多学者Kipp 、Sven?son 等、Murdoch 、Weeks 等、Slack 等和Quinn 等致力于裂隙岩体单孔微水试验法研究[16-21],着眼于研 究振荡试验及试验过程中井筒附近的压力传播和裂缝开度变化的关系、振荡试验中试验段临界阻尼系数、裂隙内地下水的存储变化规律和振荡试验过程中非达西流的影响范围。周志芳等[22-23] 提出了一种基于单孔微水试验确定裂隙岩体渗透张量的方法。所有这些方法并没有对试验的成果从岩体裂隙发育程度、每条裂隙的渗透性对整体渗透张量的影响方面做定量的分析。原因在于张量不如标量那样容易定量比较大小,更多的是定性描述岩体中各组裂隙的相对渗透性大小关系。由裂隙岩体渗透张量的表达式可知,试验段裂隙介质渗透张量是有试验段每条(每组)裂隙渗透张量按照矩阵运算规则累加而成的。因此,裂隙介质渗透张量特征值的大小及对应的特征方向取决于每条(每组)裂隙的特征值大小及相应的特征方向,即取决于每条(每组)裂隙的产状和渗透性大小。由于自然界每条(每组)裂隙的产状和渗透性大小各不相同,差别很大,因此每条(每组)裂隙对裂隙介质渗透张量的贡献就不尽相同。究竟哪些(哪组)裂隙对渗透张量的贡献大,即组成裂隙介质渗透张量的优势裂隙是哪条(哪组)裂隙,我们可以借助于矩阵特征值扰动理论进行分析[24-25]。目的在于给出一种定量分析、描述岩体中各组裂隙相对渗透性及其对渗透张量贡献的评价方法。本文以青岛黄岛地下洞库现场试验成果为例,分析了单条裂隙和单组裂隙渗透张量特征值的扰动问题,研究结果表明优势裂隙组中的 ——536

砼表面裂缝原因分析

砼表面裂缝原因分析 The manuscript was revised on the evening of 2021

砼表面裂缝原因分析 一、混凝土裂缝类型及成因 实际上,钢筋混凝土结构裂缝的成因复杂而繁多,甚至多种因素互相影响,但每一条裂缝均有其产生的一种或几种原因,其中最常见的是混凝土早期裂缝,混凝土早期裂缝有以下几种:1、塑性沉降裂缝此类裂缝产生的主要原因是由于混凝土骨料沉降时受到阻碍(如钢筋、模板)而产生的。这种裂缝大多出现在混凝土浇注后小时至3小时之间,混凝土尚处在塑性状态,混凝土表面消失水光时立即产生,沿着梁及板上面钢筋的走向出现,主要是混凝土塌落度大、沉陷过高所致。另外在施工过程中如果模板绑扎的不好、模板沉陷、移动时也会出现此类裂缝。 1、塑性收缩裂缝 此类裂缝产生的主要原因是混凝土浇筑后,在塑性状态时表面水分蒸发过快造成的。这类裂缝形状不规则、长短宽窄不一、呈龟裂状,深度一般不超过50mm.多在表面出现,产生的原因主要是混凝土浇注后3—4小时左右表面没有被覆盖,特别是平板结构在炎热或大风天气混凝土表面水分蒸发过快,或者是基础、模板吸水过快,以及混凝土本身的水化热高等原因造成混凝土产生急剧收缩,此时混凝土强度趋近于零,不能抵抗这种变形应力而导致开裂。 2、温度的变化与湿度的变化 裂缝:混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。 3、原材料质量引起的裂缝

渗透系数

渗透系数 渗透系数又称水力传导系数(hydraulic conductivity)。在各向同性介质中,它定义为单位水力梯度下的单位流量,表示流体通过孔隙骨架的难易程度,表达式为:κ=kρg/η,式中k为孔隙介质的渗透率,它只与固体骨架的性质有关,κ为渗透系数;η为动力粘滞性系数;ρ为流体密度;g为重力加速度。在各向异性介质中,渗透系数以张量形式表示。渗透系数愈大,岩石透水性愈强。强透水的粗砂砾石层渗透系数>10米/昼夜;弱透水的亚砂土渗透系数为1~0.01米/昼夜;不透水的粘土渗透系数<0.001米/昼夜。据此可见土壤渗透系数决定于土壤质地。 1.测定影响 渗透系数k 是一个代表土的渗透性强弱的定量指标,也是渗流计算时必须用到的一个基本参数。不同种类的土,k 值差别很大。因此,准确的测定土的渗透系数是一项十分重要的工作。 2计算方法 渗透系数K是综合反映土体渗透能力的一个指标,其数值的正确确定对渗透计算有着非常重要的意义。影响渗透系数大小的因素很多,主要取决于土体颗粒的形状、大小、不均匀系数和水的粘滞性等,要建立计算渗透系数k的精确理论公式比较困难,通常可通过试验方

法,包括实验室测定法和现场测定法或经验估算法来确定k值。 3测定方法 渗透系数的测定方法主要分“实验室测定”和“野外现场测定“两大类。 常水头法测渗透系数k 1.实验室测定法 目前在实验室中测定渗透系数k 的仪器种类和试验方法很多,但从试验原理上大体可分为”常水头法“和"变水头法"两种。 常水头试验法就是在整个试验过程中保持水头为一常数,从而水头差也为常数。如图: 试验时,在透明塑料筒中装填截面为A,长度为L的饱和试样,打开水阀,使水自上而下流经试样,并自出水口处排出。待水头差△h

混凝土表面裂缝产生的原因及处理方法通用版

安全管理编号:YTO-FS-PD798 混凝土表面裂缝产生的原因及处理方 法通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

混凝土表面裂缝产生的原因及处理 方法通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 混凝土表面裂缝产生的原因及处理方法 混凝土表面产生裂缝的原因复杂而繁多。在施工过程中,混凝土因收缩所形成的裂缝是经常出现的。主要有两种原因:一是因为刚浇筑完成的混凝土表面水份蒸发过快表面产生裂缝;二是因为混凝土在硬化时,由混凝土内部温度与外界的温差过多而产生裂缝。 刚浇筑完成的水泥混凝土往往因为外界气温较高,相对温度过小,表面蒸发过快使表面变干,而其内部仍是塑性体,因塑性收缩过快而使表面产生裂缝。这种原因出现的裂缝不规则细小,不连续,且很少,在边缘产生一般呈对角斜线状,长度通常不超过30 cz'no对这种原因产生裂缝的预防7b"法是在混凝土浇筑时采取措施遮掩浇筑面,使其避免风吹日晒,混凝土浇筑完毕后立即将表面覆盖并及时洒水养生。 对于体积过大的混凝土,应分层浇筑。在上层混凝土浇筑的过程中,会在混凝土在自重作用下产生沉降。当混

裂缝性油藏等效渗透率张量的边界元求解方法

?油气藏工程? 裂缝性油藏等效渗透率张量的边界元求解方法 姚 军,李亚军,黄朝琴,王子胜 (中国石油大学(华东)石油工程学院,山东青岛266555) 摘要:等效渗透率张量是裂缝性油藏渗流分析的重要参数,应用边界元算法可计算裂缝性油藏的等效渗透率张量。根据流量等效原理,考虑每条裂缝的空间分布和属性参数对流动的影响,建立了求解裂缝性多孔介质等效渗透率张量的数学模型,并给出了数学模型的边界元求解方法。实例研究表明,边界元法数值计算结果与解析结果较为一致;裂缝对介质的渗透能力有重要影响,忽略渗透率张量的非对角线元素将产生较大误差;等效渗透率张量能够反映裂缝性多孔介质的非均质性和各向异性。 关键词:裂缝性油藏;等效渗透率张量;连续介质;边界元方法;周期边界条件;数学模型 中图分类号:TE344文献标识码:A 文章编号:1009-9603(2009)06-0080-04 裂缝性油藏在中国油气资源中占有重要的地 位[1],由于裂缝性油藏内在的复杂性、模型基本假 设、裂缝识别技术和计算机硬件等因素的限制[2-3], 传统的双重介质模型[4-5]和近年出现的离散裂缝网 络模型[6-7]都有其局限性。等效连续介质模型则结 合了两者的优点,具有广泛的研究前景。等效渗透 率张量用来表征裂缝性油藏的非均质性和各向异 性,是等效连续介质模型的重要参数。 渗透率张量理论由Snow [8]提出,以解决裂缝含 水介质渗透各向异性的问题,这种基于优势节理组 统计特征的渗透率张量计算方法在实际工程中得到 广泛应用,但由于该方法不考虑实际裂缝的连通情 况及空间分布情况,计算结果存在误差。Long [9]利 用连续介质理论计算了裂缝性岩体的等效渗透率张 量,没有考虑基岩的渗透性。Tei m oori 等[10]应用边 界元方法计算裂缝性油藏的等效渗透率张量,将裂 缝假设成一维线形裂缝。 笔者根据等效连续介质模型的原理,建立求解 裂缝性油藏等效渗透率张量的数学模型,利用边界 元方法求解模型,并进行了实例研究。1 渗透率张量 渗透率是岩石的固有属性,是表征油藏非均质 性和各向异性的重要参数,具有二阶张量形式。二维情况下的渗透率张量可表示为k =k xx k xy k yx k (1) 式中:k 为渗透率张量,μm 2;k ζτ(ζ,τ=x,y )为渗透率张量的分量,μm 2;ζ为渗流速度方向;τ为位势梯度方向。为保证渗透率张量具有物理意义,其应为对称张量[11],即k ζτ=k τζ。当渗透率主轴方向与坐标轴方向平行时,k 为对角形式k =k x 00 k (2) 式中:k x 和k y 分别为x 和y 方向的渗透率主值,μm 2。对于裂缝性多孔介质,其等效渗透率张量综合考虑了网格块中基岩和裂缝对整个系统渗透性的影响,可描述任意裂缝分布和几何形态储层的岩石特征。 2 数学模型 2.1 模型假设 实际储层中的裂缝分布极为复杂,研究流体在其中的渗流规律,建立储层的理论模型,须对裂缝系 收稿日期2009-09-09;改回日期2009-10-15。 作者简介:姚军,男,教授,1984年毕业于华东石油学院采油工程专业,从事油气田开发工程的教学与科研工作。联系电话:(0532)86981707,E -mail:yaojunhdpu@https://www.doczj.com/doc/f913990589.html, 。 基金项目:国家科技重大专项专题“离散裂缝网络油藏数值模拟技术”(2008Z X05014-005-03)和国家“973”项目“碳酸盐岩缝洞型油藏 开发基础研究” (2006CB202404) 第16卷 第6期 油 气 地 质 与 采 收 率 Vol .16,No .6 2009年11月 Petr oleu m Geol ogy and Recovery Efficiency Nov .2009

一一点的应力状态与应力张量

一 一点的应力状态与应力张量 二 主应力与应力不变量 对于一般空间问题,一点的应力状态可以由九个应力分量表示,如P 点处应力状态在直角坐标系可表示为 ij S σ==x xy xz yx y yz zx zy z στττστττσ?????????? 如图1-1所示。在固定受力情况下,应力分量大小与坐标轴方向有关,但由弹性力学可知,新旧坐标的应力分量具有一定变换关系。通常,我们称这种具有特定变换关系的一些量为张量。式(1-1)就是应力张量,它是二阶张量。因为它具有xz τ=zx τ,xy τ=yx τ,yz τ=zy τ。 已知物体内某点P 的九个应力分量,则可求过该点的任意倾斜面上的应力。在P 点处取出一无限小四面体oabc (图1-2) 它的三个面分别与x,y,z 三个轴相垂直。另一方面即任意斜面,它的法线N ,其方向余弦为l,m,n 。分别以dF 、x dF 、y dF 、z dF 代表abc 、obc 、oac 、 oab 三角形面积。 x y z dF ldF dF mdF dF ndF ?=?=??=? (1.2) 在三个垂直于坐标的平面上有应力分量,在倾斜面abc 上有合应力N P ,它可分解为正应力 N σ及切向剪应力N τ,即222N N N P στ=+ N P 沿坐标轴方向分量为N x ,N y ,N z ,由平衡条件可得 N x xy xz N yx y yz N zx zy z x l m n y l m n z l m n στττστττσ?=++?=++??=++? 求出N x ,N y ,N z 在法线上的投影之和,即得正应力N σ 222222N N N N x y z xy yz zx x l y m z n l m n lm mn nl σσσστττ=++=+++++ 1-5

抹灰裂缝产生原因及防治措施

引言 抹灰工程是用胶凝材料及其砂浆以薄层涂抹在建筑物表面上直接做成饰面层的装饰工程。抹灰工程分一般抹灰和装饰抹灰,一般抹灰工程在普通等级的装饰工程上应用非常广泛。本文主要讨论室内一般抹灰的施工要点及产生室内抹灰裂缝的主要原因和控制措施。 1 施工要点 1.1 抹灰层的层次 为了保证抹灰层质量,抹灰必须分层操作,通常分为不同构造的三个层次。①底层,主要起与基层粘结作用,并对基层进行初步找平。 ②中层,主要起找平作用,使物面平整,并弥补因底层收缩出现的裂纹。③面层(罩面),主要起装饰作用。 底层灰的用料应根据基层材料种类的不同(如砖、混凝土或加气混凝土等)而选用不同的砂浆。一般底层灰砂浆较常用的是水泥砂浆、石灰砂浆、水泥石灰砂浆。底层灰厚度约为6.8mm。 中层灰浆的种类一般参照底层灰的选择处理,即与底层灰选择同种砂浆,配比也大致相同。厚度略厚于底层灰,约为10mm。 面层灰浆多为麻刀灰、纸筋灰、玻璃丝灰(纤维材料起良好的止裂作用)以及石灰砂浆,高级墙面用石膏灰浆。若用砂浆,配比中砂的用量要略为减少,细度要更细,以保证面层平整细腻。厚度约为2.5mm。 抹灰要分层进行的原因:①抹灰层分作用和用料不同的底层、中

层和面层,当然不能一次完成。②即使各层材料相同,若要一次完成,也有不易压实的操作困难。③厚厚的一层抹灰层自重大,当它超过砂浆与基层的粘结力时,抹灰层会掉落下来。采用分层抹灰,每层薄一些,并且后一层是在前一层6-7成干后抹上,此时前一层与前物面的粘结力已相当大,而后一层与前一层的粘结力只要承受薄薄的后一层自重。④使用含石灰膏的抹灰砂浆时,由于石灰膏的硬化是其主要成分Ca(OH)2 吸收空气中的CO2。生成CaCO3和H2O(水分要蒸发)。而空气中CO2含量很少,所以石灰膏硬化很缓慢。若不分层抹灰,在厚厚的抹灰层深处,石灰膏长时间不能结硬。采用分层抹灰,每层薄一些,各层之间有一定的施工间歇,就能使各层的石灰膏有充分硬化的环境条件。 1.2 抹灰层厚度控制 内墙抹灰层平均总厚度应不大于下列规定:普通抹灰—l8mm;中级抹灰—20mm;高级抹灰—25mm。抹灰层平均总厚度大于质量标准规定,不仅要增加造价,而且会影响质量。当抹灰层过厚时:①灰浆层自重大,易产生下垂现象,拉松灰浆与基层的粘结,导致出现空鼓。②抹灰层自重超过灰浆与基层的粘结力时,抹灰层脱落。③灰浆干燥收缩量大,所产生的收缩应力超过灰浆强度时,抹灰层开裂。另外,高级抹灰控制厚度要比普通抹灰大些,这是由于高级抹灰的表面平整度要求比普通抹灰要高些,即表面平整允许偏差要小些,抹灰层的表面平整是靠砂浆层厚度来调整的,表面平整度越高用以调整的砂浆层厚度应越宽裕些。

(完整版)张量分析中文翻译

张量 张量是用来描述矢量、标量和其他张量之间线性 关系的几何对象。这种关系最基本的例子就是点积、 叉积和线性映射。矢量和标量本身也是张量。张量可 以用多维数值阵列来表示。张量的阶(也称度或秩) 表示阵列的维度,也表示标记阵列元素的指标值。例 如,线性映射可以用二位阵列--矩阵来表示,因此该 阵列是一个二阶张量。矢量可以通过一维阵列表示, 所以其是一阶张量。标量是单一数值,它是0阶张量。 张量可以描述几何向量集合之间的对应关系。例 如,柯西应力张量T 以v 方向为起点,在垂直于v 终点方向产生应力张量T(v),因此,张量表示了这两个 向量之间的关系,如右图所示。 因为张量表示了矢量之间的关系,所以张量必 须避免坐标系出现特殊情况这一问题。取一组坐标 系的基向量或者是参考系,这种情况下的张量就可 以用一系列有序的多维阵列来表示。张量的坐标以 “协变”(变化规律)的形式独立,“协变”把一种 坐标下的阵列和另一种坐标下的阵列联系起来。这 种变化规律演化成为几何或物理中的张量概念,其 精确形式决定了张量的类型或者是值。 张量在物理学中十分重要,因为在弹性力学、流体力学、广义相对论等领域中,张量提供了一种简洁的数学模型来建立或是解决物理问题。张量的概念首先由列维-奇维塔和格莱格里奥-库尔巴斯特罗提出,他们延续了黎曼、布鲁诺、克里斯托费尔等人关于绝对微分学的部分工作。张量的概念使得黎曼曲率张量形式的流形微分几何出现了替换形式。 历史 现今张量分析的概念源于卡尔?弗里德里希?高斯在微分几何的工作,概念的 制定更受到19世纪中叶代数形式和不变量理论的发展[2]。“tensor ”这个单词在 1846年被威廉·罗恩·哈密顿[3]提及,这并不等同于今天我们所说的张量的意思。 [注1]当代的用法是在1898年沃尔德马尔·福格特提出的[4]。 “张量计算”这一概念由格雷戈里奥·里奇·库尔巴斯特罗在1890年《绝对微分几何》中发展而来,最初由里奇在1892年提出[5]。随着里奇和列维-奇维塔1900年的经典著作《Méthodes de calcul différentiel absolu et leurs applications 》(绝对微分学的方法及其应用)出版而为许多数学家所知[6]。 在20世纪,这个学科演变为了广为人知的张量分析,1915年左右,爱因斯坦的广义相对论理论中广泛应用了这一理论。广义相对论完全由张量语言表述。爱因斯坦曾向几何学家马塞尔·格罗斯曼学习过张量方法,并学得很艰苦。[7]1915 年到1917年之间,列维·奇维塔 在与爱因斯坦互相尊重互相学习的氛围下,对爱因斯坦的张量表述给与了一些指正。 “我很佩服你的计算方法的风采,它必将使你在数学大道上策马奔腾,然而我们却只能步履蹒跚。”阿尔伯特·爱因斯坦,意大利相对论数学家[8]。 柯西应力张量是一个二阶张量。该张量的元素在三维笛卡尔坐标系下组成如下矩 阵: 312()()()111213212223313233 T T T =e e e σσσσσσσσσσ??=???????????? 该矩阵的各列表示作用在 e 1,e 2,e 3方向正方体表面上的应力(单位面积上的力)。

混凝土表面裂缝产生的原因及处理方法

1 混凝土表面裂缝产生的原因及处理方法 混凝土表面产生裂缝的原因复杂而繁多。在施工过程中,混凝土因收缩所形成的裂缝是经常出现的。主要有两种原因:一是因为刚浇筑完成的混凝土表面水份蒸发过快表面产生裂缝;二是因为混凝土在硬化时,由混凝土内部温度与外界的温差过多而产生裂缝。 刚浇筑完成的水泥混凝土往往因为外界气温较高,相对温度过小,表面蒸发过快使表面变干,而其内部仍是塑性体,因塑性收缩过快而使表面产生裂缝。这种原因出现的裂缝不规则细小,不连续,且很少,在边缘产生一般呈对角斜线状,长度通常不超过30 cz’no对这种原因产生裂缝的预防7b"法是在混凝土浇筑时采取措施遮掩浇筑面,使其避免风吹日晒,混凝土浇筑完毕后立即将表面覆盖并及时洒水养生。 对于体积过大的混凝土,应分层浇筑。在上层混凝土浇筑的过程中,会在混凝土在自重作用下产生沉降。当混凝土初凝到未终凝前这段时间内,如果遇到钢筋或模板的连接螺栓等物体时,这种沉降现象就会受到阻挠产生裂缝。特别是当模板存在不平整或粉刷的脱膜剂不均匀时,模板的摩擦力也会阻止沉降,以至在混凝土的垂直表面产生裂缝。水泥混凝土在硬化过程中会产生并释放大量的水化热,使混凝土内部温度不断升高,在大体积混凝土内,水化热使温度升高的现象更加明显,致使在混凝土表面与内部形成很高的温差,特别是在桥梁大体积承台混凝土浇筑中,

现场实测内外温差有时会达到50℃以上。当表层混凝土收缩时受到阻碍,混凝土的受拉一旦超过混凝土的应变力将产生裂缝。为尽量减少收缩约束以使混凝土能有足够强度抵抗所引起的应力反应,就必须采取措施控制混凝土内部温度升温的速率。在混凝土中掺加适量的矿粉及煤灰,能使水化热释放速度减缓;控制原材料的温度,即在混凝土内部采用冷却管道以循环水也能阻止混凝土内部升温的速率。 在拌制水泥混凝土时,同一混凝土使用不同品牌的水泥也会使昆凝土产生裂缝。在混凝土施工时,应严禁不同品牌、不同标高的水泥混在一起使用。碱性骨料也会引起混凝土表面产生裂缝。由于硅酸盐水泥中会有碱性金属成份(钠和钾),因此,混凝土内的孔隙液体中氢氧根离子的含量较高,这种高碱溶液和某些骨料中的活性二氧化硅发生反应,产生碱硅胶,碱硅胶吸收水份膨胀后产生的膨胀力会使混凝土产生裂缝。 对于混凝土浅层裂缝的修补通常是采用涂刷水泥浆或低粘度聚合物封堵以防止水份侵入;对于较深或较宽的裂缝,就必须采用压力灌浆技术修补,修补工作要及时,使混凝土达到内实外光的质量要求。 2 混凝土表面产生破损的原因及处理方法 混凝土表面破损包括:表面产生蜂窝,麻面、表面产生气孔,表面冲蚀等。对于表面蜂窝,主要原因是振捣不到位引起,在施工中只要加强责任心,振捣到位就能避免,现针对表面麻面,气

《连续介质力学》期末复习提纲--弹性力学部分.docx

〈连续介质力学〉期末复习提纲一弹性力学部分 1、自由指标与哑指标判别(★) 2、自由指标与哑指标的取值范围约定 3、自由指标与哑指标规则 4> Einstein 求和约定(★) 5、Kronecker-delta 符号(★) 、、, f 0, i j 定乂:廿 性质:(1) §ij= Eji (2)e f -e)= % (3)戈=久+爲2+爲3=3 (6) S ik5kj=S ij 6、Ricci符号(置换符号或排列符号)(★) 1,北为1,2,3的偶排列 定义:e..k = -1, ■从为1,2,3的奇排列 0, 门,舛任两个相等 性质:(1) e ijk = e jki = e kij = -e Jik = -e ikj = -e kji (2)弓23 =幺23] =?】2 =1 (3)弓32=?2I =勺口=_1 ⑷e^ej=e ijk e k (5) (axb)k = egbj, a、b为向量 7、%与爲的关系(★) 魯i詁0 § ZQ

8、坐标变换(★) 向量情形: 旧坐标系: ox [兀込尹丘,仔,£ 新坐标系: 州兀姿戸心乙列 变换系数: e[?e 尸(3 坐标变换关系: X , i - 0ijXj x t = 0jXj 0厂(角)T 矩阵形式为: 011 012 013 011 0 】2 013 X * = 021 022 023 兀2 或[耳,兀;,堪]=[西,兀2,兀 021 022 023 A.几 2 A.3_ _^3_ .031 032 033. 011 012 013 A 011 012 013 兀2 — 021 022 023 %; 或[西,吃,兀3] = [X ,%;,兀;] 021 022 023 _031 032 033 _ .031 032 033. 张量情形 入芋与A“?是两个二阶张量,角是坐标变换系数矩阵,则有 気=炕0“九 矩阵形式为[匍=[0]|? ]|> ],其中[A J=[A ]T (★) 9、 张量的基本代数运算 (1) 张量的相等 (2) 张量的加减法 (3) 张量的乘积 (4) 张量的缩并 (5) 张量的内积(★) (6) 张量的商法则 10、 几中特殊形式的张量 (1) 零张量 (2) 单位张量

第四章 电化率张量公式的推导

第四章 电极化率张量公式的推导 §4.1 一阶电极化率张量公式的推导 设E(t)在体积V 介质内的空间变化可以不考虑,也不考虑磁场效应。V 内含N 个荷电粒子,则荷电粒子系统的偶极矩为 r R j N j j q ∑= (j q 有正,负) (4.1-1) 按定义,宏观电极化强度)(t P 为单位体积内的偶极矩的期望值, }{1 1)(∧∧>=< =R tr V V t R P ρ (4.1-2) 式中)(t ∧ ∧ =ρρ就是荷电粒子系统的密度算符。可见,要知道)(t P ,必须得知道)(t ∧ ρ。由密 度算符微扰级数(2.2-5)式代入(2.3-2),则 ΛΛ++ ++ + = )()()()(21 ) 0(t t t t r P P P P P (4.1-3) M M }, )({ },)({}, )({},{1 ) (21 ) 2(1 1 ) 1(01 ) 0(R P R P R P R P t tr V t tr V t tr V tr V r r ∧ ∧ -∧ ∧ -∧ ∧-∧ ∧ -====ρρρρ (4.1-4) 现在把 }{1 ) (R P r r tr V ∧ ∧ -=ρ (4.1-5) 化成 r r m m r r r r d t i E E E d d t P r r ωω ωωωωωωχωωεααααμαμ]exp[)()()( ),,,()(1 2121) (210 ) (211∑? ? ? =∞ ∞ -∞ ∞ -∞ ∞ --?=ΛΛΛ Λ (4.1-6) 的形式,从而求出电极化率张量元素 ),,,(21) (1r r r ωωωχαμαΛΛ 的具体形式。 由于对不同的阶数求)() (t P r μ的基本方法是相同的,只讨论r=1,2,然后推广到任意r 的 情况。 当r=1时,

混凝土表面裂缝产生的原因及处理方法(正式)

编订:__________________ 审核:__________________ 单位:__________________ 混凝土表面裂缝产生的原因及处理方法(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8880-97 混凝土表面裂缝产生的原因及处理 方法(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 1 混凝土表面裂缝产生的原因及处理方法 混凝土表面产生裂缝的原因复杂而繁多。在施工过程中,混凝土因收缩所形成的裂缝是经常出现的。主要有两种原因:一是因为刚浇筑完成的混凝土表面水份蒸发过快表面产生裂缝;二是因为混凝土在硬化时,由混凝土内部温度与外界的温差过多而产生裂缝。 刚浇筑完成的水泥混凝土往往因为外界气温较高,相对温度过小,表面蒸发过快使表面变干,而其内部仍是塑性体,因塑性收缩过快而使表面产生裂缝。这种原因出现的裂缝不规则细小,不连续,且很少,在边缘产生一般呈对角斜线状,长度通常不超过30 cz'no对这种原因产生裂缝的预防7b"法是在混凝土浇筑时采取措施遮掩浇筑面,使其避免风吹日晒,混

渗透

渗透 shèntòu ①低浓度溶液中的水或其他溶液通过半透性膜进入较高浓度溶液中的现象。如植物细胞的原生质膜、液泡膜都是半透性膜。植物的根主要靠渗透作用从土壤中吸收水分和矿物质等。 ②军队利用敌部署的间隙或有利地形秘密渗入敌纵深或后方的作战行动。战术渗透通常由小分队实施,战役渗透通常由大部队实施。 ③比喻一种势力逐渐进入到其他方面。 渗透(osmosis) 是指水分子以及溶剂通过半透性膜的扩散。水的扩散同样是从自由能高的地方向自由能低的地方移动,如果考虑到溶质的话,水是从溶质浓度低的地方向溶质浓度高的地方流动。更准确一点说,是从蒸汽压高的地方扩散到蒸汽压低的地方。被半透膜所隔开的2种液体,当处于相同的压强时纯溶剂通过半透膜而进入溶液的现象,称参透。参透作用不仅发生于纯溶剂和溶液之间,而且还可以在同种不同浓度溶液之间发生,低浓度的溶液通过半透膜进入高浓度的溶液中。砂糖,食盐等结晶体之水溶液,易通过半透膜,而糊状,胶状等非结晶体则不能通过渗透作用是具有液泡的成熟的植物细胞吸收水分的方式,原理是:原生质层具有选择透过性,原生质层内外的溶液存在着浓度差,水分子就可以从溶液浓度低的一侧通过原生质层扩散到溶液浓度高的一侧。溶液渗透压的高低与溶液中溶质分子的物质的量的多少有关,溶液中溶质分子物质的量越多,渗透压越高,反之则越低。在比较两种溶液渗透压高低时以两种溶液中的溶质分子的物质的量为标准进行比较。如果溶质分子相同,也可以质量分数比较。能够通过渗透作用吸水的细胞一定是一个活细胞。一个成熟的植物细胞是一个渗透系统。验证通过渗透作用吸水或失水的最佳实例是质壁分离和质壁分离复原的实验。一次施肥过多引起“烧苗”,是由于土壤溶液的浓度突然增高,导致植物的根细胞吸水发生困难或不能吸水所至。盐碱地里大多数农作物不能正常生长的原因之一也是土壤溶液浓度过高造成的。淹制的鱼、肉等不易变质,是由于高浓度的盐溶液使细胞等微生物失水死亡之故。 渗透是低浓度溶液中的水或其他溶液通过半透性膜进入较高浓度溶液中的现象。如植物细胞的原生质膜、液泡膜都是半透性膜。植物的根主要靠渗透作用从土壤中吸收水分和矿物质等。 水的扩散同样是从自由能高的地方向自由能低的地方移动,如果考虑到溶质的话,水是从溶质浓度低的地方向溶质浓度高的地方流动。更准确一点说,是从蒸汽压高的地方扩散到蒸汽压低的地方。 被半透膜所隔开的2种液体,当处于相同的压强时纯溶剂通过半透膜而进入溶液的现象,称参透。参透作用不仅发生于纯溶剂和溶液之间,而且还可以在同种不同浓度溶液之间发生,低浓度的溶液通过半透膜进入高浓度的溶液中。砂糖,食盐等结晶体之水溶液,易通过半透膜,而糊状,胶状等非结晶体则不能通过。渗透系数

水泥混凝土路面表面裂缝产生的原因及处理措施(1)

水泥混凝土路面表面裂缝产生的原因及 处理措施 水泥混凝土路面是一种刚度大、扩散荷摘载能力强、稳定性强的路面结构。但由于在施工中水泥混凝土的原材料及配合比的控制未达到设计标准,施工工艺不规范。使得水泥混凝土路面道板出现了早期损坏,导致路面出现裂缝与断板,这就降低了路面使用性能,不能确保水泥混凝土路面的正常使用年限,不能发挥道路建设的投资效益。因此,需要对路面出现的裂缝与断板进行认真观测、分析、确定裂缝原因,制定切实可行的修补方案。 一、裂缝分类与产生的原因 水泥混凝土道面的裂缝,可分为表面裂缝和贯穿板全厚度的裂缝(简称贯穿裂缝)。 (一)、表面裂缝 水泥混凝土道面表面裂缝主要是由混凝土混合料的早期过快失水干缩和碳化收缩引起的。 混凝土混合料是一种多相不均匀材料。由于构成混合料的各种固体颗粒大小、密度不同,混合料不可避免地会发生分层离析。 1、泌水裂缝 在路面水泥混凝土道面施工中混合料发生分层离析大

多是由于粗骨料在混合料中下沉,水分向上迁移,从而形成表层泌水。泌水的结果,使水泥混凝土道面表面含水量增加,经蒸发后混凝土表面形成凹面,此时混合料颗粒间产生较强的表面张力。当混凝土表面尚未充分硬化,不能抵御这一张力时,混凝土表面则发生裂缝。在混凝土浇筑后数小时,混凝土表面将出现大面积细微的龟裂。 2、碳化裂缝 当混凝土的水泥用量较低、水灰比较大时,空气中的二氧化碳易渗透到混凝土中,混凝土的碳化反应在空气相对湿度为30%-50%时最为激烈,此时混凝土的碳化收缩将引起混凝土表面龟裂。 根治这类病害的方法是:在混凝土路面的混合料铺筑、振捣后,立即采用真空吸水工艺,此方法可以将混凝土中富裕的水分和空气一并吸出。这样既提高了混凝土强度又可控制混凝土表面的网裂病害。 (二)、贯穿裂缝 水泥混凝土路面贯穿裂缝为贯穿板全厚度的横向裂缝、纵向裂缝、交叉裂缝和板交裂缝。 1、横向裂缝 垂直与行车方向的不规则裂缝称为横向裂缝,导致水泥混凝土路面出现横向裂缝的原因较多,其主要原因有以下三方面。

渗流力学试题2007

大学2007年 博士生入学考试渗流力学试题(A卷) 一、(20分)试简述黑油模型的基本假设并写出其渗流数学模型结构中的运动方程组、连续性方程组和其它所需的辅助方程。 二、(20分)简述下列基本定律所对应的某些实际背景,并写出相应的数学表达式: 1.各向异性地层中的达西公式; 2.变形介质渗流的运动方程; 3.非等温渗流的热传导公式与液体的能量方程; 4.非牛顿液体的指数形式运动方程。 三、(20分)考虑忽略毛管力和重力作用的断面面积不变的一维油水两相渗流问题,假定孔隙介质和流体均不可压缩。 1.建立等饱和度面运动方程(即贝克莱一列维尔特方程); 2.推导前缘含水饱和度Swf和前缘位置xf的表达式; 3.给出求解Swf的图解法; 4.写出出口端见水后平均含水饱和度的表达式。 四、(20分)设有一水平等厚均质各向异性地层,选择坐标系xoy,使坐标轴方向与渗透率张量主方向一致,x、y方向的渗透率分别为kx、ky,且kx>ky。已知在坐标原点处有一口生产井,井筒半径为rw,产量为q,地层厚度h,地层折算供给半径Re上的压力为Pe。 1.写出稳定渗流的压力所满足的定解问题(渗流方程、边界条件); 2.求解地层中的压力分布; 3.推导油井的产量公式。 五、(20分)考虑圆形地层中有一口偏心井的平面稳定渗流问题。已知供给边缘半径为R,井筒半径为rw,生产井到圆心的距离为a,地层厚度为h,渗透率为k,原油粘度为μo,供给边缘和井底的势分别为Фe与Фw。 1.求解地层中的等势线和流线方程; 2.推导油井的产量公式; 3.计算圆心处的渗流速度。

一、(20分)试简述黑油模型的基本假设并写出其渗流数学模型结构中的运动方程组、连续性方程组和其它所需的辅助方程。 解: 所谓黑油模型是指简化的碳氢化合物两组分模型,其基本假设条件是:假定水相和其他两相之间不发生质量转移,烃类系统(油-气)中只考虑成两个组分,及油组分和气组分。油组分是经过微分蒸发后留下的大气压力下的残余液体,也称为油罐油,而气组分是蒸发出来的流体。(4分) 黑油模型渗流数学模型结构中的运动方程组为: )(D g P Kk v l l l rl l ?-?-=ρμ , l=o,g,w (4分) 黑油模型的连续性方程组为: 气组分(3分): ] [)]}([)]({[o o so g g Gs G o o o o ro so g g g g rg B S R B S t q D g P B KK R D g P B KK +??=+?-?+?-??φαραρμαρμα油组分(3分): )()]([ o o Os o o o o o ro B S t q D g P B KK φαραρμα??=+?-?? 水组分(3分): )()]([ w w ws w w w w w rw B S t q D g P B KK φαραρμα??=+?-?? 辅助方程(3分): 1=++w g o S S S ,cow w o P P P =-,cgo o g P P P =- 二、(20分)简述下列基本定律所对应的某些实际背景,并写出相应的数学表达式: 1.各向异性地层中的达西公式; 2.变形介质渗流的运动方程; 3.非等温渗流的热传导公式与液体的能量方程; 4.非牛顿液体的指数形式运动方程。 解: (1) 各向异性地层中的达西公式为: gradP u K v - = 其中?? ? ? ??=yy xx k k K 0 0为渗透率张量。(5分) (2) 变形介质渗流的运动方程为:dL dP P P K v o K o )] (1[--- =αμ

第4章 变形率和旋率

第4章 变形率和旋率 有限变形:与t 有关,t 作为参变量。——变形几何学 现在把时间考虑进去,研究变形的速度问题。 对时间求导数:两种描述法对时间求导数有区别,速度是求物质导数,固定K X ,对时间求偏导数——变形运动学。 §4.1 物质变形梯度的物质导数 Lagrange 描述法: ),(t X x x K k k = (物质)变形梯度张量: Grad k k K K x X ?=???= =?F i I x F x X 物质导数: ()|K X t ?=?F F (“K X |”表示保持K X 不变) 2(,) (Grad t t t t ??= ?????==?????==?X x X X x x X X v v X §4.2 速度梯度张量 变形梯度张量的物质导数 ???===????v v x F G F X x X (1) 定义:?= ?v G x 称为速度梯度张量 grad =v l k kl v G ,= 由(1),可得:1 -=?G F F ,k l k l v =? G e e 速度梯度张量

ⅢX ⅠX ⅡX 1 d X 0=t G 比F 用处更大。 §4.3 线元d x 的物质导数 初始构形中的线元d X , 现时构形中的线元 d x d d =x F X 求:d x 对时间的物质导数: (d )(d )d d x F X F X G F X ===?? 则(d )d x G x =? 反映了线元的变化速度。 空间线元的物质导数等于速度梯度与空间线元的点积。 §4.4 G 的加法分解 F 用极分解,1-F 存在 而G 用加法分解,1 -G 不一定存在 =+G D Ω 分解对称部分和反对称部分 T 1()2= +D G G T 1 ()2=-ΩG G )(21,,k l l k kl v v D += )(21 ,,k l l k kl v v -=Ω 变形率张量:D 整旋率张量:Ω (物质旋率) (d ) d d =+?x D x Ωx 1.变形率张量D 。二阶对称张量,有三个相互垂直的主方向 (1,2,3)αα=n ,主值αD (a D α)α=??D n n ((d d d D x D x α)ααββα)αα?=??=?D x n n n n 由上式看出,D 为变形率张量,αD 为αn 方向变形速率,αn 为变形率标架。 2.旋率张量Ω,反对称张量,只有三个独立的分量

相关主题
文本预览
相关文档 最新文档