当前位置:文档之家› 《船舶电气设备及系统》郑华耀主编课后习题参考答案

《船舶电气设备及系统》郑华耀主编课后习题参考答案

《船舶电气设备及系统》郑华耀主编课后习题参考答案
《船舶电气设备及系统》郑华耀主编课后习题参考答案

《船舶电气设备及系统》

郑华耀主编课后习题参考答案

第1章电与磁

1-1、铁磁材料具有哪三种性质?

答:铁磁材料具有“高导磁率”、“磁饱和”以及“磁滞和剩磁”等三种性质。

1-2、为什么通电线圈套在铁心上,它所产生的磁通会显著增加?

答:通电线圈未套在铁心上时,其产生的磁通所经过的磁路主要是空气隙,磁阻很大,因此磁通一般较小。当通电线圈套在铁心上时,磁通所经过的磁路有很大的一段是由铁磁材料组成的,磁路的磁阻显著下降,所以它所产生的磁通会显著增加。

1-3、铁磁材料在交变磁化时,为什么会产生磁滞和涡流损耗?直流电磁铁的铁心为什么是由整块铸铁制成的?

答:①由于铁磁材料有磁滞和剩磁的性质,需要一定的外界提供一定的能量来克服磁滞和剩磁的作用实现交变磁化,因此交变磁化时会产生磁滞损耗。交变磁化的磁通将在铁心中感应电动势,而由于铁磁材料本身具有一定的导电能力,感应的电动势将在铁心中形成涡流(以铁心中心轴线为圆心的同心环形电流),涡流在导体上产生的损耗就是涡流损耗。

②直流电磁铁产生的磁通是大小和方向都恒定不变的直流磁通,直流磁通不会产生涡流损耗,因此没有必要象交流电磁铁那样采用硅钢片制造,为了使制造工艺简化,直流电磁铁的铁心就常常采用整块铸铁制成。

1-4、标出图1-23中通电导体A、B和C所受电磁力的方向。

答:参考书P.17页,根据左手定则,通电导体A所受电磁力的方向为从右往左;通电导体B所受电磁力的方向为从左往右;通电导体C有两个导体,左下边的导体所受电磁力的方向为从左往右,右上边导体所受电磁力的方向为从右往左,若两个导体是一个线圈的两个边,则这个线圈将受到逆时针的电磁转矩。

1-5、应用右手定则,确定图1-24中的感应电动势方向或磁场方向(图中箭头表示导体运动方向,?⊙表示感应大多数方向)。

答:(参考书P.17页)①在图(a)中磁场为左N右S,导体从上往下运动,根据右手定则感应电动势的方向应该为由纸面指向外,即用⊙表示;②在图(b)中磁场为右N左S,导体从下往上运动,根据右手定则感应电动势的方向应该为由纸面指向外,即也用⊙表示;

③图(c) 感应电动势的方向为?,是由外指向纸面,运动方向从下往上运动,根据右手定则,作用两边的磁场应该是左N右S;④图(d)中磁场为右N左S,感应电动势为⊙,是由纸面指向外,导体运动方向应该是从下往上。

1-6、什么是自感?如何确定自感电动势的方向?在图1-25所示的电路中,绘出开关SA闭合时自感电动势的方向和开关打开时自感电动势的方向。

答:所谓自感,有两层意思:一是指线圈的自感现象;二是指自感系数(反映线圈产生自感电动势的能力,即自感系数L的数值)。

①当线圈通入变化的电流时,变化电流产生的磁通也是变化的,变化磁通在线圈本身感应电动势的现象称为自感现象,即由于自身电流在自身感应电动势的现象,简称自感。

②线圈的匝数与磁路导磁能力不同时,即使电流的大小和变化率相同,感应的自感电动势将是不同的,反映线圈产生自感电动势能力的参数为自感系数L,简称自感。

SA闭合时,线圈中的电流i将按图中所示方向增加,产生的磁通在从下往上的方向上增加,因此自感电动势的方向是线圈的上端为正,下端为负。当SA打开时,线圈中的电流i将按图中所示方向减少,产生的磁通在从下往上的方向上减少,因此自感电动势的方向是线圈的上端为负,下端为正。

1-7、交、直流接触器有什么不同点?(注:本题主要指交、直流接触器的电磁机构)答:交、直流接触器的不同点基本上体现在交、直流电磁铁的不同点上,即,它们的电磁机构的不同点上。交、直流接触器电磁机构的主要不同点有:①铁心构造不同,②线圈结构不同,③工作原理方面存在差异。具体如下:

铁心构造方面的不同:交流电磁铁的铁心由钢片叠压而成,且一般有短路环;直流电磁铁的铁心一般由整块铸铁制成,且不设短路环。交流电磁铁为了减少涡流损耗,铁心的应该由片间涂有绝缘材料的硅钢片叠压而成。此外为了避免铁心中因磁通过零而出现的吸力为零,从而出现衔铁振动现象,交流电磁铁的铁心一般设有短路环。而直流电磁铁因为稳定运行时不会产生涡流损耗,为了简化工艺等,铁心通常由整块铸铁制成。直流电磁铁铁心产生的吸力恒定不变,因此不需要设置短路环。

线圈结构方面的不同:交流电磁铁线圈是带骨架的“矮胖形”线圈,线径粗,匝数少;直流电磁铁线圈是不带骨架的“细长形”线圈,线径细,匝数多。交流电磁铁工作时铁心会产生磁滞损耗,线圈也会产生铜损耗,这些损耗都将转换成热量,为了增加线圈与铁心的散热效果,交电磁铁的线圈通常做成“矮胖形”,绕制在专门的骨架上,与铁心之间形成一定的间隙以利于它们各自的散热。直流电磁铁稳定工作时不会产生铁损耗,温度通常较线圈低,因此,直流电磁铁的线圈通常直接绕在与铁心紧密贴在一起的绝缘材料上,这样,线圈产生的热量容易通过铁心散发,为了增加散热效果,直流电磁铁的线圈则通常做成“细长形”,以利于与铁心的接触面积。此外,交流电磁铁工作时感应电动势平衡电源电压,起限流作用,为了使其有足够的吸力,线圈的线阻应较小,因而线径较粗,匝数少。而直流电磁铁工作时不感应电动势,为了限制通过线圈的电流,线圈的线阻应较大,因而线径较细,匝数多。

工作原理方面存在的差异:交流电磁铁是恒磁通型的,直流电磁铁是恒磁势型的。对于交流电磁铁,只要电源电压和频率不变,因为U≈E=4.44NfΦ,其磁通基本不变,因此不管衔铁是否吸合,电磁铁产生的吸力基本保持不变。但是,衔铁吸合前,磁路的磁阻大,线圈通过的电流大;衔铁吸合后磁路的磁阻小,线圈通过的电流小(因为磁势IN=磁阻×Φ,Φ不变而磁阻大,I就大;磁阻小,I就小)。若工作时交流电磁铁的衔铁不能完全吸合,将很容易使线圈因过热而损坏。对于直流电磁铁,要电源电压不变,流过线圈的电流只与线圈的导线电阻有关。已经制好的线圈,电阻不变,线圈通过的电流也不变。因此,不管衔铁是否吸合,电磁铁产生的磁势保持不变。但是,衔铁吸合前,磁路的磁阻大,磁势不变,则产生的吸力小;衔铁吸合后磁路的磁阻小,磁势不变,则产生的吸力大。因此直流电磁铁的线圈通常在衔铁吸合前通以较大的电流以增加其吸力,衔铁吸合后则串入“经济

电阻”限制电流,提高线圈的工作寿命,且可避免衔铁因为剩磁而出现不能释放。

1-8、交流接触器接到相同电压的直流电源上会出现什么现象?

答:交流接触器因其线圈工作时会感应电势,此电势正常工作时起限流作用,为了使其有足够的吸力,线圈的线阻应较小,因而线径较粗,匝数较少。若将其接到直流电路中,由于不能感应出电势,在相同大小的电压下,将产生非常之大的电流(十几甚或几十倍于额定电流),这将使接触器的线圈立即烧毁。

1-9、交流接触器为什么要用短路环?

答:简单地说,交流接触器用短路环是为了避免衔铁的振动。交流接触器的线圈通过的是交流电流,在铁心中产生的是交变磁通。在一个周期内,交流电流和交变磁通都有两个瞬时值为零的“过零点”。在“过零点”瞬间,铁心产生的电磁吸力为零。而交流接触器的衔铁是靠反力弹簧释放的,工作时衔铁是靠电磁吸力克服反力弹簧作用力而吸合的,因此若不采用短路环,在“过零点”衔铁就会出现振动。短路环是用良导体焊接成的,将铁心的一部分套住。接触器工作时产生的交变磁通也通过被短路环套住的部分铁心,且在短路环中感应电动势,产生电流。短路环中的电流也会产生磁通,而且,接触器线圈产生的磁通为零时(变化率最大),短路环感应的电动势、产生的电流和磁通都达到最大,因此保证接触器线圈电流“过零点”时铁心产生的磁通和吸力不围零,从而避免衔铁的振动。也就是说,交流接触器铁心中的短路环是避免铁心两部分产生的磁通同时为零,从而避免衔铁的振动的。

1-10、交流接触器为什么要用钢片叠成?

答:交流电磁铁工作时,线圈通入的是交流电流,在铁心中产生的是交变磁通,交变磁通会在铁心中产生涡流损耗。为了减少涡流损耗,铁心的应该由片间涂有绝缘材料的硅钢片叠压而成。

1-11、交流接触器铁心卡住为什么会烧毁线圈?(应该说是“衔铁卡住”较合适)答:交流电磁铁是恒磁通型的,只要电源电压和频率不变,因为U≈E=4.44NfΦ,其磁通基本不变,因此不管衔铁是否吸合,电磁铁产生的吸力基本保持不变。但是,衔铁吸合前,磁路的磁阻大,线圈通过的电流大;衔铁吸合后磁路的磁阻小,线圈通过的电流小(因为磁势IN=磁阻×Φ,Φ不变而磁阻大,I就大;磁阻小,I就小)。若接触器工作时交流电磁铁的衔铁卡住(即不能完全吸合),将使线圈一直保持较大的电流,产生的铜损耗增加,很容易使线圈因过热而烧毁。

1-12、直流接触器铁心为什么是整块铸铁?为什么没有短路环?

答:直流接触器线圈通入的是直流电源,在铁心中产生的磁通是大小和方向都恒定不变的直流磁通,直流磁通不会在铁心产生涡流损耗,因此没有必要象交流接触器铁心那样采用硅钢片制造,为了使制造工艺简化,直流接触器的铁心就常常采用整块铸铁制成。由于铁心中产生的磁通直流磁通,没有“过零点”,在工作时铁心产生的吸力一直保持恒定,因此没有必要设置短路环来防止衔铁的振动。

第2章变压器

2-1、变压器中主磁通和漏磁通的性质和作用有什么不同?在分析变压器时是怎样反映它们的作用的?

答:主磁通:沿铁心闭合,同时与原、副边绕组交链,并在所交链的绕组中感应电动势。它是实现能量转换的媒介,是变压器的工作磁通,占总磁通的绝大部分。无论空在还是运行,只要变压器的端电压一定,主磁通都将不会改变,维持在一个恒定的值。在分析变压器时常以励磁电抗X反应主磁通的作用。由于主磁通的磁路是非线性的,故X不是

漏磁通:主要沿非铁磁材料闭合,仅与原边绕组或者副边绕组交链,在所交链的绕组中感应电动势,起漏抗压降的作用,在数量上远小于主磁通。由于漏磁通主要沿非铁磁物质闭合,所经磁路是线性的,它与所交链绕组的电流成正比。在分析变压器时,以漏抗X

σ

压基本上为常数。

反映漏磁通的作用。由于磁路基本上是线性的,故X

σ

主磁通由原边绕组和副边绕组磁通势共同产生,漏磁通仅由原边或副边绕组磁通势单独产生。

2-2、感应电动势的量值与哪些因素有关?励磁阻抗Zm的物理意义如何?Xm的大小与哪些因素有关?

答:①根据“4.44公式”(即E=4.44fNΦm),影响变压器绕组感应的电动势量值(即幅值大小)的因素有:绕组的匝数、电源的频率和与绕组交链磁通的幅值。②励磁阻抗Zm 的物理意义是:阻抗的电阻部分用来反映变压器磁路损耗在一相电路中的等效,阻抗的电抗部分则反映变压器在磁路中产生主磁通时,对电路相电流产生相位的影响和对相电压产生电压降落的影响。其中,励磁阻抗Z m=R m+jX m,R m是变压器的励磁电阻,反映变压器铁损大小的等效电阻,不能用伏安法测量。③X m是变压器的励磁电抗,反映了主磁通对电路的电磁效应。与X m的大小有关的因素主要有:绕组匝数、磁路磁阻(材料的导磁率和磁路截面尺寸)以及电源频率,因为,X m=2πf×L m,而L m又与绕组匝数、磁路磁阻等有关。当电源频率、线圈匝数和铁心尺寸一定时,X m主要由绕组的磁导率成正比。

2-3、额定电压为110/24V变压器,若将原边绕组接于220V交流电源上,其结果如何?若将220/24V的变压器接于110V交流电源上,其结果又将如何?

答:若将110/24V变压器的原边绕组接于220V交流电源上,由于这时原边电压增加一倍,由于U≈E=4.44NfΦ∝Φ,就要求磁路的磁通也增加一倍。但一般变压器设计时都让其铁心工作在半饱和区,在半饱和区再使磁通增加一倍,则励磁电流(空载电流)将大大增加,使绕组的铜耗和铁心损耗大大增加,变压器将很快烧毁。

若将220/24V的变压器接于110V交流电源上,磁路的磁通减少,对于变压器运行没有什么不良影响。只是此时磁路完全不饱和,变压器铁心的利用率降低而已。同时,变压器副边输出电压减小为12V,不能满足原来负载的要求。

2-4、额定频率为50Hz的变压器接于频率为60Hz的额定电压上,以及额定频率为60Hz的变压器接于频率为50Hz的额定电压上,将对变压器运行带来什么影响?50Hz和60Hz 的变压器能通用吗?

答:铁心损耗与频率有关,频率增加铁心损耗也增加。但频率增加,根据U≈E=4.44Nf Φ,若电源电压不变,则磁路的磁通Φ减少,励磁电流减小,绕组的铜损耗略有减少;同理,60Hz的变压器接于频率为50Hz的额定电压上,铁耗有所减少,但磁路饱和程度增加,绕组的铜耗有所增加。由于空载电流较小,频率在50Hz和60Hz之间变化,铜耗和铁耗的变化量都不太不大,而且一个增加另外一个就减少,同时考虑变压器都有一定的过载能力。因此,在50Hz和60Hz的变压器还是可以通用的。

2-5、一台额定电压为220/110V的变压器,原、副边绕组匝数N1、N2分别为2000和1000,若为节省铜线,将匝数改为400和200,是否可以?

答:不可以。根据U≈E=4.44fNΦm可知,当匝数减小而为了维持同样电压,必须导致磁通大大增加,必然使得磁路饱和,电流显著增大。题中条件下,匝数减少为原来的1/5,为了平衡电源电压,磁通需要增加到原来的5倍,磁路严重饱和,电流增加的倍数可达原来的几十倍,若没有保护措施,线圈将瞬间烧毁。

2-6、变压器负载运行时引起副边电压变化的原因是什么?副边电压变化率的大小与这些因素有何关系?当副边带什么性质负载时有可能使电压变化率为零?

答:①变压器负载运行,引起副边端电压变化的原因有:短路

阻抗,负载的大小和性质。②相同负载时,变压器短路阻抗值越大,其输出电压变化越大。③短路阻抗一定、负载的功率因数保持不变

时,负载越大(负载阻抗值小、电流大),变压器的输出电压变化

越大。④负载的性质主要指负载是感性、容性和电阻性。一般而言,

若忽略变压器绕组的电阻压降,从变压器负载相量图(题图2-6)

可见,电感性负载电流具有去磁性质,对变压器副边电压变化率起增大的作用。电容性负载电流具有增磁作用(或者说容性负载电流在变压器的漏抗上产生了负的压降值),其作用的体现是使副边电压升高。若负载容抗大于变压器漏抗,容性负载将使电压变化率减小;若负载容抗等于变压器漏抗,容性负载将使电压变化率为零;若负载容抗小于变压器漏抗,容性负载将使电压变化率变为负值。也就是说,当副边带电容性负载时有可能使电压变化率为零。

简单地说,①变压器负载运行,引起副边端电压变化的原因有:短路阻抗,负载的大小和性质。②短路阻抗的大,负载的大,副边电压变化率就大。③当副边带电容性负载时有可能使电压变化率为零。

2-7、根据图2-4所示的简化等效电路图,列出电压平衡方程式,并分别画出感性及容性负

载时的相量图。 答:①电压平衡方程式为:

ú2=?2R L +j ?2X L ?1=-?2 ú1=-ú2+?1R K +j ?1X K

②相量图如右图所示。

【说明】:由题图2-7b)可见:当变压器带容性负载时,若保持变压器副边端电压不变,则其原边电压应该减小。这是因为容性负载使负载电流比副边电压的相位超前,超前的电流在变压器短路阻抗上产生负的压降值(或者说,超前的电流具有增磁性质)。

2-8、变压器空载时,原边加额定电压,虽然原边电阻中r 1很小,可空载电流并不大,为什

么?

答:变压器空载运行时,从电源输入的电流主要在铁心磁路中产生交变的主磁通,交变的主磁通在原边绕组将感应幅值接近电源电压的反电势,且与电源电压的实际相位几乎相反。原边绕组上的反电势作用是与电源电压相平衡,使加在原边绕组电阻r 1中电压很小。因此,虽然r 1很小,但空载电流并不大。

2-9、一台50Hz 的单相变压器,若误把原边绕组接到与其额定电压相同直流电源上,会发

生什么现象?

答:当原边接到直流电源上时,主磁通是恒定直流磁通,原、副边绕组中没有感应电动势。没有感应电动势与电源电压相平衡,直流电源电压将全部降落在原边绕组的电阻上,产生巨大的短路电流。若没有短路保护措施,原边绕组很快将被烧毁。

2-10、在使用电压互感器及电流互感器时,各应注意什么?为什么?

答:⑴电压互感器使用时应注意:①副边绕组不许短路。这是因为电压互感器正常运行时,负载接电压表,阻抗很大,接近于空载运行。如果副边绕组短路,则变成短路运行,电流从空载电流变成短路电流,造成原副边绕组电流均变得很大,会使互感器绕组过热而烧毁。②铁心和副边绕组的一端必须可靠接地。这是因为电压互感器的原边所接电压都是高电压,为了避免由于绝缘老化或损坏造成漏电,危及副绕组所连接的设备甚至人身安全。③副边所带的负载阻抗不能低于额定负载阻抗。否则,负载电流引起的电压变化率将超过 题图2-6 负载相量图 题图2-7 感性及容性负载时的相量图

⑵电流互感器使用时应注意:①副边绕组不许开路。这是因为电流互感器正常运行时,相当于变压器工作在短路状态,原副边磁动势处于平衡状态,磁场很弱。若副边开路,原边电流完全用于励磁,磁场变得很强,将在副边感应出很高的电压,将击穿绝缘,危及人身及设备安全。即使不会损伤绝缘,强大的励磁磁场也会使磁路严重饱和,铁心严重磁化,从而导致电流互感器报废。②铁心和副边绕组的一端必须可靠接地。这是因为电流互感器的原边所接电路通常又是高电压的电路,为了避免由于绝缘老化或损坏造成漏电,危及副绕组所连接的设备甚至人身安全。③副边所带的负载阻抗不能高于额定负载阻抗,否则也将影响互感器的测量精度。

2-11、一台三相变压器,额定容量为S N=400kVA,额定电压为U1/U2=36000/6000V,Y/△连接。试求:(1)原、副边额定电流;(2)在额定工作情况下,原、副边绕组中的电流;

(3)已知原边绕组匝数N1=600,问副边绕组匝数N2为多少?

解:(1)原、副边额定电流:由于额定电流、额定电压分别为线电流、线电压,因此: I1N=S N/(3U1N)=400000/(3×36000)=6.415(A)

I2N=S N/(3U2N)=400000/(3×6000)=38.49(A)

(2)在额定工作情况下,原、副边绕组中的电流:设,I1P、I2P分别为额定工作情况下原、副边绕组中的电流。对于Y/△连接的变压器,原边Y连接有:

I1P=I1N=6.415(A)

副边△连接有:

I2P=I2N/3=38.49/3=22.22(A)

(3)求副边绕组匝数N2:因为I2/I1=N1/N2,因此:

N2=N1I1P/I2P=600×6.415/22.22≈173(匝)

答:(1)原、副边额定电流分别为6.415A和38.49A;(2)在额定工作情况下,原、副边绕组中的电流分别为6.415A和22.22 A;(3) 原边绕组匝数N1=600匝时,副边绕组匝数N2约为173匝。

2-12、一台三相变压器,其额定值为S N=1800kVA,U1/U2=6300/3150,Y/△连接,绕组铜损与铁损之和为(6.6+21.2)kW,求:当输出电流为额定值、负载功率因数cos?=0.8时的效率。

解:(1)额定输出电流:I2 N=S N/(3U2N)=1800/(3×3.15)=329.9(A)

(2)输出电流为额定值、负载功率因数cos?=0.8时,副边输出的有功功率P2N: P2N=S N×cos?=1800×0.8=1440kW

(3)输出电流为额定值、负载功率因数cos?=0.8时的效率η:

η=P2/P1×100%=P2/(P2+p Fe+p cu)×100%=1440/(1440+6.6+21.2)×100%=98.1﹪答:当输出电流为额定值、负载功率因数cos?=0.8时的效率约为98.1﹪。

第3章异步电动机

3-1、什么叫转差率?如何根据转差率判断异步电动机的运行状态?

答:所谓转差率,就是转差的比率,是转子转速与气隙旋转磁场之间的转差与气隙旋转磁场的相对比率。其定义式为s=(n0-n)n0。根据转差率可以判断异步电动机转子与气隙旋转磁场的关系,从而判断异步电动机的运行状态,具体如下:

当s<0时,n>n0,异步电动机处于发电(即第七章介绍的回馈或再生)制动状态;

当s=0时,n=n0,异步电动机处于理想空载运行状态;

当0<s<1时,n<n0,异步电动机处于电动运行状态;

当s=1时,n=0,异步电动机处于堵转状态,或者电动机起动的瞬间;

其中,发电制动又称为回馈制动或再生制动;反接制动则包括电源反接制动和倒拉反接制动。书上P.37页说:“当s >1时,n <0,异步电动机处于电磁制动状态。”不妥当,应当改为:“当s >1时,n <0,异步电动机处于反接制动状态(参见第七章)。”下同。

3-2、异步电动机处于发电机运行状态和处于电磁(反接)制动运行状态时,电磁转矩和转子

转向之间的关系是否一样?应该怎样分析,才能区分这两种运行状态?

答:所谓制动,从字面上看就是“制止运动”,只有电磁转矩与转子转向相反才能制动。因此,只要处于制动状态,电磁转矩的方向都是与转子转向相反。也就是说,异步电动机处于发电机运行状态和处于反接制动运行状态时,电磁转矩和转子转向之间的关系都是一样的。要区分这两种运行状态可以从异步电动机转子与气隙旋转磁场的关系(即转差率)进行判断:当s <0时,异步电动机处于发电制动状态。此时转子转速n 高于气隙旋转磁场的转速n 0;当s >1时,异步电动机处于反接制动运行状态。此时,转子转速n 与气隙旋转磁场的转速n 0方向相反,若以气隙旋转磁场的转速n 0方向为参考正方向,则转子转速n 低于气隙旋转磁场的转速n 0。

3-3、如果将绕线式异步电动机的定子绕组短接,而把转子绕组连接到对称三相电源上,将

会发生什么现象?

答:若将绕线式异步电动机的定子绕组短接,而把转子绕组连接到电压合适的对称三相电源上,则绕线式异步电动机的转子仍然能够正常转动。当此时转子转向与气隙旋转磁场转向相反,气隙旋转磁场相对于转子的速度为n 0;气隙旋

转磁场相对于定子的转速为sn 0,转向也与转子转向相反,如右图(题图3-3)所示。 在题图3-3中,转子绕组通入三相交流电流,产生的旋转磁场以n 0(相对于转子)或s n 0 (相对于定子)的转速按照a 、b 、c 的相序顺时针旋转,切割定子绕组感应电势,产生电流如图3-3 b)所示。根据左手定则,定子绕组受力F 方向为:A ↓、X ↑,而由于定子固定不动,转子将受到相反方向力的作用,因此电磁转矩T 和转子转速n 的方向都为逆时针方向。 3-4、与同容量的变压器相比较,异步电动机的空载电流大,还是变压器的空载电流大?为

什么?

答:异步电动机的空载电流大,因为异步电动机磁路中含有气隙,气隙磁阻大,使得产生额定磁通量的励磁磁动势增大,相应励磁(空载)电流就大,约占额定电流的20%~40%(早期电机为20%~50%);而变压器主磁路是闭合的不含有气隙,其励磁电流也小的多,约占额定电流的3%~8%(早期变压器为5%~10%)。

3-5、一台三相异步电动机,如果把转子抽掉,而在定子绕组上加三相额定电压,会产生什

么后果?

答:三相异步电动机抽掉转子,磁路中气隙将大大增加,即磁路的导磁率减小。当定子绕组施加三相额定电压,由4.44公式知,磁通仍为额定值,在磁路的磁阻增大的情况下,需要有很大的励磁磁动势,励磁电流将大大超过额定电流,很快将使定子绕组烧毁。 3-6、异步电动机定子绕组与转子绕组没有直接的电气联系,为什么负载增加时,定子电流

和输入功率会自动增加,试说明其物理过程。从空载到满载电机主磁通有无变化? 答:异步电动机的相量图与变压器相似,由相量图可见,转子电流具有去磁性质。由转子电流公式或等效电路中转子等效电阻r 2/s 可知:当负载增加时,转子电流将增大。而转子电流的去磁性质将使主磁通出现下降的趋势,定子绕组感应的电势也将出现减少的趋势。当电源电压不变时,定子绕组的电流将自动增加,以补偿转子电流的去磁作用。因此,负载增加时,定子电流和输入功率会自动增加。

由于定子绕组的电阻和漏抗都较小,从异步电动机定子回路的电压平衡方程式可知,

a) 三相电流 b) 方向 题图3-3 转子接电源

虑定子漏阻抗影响,异步电机的主磁通基本不变。若考虑定子漏阻抗影响,则主磁通略有减少。

3-7、三相异步电动机正常运行时,如果转子突然被卡住而不能转动,试问这时电动机的电流有无变化?对电动机有何影响?

答:如果转子突然卡住,转子感应电动势将突然增大,致使转子电流突然增大,产生较大的电流冲击和机械力矩的冲击。而根据磁势平衡关系知,转子电流增大定子电流也将增加,电机定、转子绕组的铜损耗增加,时间稍长绕组将过热,若保护装置不动作则可能烧毁绕组。

3-8、在分析异步电动机时,转子边要进行哪些折算?为什么要进行这些折算?折算的条件是什么?

答:⑴在分析异步电动机时,转子边要进行的折算有:①频率折算,②绕组折算。

⑵折算的目的是:①由于转子电路的电灵频率随转子转速(或电机的转差率)变化而变化,难于直接进行电气分析。因此需要进行频率折算,将转子电量的频率折算成与定子电量频率一致的等效电量,以便进行电气分析。即用一个静止不动的绕组代替实际转动的转子绕组,而且两个绕组对磁路的影响必须一样。②通过频率折算后的转子绕组与变压器的情况相同,但频率折算后的静止绕组的匝数与定子绕组匝数不一样,仍然不能进行直接的电气分析,因此还必须象变压器一样进行绕组折算,用一个匝数相同的等效绕组代替频率折算后的静止绕组,从而消除磁路分析的麻烦得到与变压器相似的等效电路。

⑶进行频率折算和绕组折算的条件是:折算前后等效绕组与实际绕组的①磁势一样,②产生的电磁功率和损耗一样。

3-9、异步电动机的等效电路与变压器的等效电路有无差别?等效电路中的

s s

1r

2′代表什么?能否用电感或电容代替?为什么?

答:①首先,两种等效电路是有相似的地方的。两者相同点主要是:形式一样;变压器的原边和三相异步电动机定子边都采用每相参数的实际值,而变压器的副边和异步电动机转子都采用折合值。

②但是,两者却有如下突出的不同点:变压器中折合只是绕组匝数折合,而异步电动机除了绕组匝数折合外,还有频率、相数折合。变压器负载运行时,变压器的负载阻抗只需要乘以变比的平方,便可以用等效电路计算,变压器的输出的电功率的性质及功率因素完全取决于负载的性质,可以是电阻性、电感性或电容性的。而三相异步电动机运行时,实际输出机械功率,但在等效电路上用一个等效电阻表示,其上消耗(电功率)代表了电动机输出的机械功率。也就是说,机械功率的大小与电动机转差率有关,性质也是电阻上的有功功率,不可能有电感性或者电容性的。转子电路中是机械功率的等效电阻。

3-10、异步电动机带额定负载运行时,若电源电压下降过多,会产生什么后果?试说明其原因。如果电源电压下降20%,对异步电动机的最大转矩、起动转矩、功率因数等各有何影响?

答:⑴异步电动机带额定负载运行时,若电源电压下降过多,将使定、转子电流都将增大较多,电机的铜损耗增加较多,可能使电机出现过热现象,从而加速绕组绝缘的老化,甚至烧毁。这是因为异步电动机产生的电磁转矩与电源电压的平方成正比,电压下降电机产生的电磁转矩减小,在额定负载小运行时转子转速将明显下降,转差率将增加较多。从转子电流计算公式看,转子电流增大较多,同时引起定子电流有较大的增加。

⑵由于异步电动机的最大转矩和起动转矩都与电源电压的平方成正比,电源电压下降20%,即电源电压为原来的0.8,因此异步电动机的最大转矩和起动转矩都为额定电压

转子电路的功率因数cos?2=(r′2/s)/[x′22+(r′2/s)2]将减小。而带额定负载时定子电流主要成分是转子电流分量,励磁电流分量所占的比例较小,cos?2减小则定子电路的功率因数cos?1也将比额定电压时对应的数值有所减小。

3-11、漏抗大小对异步电动机的运行性能,包括起动电流、起动转矩、最大转矩、转子电路的功率因数等有何影响?

答:漏抗大小对异步电动机的运行性能有影响,具体表现为:由于等效电路可知,漏抗增大,起动电流减小;由于转矩与功率因数表达式(式3-23、式3-21和式3-10)可知,起动转矩、最大转矩、转子电路的功率因数都减小。

3-12、有些三相异步电动机有380/220V两种额定电压,定子绕组可以连接成星形,也可连接成三角形。试问在什么情况下采用何种连接方法?

答:三相异步电动机有两种额定电压380/220V时,一般同时标注其连接形式为Y/△。因为对于已经出厂的异步电动机,其磁路的磁通与相绕组感应的电动势基本确定,也就是说定子一相绕组的耐压已经确定。但三相绕组采用Y或△连接形式,电机线间电势有不同的数值。因此,当三相异步电动机标出的额定电压380/220V时,说明其定子一相绕组的额定电压为220V。当异步电动机定子三相绕组采用Y连接时,其额定电压为380V;当异步电动机定子三相绕组采用△连接时,其额定电压为220V。

3-13、三相异步电动机在满载和空载下起动时,起动电流和起动转矩是否一样?

答:三相异步电动机的机械特性与其所带负载没有任何关系,因此在满载和空载下起动时,其起动电流和起动转矩都是一样的。这可从异步电动机的电流和起动转矩计算公式得到验证。若忽略励磁电流,起动电流可由P.40页式3-9进行计算(令s=1);起动转矩则可由P.44页式3-23或P.43页式3-18进行计算(令s=1)。而式3-9、式3-18和式3-23都与其所带负载的大小没有任何关系。

3-14、如果电动机的三角形连接误接成星形连接,或者星形连接误接成三角形连接,其后果将如何?

答:①如果电动机的三角形连接误接成星形,则定子每相绕组的端电压下降为原来的1/3,主磁通将大大减小,若要使流过电动机绕组不超过额定电流,由于式3-12可知,应该减小电动机所带的负载转矩。否则当接额定负载运行时,绕组中电流将增加,超过额定值,致使保护器件动作或者烧毁绕组(因为T减小,转速将下降,转差率s将增加,由式3-9可知,I2将增大;由式3-12可知,Φ↓只有I2↑才能使T保持额定值与额定负载转矩平衡)。

②如果电动机的星形连接被误接为三角形,则定子每相绕组的端电压将为原额定电压的3倍,为了感应电动势与电源电压平衡,要求主磁通也要增加到为原来的3倍,磁路将严重饱和,励磁电流大大增加,也会致使保护器件动作或者烧毁绕组。

3-15、某三相异步电动机的额定转速为460r/min,当负载转矩为额定转矩的一半时,电动机的转速约为多少?

解:①由于异步电动机的额定转差率为1%~9%,即s N≈0.01~0.09可以推算出该电机为6对极的异步电动机,其理想空载转速n0为500r/min:

∵n0=n N/(1-s N)=460/(0.91~0.99)=464.6~505.5r/min

p=60f/n0=3000/(464.6~505.5)=5.934~6.457,而p只能为整数,∴p=6(对极); n0=60f/p=3000/6=500(r/min),s N=(n0-n)/n0=(500-460)/500=0.08

②从机械特性看,由于异步电动机在额定工作范围内,转差率s与负载转矩T可以用直线近似代替,即近似认为s∝T(或s=kT)。因此,负载转矩为额定转矩的一半(即T=0.5 T)时,电动机的转差率s和转速n分别为:

n=n0(1-s)=500(1-0.04)=500×0.96=480(r/min)

答:该三相异步电动机负载转矩为额定转矩的一半时的转速约为480r/min。

3-16、单相分相式电动机如何改变其旋转方向?罩极式电动机的旋转方向能否改变?

答:改变单相分相式电动机旋转方向,可单独改变其任意一个绕组的接线(即,将其两根引线脱开对调一下再接上。注:若同时改变其两个绕组的接线则电动机旋转方向将不会改变)。这是因为,单独改变其任意一个绕组的接线时,流过该绕组电流方向变反,两个绕组流过的电流相位关系发生变化(原来电流相位比另一绕组电流超前的绕组,单独改变任意一个绕组的接线后,该绕组电流相位变成滞后流过另一绕组的电流),而单相分相式电动机两个绕组产生的旋转磁场的转向总是从电流相位超前的绕组向电流相位滞后的绕组转动。电流相位关系发生变化,电动机产生的旋转磁场旋转方向就与原来的旋转方向相反,电动机的转向也就与原来的转向相反,即单相分相式电动机的旋转方向得到改变。

3-17、一台三相异步电动机铭牌上标明f=50Hz,n N=960r/min,问该电动机的极数是多少?

解:由于异步电动机的额定转差率为1%~9%,即s N≈0.01~0.09,通过s N、n N和n0之间的关系,以及n0、f和p之间的关系可以求出该电动机的极对数,具体过程如下: n0=n N/(1-s N)=960/(0.91~0.99)=969.7~1054.9r/min

p=60f/n0=3000/(969.7~1054.9)=2.8~3.1,而p只能为整数,∴p=3(对极)。即,该电动机的极数是6(个)极。

答:该电动机的极数是6极。

3-18、三相鼠笼式异步电动机在额定状态附近运行,当(1)负载增大、(2)电压升高、(3)频率升高时,其转速和定子电流分别有何变化?

答:⑴根据三相异步电动机的固有机械特性、调压人工机械特性和调频人工机械特性,可以知道:①当负载增大时,三相异步电动机的转速有所下降;②当电压升高时,三相异步电动机的转速有所上升;③当频率升高时,三相异步电动机的转速也有所上升。(【注】:调频人工机械特性可以由于P.36页式3-1的理想空载转速或磁场的同步转速表达式推知:当f↑,n0也↑,整个机械特性向上平移;当f↓,n0也↓,整个机械特性向下平移。)

⑵由三相异步电动机的相量图及磁势平衡方程式可知,定子电流等于转子电流与励磁电流的相量和,要分析定子电流可以先分析转子电流的情况。由异步电动机的机械特性及P.40页式3-9的转子电流表达式可知:①由于负载增大时,异步电动机的转速略有下降,转差率增大,转子电流增大。而电源电压不变则主磁通不变,励磁电流不变。因此,当电压升高时,三相异步电动机的定子电流增大;②由于电压升高时,异步电动机的励磁电流增大,且转子电流由于电动势E20的增大也相应增大。因此,当电压升高时,三相异步电动机的定子电流增大;③由于电源电压不变,定、转子绕组感应电动势也基本不变,当频率升高时,由4.44公式可知,主磁通减小,励磁电流减小。又由于频率升高时转子漏抗X20=2 fL20增大,E20基本不变,则转子电流减小。因此,当频率升高时,三相异步电动机的定子电流减小。

3-19、有一台三相异步电动机,n N=1470r/min,f=50Hz。分别在n=0、n=2n0/3、s=0.02三种情况下,求:

(1)定子旋转磁场对定子的转速;

(2)定子旋转磁场对转子的转速;

(3)转子旋转磁场对转子的转速;

(4)转子旋转磁场对定子的转速;

(5)转子旋转磁场对定子旋转磁场的转速。

答:计算交流绕组产生旋转磁场相对绕组本身转速的公式为:n0=60f/p。为了计算旋

可求出该三相异步电动机的极对数p=2(方法参见3-16题和3-17题)。

⑴由于定子绕组产生的旋转磁场的转速与转子是否转动及转速多少无关,且定子旋转磁场是三相定子交流绕组产生的,三相交流绕组通过的是f=50Hz的三相交流电,因此定子旋转磁场对定子的转速为:n1=60f/p=60×50/2=3000/2=1500r/min。

⑵定子旋转磁场对转子的转速n12等于定子旋转磁场对定子的转速n1减去转子对定子的转速n,因此,当n=0、n=2n0/3[n=2n0/3=1000 r/min]、s=0.02[n=n0(1-s)=1500×0.98=1470 r/min]时,定子旋转磁场对转子的转速n12分别为:①n=0时,n12=n1-n=n0-n=1500r/min;②n=1000r/min时,n12=n1-n=n0-n=1500-1000=500r/min;③n=1470r/min时,n12=n1-n=n0-n =1500-1470=30r/min。

⑶转子旋转磁场是转子绕组的交流电流产生的,由于转子电流的频率随转子的转速不同而不同,因此应先求出不同转速时转子电流频率。根据f2=sf1,可以求出在n=0、n=2n0/3、s=0.02时转子电流频率分别为:n=0时f2=50Hz、n=2n0/3时f2=50/3Hz、s=0.02时f2=1Hz。再根据公式n2=60f2/p,就可分别求出在n=0、n=2n0/3、s=0.02三种情况下转子旋转磁场对转子的转速分别为:①n2=60f2/p=1500r/min、②n2=500r/min、③n2=30r/min。

⑷转子旋转磁场对定子的转速n21等于转子旋转磁场对转子的转速n2加上转子(对定子的)转速n。对于题目给出的三种情况,n分别为0、1000r/min和1470 r/min。因此,在三种情况时转子旋转磁场对定子的转速n21=n2+n分别为:①n21=n2+n=1500+0=1500r/min、②n21=n2+n=1000+500=1500r/min、③n21=n2+n=1470+30=1500r/min。由此可见,转子旋转磁场对定子的转速n21也与转子是否转动及转速多少无关,即与定子旋转磁场对定子的转速相等。

⑸比较⑴和⑷的计算结果可以得出:转子绕组产生的旋转磁场与定子绕组产生的旋转磁场在空间相对静止。即,转子旋转磁场对定子旋转磁场的转速都等于0。

3-20、一台三相异步电动机P N=30kW,U N=380V,I N=57.5A,f=50Hz,s N=0.02,η=90%,p=2,三角形接法,试求:

(1)定子旋转磁场对转子的转速;

(2)额定输出转矩及功率因数。

解:⑴求定子旋转磁场对转子的转速n12:

由于n0=60f/p=60×50/2=3000/2=1500r/min,n N=(1-s N)n0=(1-0.02)1500=0.98×1500=1470r/min,而定子旋转磁场对转子的转速n12为:

n12N=n0-n N=1500-1470=30(r/min)

⑵求额定输出转矩T2N为:

T2N=P N/ΩN=(60×P N)/(2π×n N)≈9.55×P N/n N=9.55×30000/1470=194.88(N·m)

⑶求额定功率因数cos?为:

cos?=P1N/(3U N I N)=P2N/(η3U N I N)=30000/(0.9×3×380×57.5)=0.88 答:⑴定子旋转磁场对转子的转速是30r/min。⑵额定输出转矩为194.88 N·m,功率因数为0.88。

3-21、一台三相异步电动机已知如下数据:P N=2.2kW,U N=380V,n N=1420r/min,cos?=0.82,η=81%,电源频率f=50Hz,星形接法。试计算:

(1)定子绕组中的相电流I p,电动机的额定电流I N及额定转矩T N;

(2)额定转差率s N及额定负载时的转子电流频率f2。

解:⑴定子绕组中的相电流I p,电动机的额定电流I N及额定转矩T N:

S N=P N/(η×cos?)=2200/(0.81×0.82)≈3312(kVA)

T N=P N/ΩN=(60×P N)/(2π×n N)≈9.55×P N/n N=9.55×2200/1420=14.79(N·m)

⑵额定转差率s N及额定负载时的转子电流频率f2:根据n N=1420r/min,f=50Hz,则可求出该电动机理想空载转速n0=1500r/min,极对数p=2(方法参见3-16题和3-17题)。 s N=(n0-n)/n0=(1500-1420)/1500=0.0533

f2=s N×f=0.0533×50=2.67(Hz)

答:⑴定子绕组中的相电流I p和电动机的额定电流I N都约为5A,额定转矩T N为14.79 N·m;⑵额定转差率s N为0.0533,额定负载时的转子电流频率f2为2.67Hz。

3-22、一台三相四极鼠笼式异步电动机,已知其额定数据如下:P N=5.5kW,U N=380V,n N=1440r/min,cos?=0.84,η=85.5%,过载系数λ=2.2,起动转矩倍数k T=2.2,I st/I N=7,电源频率f=50Hz,星形接法。试计算:额定状态下的转差率s N、电流I N和转矩T N,以及起动电流I st、起动转矩T st、最大转矩T max。

解:由于是三相四极电机,极对数p=2。n0=60f/p=3000/2 =1500r/min,所以:

①额定转差率s N为:s N=(n0-n)/n0=(1500-1440)/1500=0.04

②额定电流I N为:I N=P N/(3U N×η×cos?)=5500/(3×380×0.855×

0.84)=11.64(A)

③额定转矩T N为:T N=9.55×P N/n N=9.55×5500/1440=36.47(N·m)

④起动电流I st为:I st=7×I N=81.45(A)

⑤起动转矩T st为:T st=k T×T N=2.2×36.47=80.24(N·m)

⑥最大转矩T max为:T max=λ×T N=2.2×36.47=80.24(N·m)

答:额定转差率s N为0.04,额定电流I N为11.64A,额定转矩T N为36.47N·m,起动电流I st为81.45A,起动转矩T st和最大转矩T max都为80.24N·m。

【说明】:⑴由于题目看,该电机应该是起重用电机(起动转矩较大,一般k T为1.8~2.0T N);⑵本题可能是作者笔误或印刷错误。一般起重用三相交流异步电动机的起动转矩较大,但也不会与其最大转矩一样大。因此,题目中的“过载系数λ=T max/T N=2.2,起动转矩倍数k T=T st/T N=2.2”可能有误,最大可能是k T=T st/T N=2。

第4章同步电机

4-1、同步发电机的转速为什么必须是常数?频率为50Hz的柴油发电机应该为多少极?

答:同步发电机输出的交流电的频率f与转子转速n存在如下关系:n=60f/p。对于某一同步发电机,由于其极对数p在电枢绕组绕制时已经确定。因此为了保持发电机输出电压的频率一定,发电机的转速n就是必须是常数。

柴油发电机组的柴油机,一般属于中、低速柴油机。根据公式n=60f/p,若柴油机的转速n为750r/min时,发电机的极对数p为4;当n为600r/min时,发电机的极对数p为5;当n为500r/min时,发电机的极对数p为6;当n为428.6r/min时,发电机的极对数p 为7;当n为375r/min时,发电机的极对数p为8;当n为333r/min时,发电机的极对数p为9;当n为300r/min时,发电机的极对数p为10。

4-2、同步电机和异步电机在结构上有哪些不同之处?

答:常用的旋转磁极式同步电机与异步电动机的定子基本结构完全相同,转子结构却区别较大。同步电机转子有隐极式和凸极式两种,转子励磁绕组通过电刷和滑环加直流电流励磁;异步电动机转子有鼠笼式和绕线式两种,自成回路的转子导体感应电势产生电流。4-3、隐极式和凸极式同步发电机各有什么特点,各适用于哪些场合?

答:一般隐极式转子极对数少,结构细长,能够承受较大的离心力。在磁路上的特点是其气隙均匀。常适用于高速运行同步电机,如气轮发电机和高速柴油机。

向)气隙小,极间(交轴方向)气隙大,也就是在磁极轴线位置(直轴)的磁路磁阻小,而在两磁极中间位置(交轴)的磁路磁阻最大。一般适用于中、低速运行。如船舶柴油发电机、水轮发电机。

4-4、同步发电机在三相对称负载下稳定运行时,电枢电流产生的旋转磁场是否与励磁绕组交链?它会在励磁绕组中感应电动势吗?

答:同步发电机电枢电流产生的磁场是与励磁绕组交链的。由于发电机稳定运行时,两个磁场的转速相同,虽然电枢磁场与励磁绕组交链,但交链的磁通不变化,所以不会在励磁绕组产生感应电动势。

4-5、同步发电机在对称负载下运行时,气隙磁场由哪些磁势建立,它们各有什么特点?

答:转子直流励磁磁动势(机械旋转磁场磁动势)和电枢磁动势(电气旋转磁场磁动势),两个磁动势在气隙中叠加,形成新的气隙磁动势(合成磁动势)。

励磁磁动势是由直流励磁电流产生的,与转子没有任何相对运动,其磁通路径与磁极的轴线重合,主要是铁磁材料构成,磁路的磁阻相对较小。

电枢磁动势是由发电机负载后电枢绕组的交流电流产生的,虽然稳定运行时与转子也没有相对运动,但一般磁通路径不能保证与磁极的轴线重合,即存在一定的夹角。而且随着负载性质的不同,这个夹角也会发生变化。因此,分析电枢磁动势的作用时,不能简单地以其磁路参数进行分析,而应该将其分解成直轴和交轴两个方向上的磁通分量,然后再分别进行分析。

4-6、什么是同步发电机电枢反应?电枢反应的效应由什么决定?

答:同步发电机负载时,三相电枢绕组流过三相对称电流,产生电枢旋转磁场,使气隙合成磁场的大小和位置发生变化。电枢绕组产生的磁场对气隙磁场的影响称为电枢反应。有了电枢反应,同步发电机气隙中的磁场就由转子磁场和电枢磁场共同产生。电枢反应的性质(交磁反应、直轴增磁反应或直轴去磁反应)与这两个磁场在空间的相对位置有关,也就是与负载电动势和电枢电流间的夹角(内功角)有关,其实质是与负载的性质有关。4-7、功角θ在时间上及空间上各表示什么含义?功角θ改变时,有功功率如何改变?无功功率会不会变化?为什么?

答:在时间上,功角是空载电势与电压之间的夹角;在空间上,功角是指主磁极轴线与气隙合成磁场轴线之间的夹角。

当电网电压U、频率f恒定(即,参数X d, X q为常数),励磁电流产生的空载电动势E0不变时,由同步电机的功角特性可知,在稳定运行区内,功角越大,输出的有功功率也将越大;功角减小,则输出的有功功率减小。有功功率与功角的章县成正比。

由于同步发电机输出的有功功率还可用公式P=3UIcos?表示,而若改变有功输出时保持励磁电流不变,则发电机的端电压不变,P改变则Icos?,Isin?和无功功率Q=3UIsin?也将同时改变。也就是说,功角θ改变时有功功率将会改变,同时无功功率也将改变。

4-8、怎样使同步发电机从发电状态过渡到电动状态?其功角、电流、电磁转矩如何变化?

答:当同步电机作为发电机运行时,电枢绕组流过的电流有功分量与转子励磁绕组之间将产生电磁转矩T,其大小可由功率与转矩的关系得到:T=P M/Ω=mE0Usinθ/(ΩX S)。若逐渐减小的原动机提供的机械转矩,则功角θ减小,发电机所产生的电磁转矩也减少。当θ减小到0时,原动机提供的机械转矩正好克服发电机维持转动所必须克服的摩擦转矩,发电机处于空载运行状态,输出电流的有功分量为0。若在此时将原动机与发电机脱开,在摩擦转矩的作用下功角θ将变成负值,同步电机输出的有功功率变成负值,即不但不输出有功功率,反而从电网输入有功电功率。也就是说同步电机从发电机变成了电动机,此时同步电机工作在电动机空载状态。工作在电动机状态的同步电机,从电网输入有功电功率,

则同步电机可以拖动机械负载转动,成为同步电动机正常运行。

综上所述,要使同步发电机从发电状态过渡到电动状态,可以将其轴上的驱动转矩变成负载阻转矩,同步电机就能够自动从发电机状态过渡到电动机状态。处于电动机状态运行的同步电机,与处于发电机状态时相比较,功角变成负值,电流的有功分量方向和产生的电磁转矩方向也都变反。

4-9、增加或减少同步电动机的励磁电流时,电动机内部磁场产生什么效应?

答:增加(或减少)同步电动机的励磁电流时,电动机内部的磁通增加(或减少),感应的电动势增大(或减小),为了使电动机电枢绕组感应的电动势与电源电压相平衡,电枢绕组的电流相位将发生变化,因此可以改变电动机从电网吸收电流的性质和大小。电动机电枢绕组的电流相位将发生变化后,将使电枢反应的去磁(或增磁)作用增加,从而使气隙合成的总磁通维持基本不变的状态。

也就是说,增加或减少同步电动机的励磁电流时,电动机内部磁场通过电枢反应,产生使磁势平衡的效应,从而达到磁势的新的平衡。

4-10、具有异步起动能力的同步电动机正常运行时,是否存在异步转矩,为什么?

答:具有异步起动能力的同步电动机之所以能够产生异步起动转矩是因为在其转子磁极上安装有象鼠笼异步电动机转子相似的短路绕组。在同步电动机转速还未达到同步转速时,电枢绕组产生的旋转磁场与转子磁极存在相对移动,因此能够感应电动势、感生电流、产生电磁转矩。而正常运行时,由于转子与电枢旋转磁场同步(没有相对移动),也就不会感应电动势、不会产生感生电流,因此也就不存在异步转矩了。

4-11、有一台三相同步发电机,P N=500kW,U N=400V,Y形接法,cos?=0.8(滞后),单机运行,已知同步电抗为0.13Ω,电枢电阻不计,每相励磁电动势E0=410V,求下列几种负载下的电枢电流,并说明电枢反应的性质:(1)每相负载电阻7.52Ω的三相对称纯电阻负荷;(2)每相负载阻抗Z L=7.52+j7.52Ω的三相对称感性负荷。

解:设,该同步发电机为隐极式同步发电机,三相负载都是三角形连接。

⑴每相负载电阻为7.52Ω的三相对称纯电阻负荷时的电枢电流:

此时,根据基尔霍夫电压定律,一相电路的电压平衡方程式为:?0=?(R L+jXs),因此: I=E0/(R L2+Xs2)-0.5=410/(7.522+0.132)-0.5=54.51(A)

⑵每相负载阻抗为Z L=7.52+j7.52Ω的三相对称感性负荷时的电枢电流:

I=E0/[R L2+(Xs+X L)2]-0.5=410/(7.522+7.652)-0.5=38.22(A)

⑶由于同步电抗Xs的存在,即使在发电机每相负载电阻7.52Ω的三相对称纯电阻负荷时,电枢电流I仍然是滞后励磁电动势E0一个角度。因此,在这两种情况下,电枢反应都是0<ψ<90°的情况,其电枢反应性质都是:既有交轴电枢反应也有直轴去磁电枢反应。

答:每相负载电阻为7.52Ω的三相对称纯电阻负荷时,电枢电流为54.51A。每相负载阻抗为Z L=7.52+j7.52Ω的三相对称感性负荷时,电枢电流为38.22A。两种情况下,电枢反应的性质都是既有交轴电枢反应也有直轴去磁电枢反应。

4-12、一台隐极式同步发电机与电网并联运行,电网电压为380V,定子绕组为Y接法,每相同步电抗为Xs=1.2Ω,发电机输出电流为I=69.5A,发电机励磁电势E0=270V,cos?=0.8(滞后),若减少励磁电流,使发电机励磁电势E0=250V,保持原动机输入不变,并不计电枢电阻,试求:(1)改变励磁电流前发电机输出的有功功率和无功功率;

(2)改变励磁电流后发电机输出的有功功率、无功功率、功率因数和电枢电流。

【说明】:由本题所给的发电机参数是不可能得到“电网电压为380V,定子绕组为Y接法,每相同步电抗为Xs=1.2Ω,发电机输出电流为I=69.5A,cos?=0.8(滞后)”时,“发电机励

而不是270V。若考虑电枢电阻,为了使每相绕组电压U为,U=380/3=219.4V,励磁电势E0应该比277.6V更大。也就是说,本题目的数据存在一定的矛盾之处。虽然不用该数据也能对本题进行正确的计算,但为了不使题目存在矛盾之处,应该将题目中的“发电机励磁电势E0=270V”改为“发电机励磁电势E0=277.6V”。

解:电网电压为380V,则发电机每相定子绕组的端电压为:U=380/3=219.4V。

⑴改变励磁电流前发电机输出的有功功率P和无功功率Q:cos?=0.8,则sin?=0.6 P=3UIcos?=3×380×69.5×0.8=36594.77(W)

Q=3UIsin?=3×380×69.5×0.6=27446.08(Var)

⑵改变励磁电流后发电机输出的有功功率、无功功率、功率因数和电枢电流:

由于减少励磁电流,使发电机励磁电势E0=250V,保持原动机输入不变。所以发电机输出有功功率P不变,仍为:P=36594.77(W)

由于P不变,根据功角特性有E 0sinθ不变,因此:

sinθ2=XsP/(3E0U)=1.2×36594.77/(3×250×219.4)

=0.26688

cosθ2=0.96373

再由右图所示的同步发电机相量图,利用余弦定理有:

(XsI)2=(E0)2+(U)2-2E0Ucosθ=(250)2+(219.4)2-2×250×219.4×0.96373

=4915.5(V 2)

电枢电流I=(XsI)/Xs=4915.5-0.5/1.2=58.4(A)

功率因数cos?=P/(3UI)=36594.77/(3×380×58.4)= 0.9516,则sin?=0.3072 无功功率Q=3UIsin?=3×380×58.4×0.3072=11813.96(Var)

答:⑴改变励磁电流前同步发电机输出的有功功率约为36.6kW,无功功率约为27.4kVar。⑵改变励磁电流后发电机输出的有功功率不变,仍为36.6kW,无功功率约为11.8 kVar,功率因数约为0.95,电枢电流约为58.4A。

4-13、一台三相50Hz、Y形接法,11kV、8759kVA凸极式水轮发电机,当额定运行时,cos?=0.8(滞后),每相同步电抗Xd=17Ω,Xq=9Ω,并不计电枢电阻,试求:(1)该机在额定运行情况下的功角θN及空载电势;(2)该机的最大电磁功率P max及产生最大电磁功率时的功角θ。

解:I N=8759000/(3×11000)=459.73(A)

cos? N=0.8,则sin?N=0.6

⑴、额定运行情况下的功角θN及空载电势:

在书P.59页图4-17增加辅助线后如右图所示。由图中可见,线段之间存在着关系为:tgψ

=db/ab=(dc+bc)/ab。其中,线段ab=Ucos?,线段dc=IXq,线段bc=Usin?。因此:

tanψN=(I N Xq+U N sin?N)/U N cos?N

=(459.73×9+11000×0.6)/(11000×0.8)= 1.22

θN=ψN-?N=50.66°-36.87°=13.79°

由图还可知道,额定运行时空载电势E0为:

E0=U N cosθN+IdXd=U N cosθN+I N sinψN Xd=11000×cos13.79°+459.73×sin50.66°×17

=10682.8+6044.7=16727.5(V)≈16.7(kV)

⑵、最大电磁功率P max及产生最大电磁功率时的功角θ

为了计算最大电磁功率,可以将书P.59,式(4-18)功角特性公式中,取电磁功率对θ求导,并令其为0,可以求出最大电磁功率所对应的功角:

0=3UE0cosθ/Xd+3U2[(1/Xq)-(1/Xd)]cos2θ; U(Xq-Xd)cos2θ=XqXdE0cosθ/Xd;

U(Xq-Xd)(cos2θ-sin2θ)=XqXdE0cosθ/Xd; U(Xq-Xd)(2cos2θ-1)=XqXdE0cosθ/Xd:设:cosθ=Y,则:2U(Xd-Xq)Y2+XqXdE0Y/Xd-U(Xd-Xq)=0,将数据代入,有:

2×11000×8×Y2+17×9×16727.5×Y/17-11000×8=0

176000Y2+150547Y-88000=0; Y2+0.8554Y-0.5=0

Y=[-0.8554±(0.85542+4×0.5)-0.5]/2,解得:Y1=0.3987,Y2=-1.254(舍弃)。

由于Y=cosθ,即:-1≤Y≤1,所以,结果为:cosθ=Y=0.3987。最大电磁功率时的功角为:θ=66.5°

将θ=66.5°代入功角特性,最大电磁功率P M为:

P M=3UE0sinθ/Xd+1.5U2[(1/Xq)-(1/Xd)]sin2θ

=3×11000×16727.5×sin66.5°/17+1.5×110002×[(1/9)-(1/17)]sin133°

=+6939975.6=9(W)≈36718(kW)=36.718(MW)

答:⑴该凸极式水轮发电机在额定运行情况下的功角θN约为:13.79°,空载电势E0约为:16.7 kV;⑵该机的最大电磁功率P max约为:36.7MW;产生最大电磁功率时的功角θ约为:66.5°。

5-1、直流电机有哪些主要部件?各部件分别起什么作用?

答:直流电机的基本组成为定子和转子两部分。定子主要由主磁极、换向极、机座、端盖和电刷装置等组成,转子则由电枢铁心、电枢绕组、换向器、转轴和风扇等组成。

定子上的主磁极是用来产生直流电机主磁场的;换向极则用于改善换向,减少因电磁原因而引起的电刷火花;机座和端盖是直流电机的固定支撑和防护部件,同时机座还是磁路的一部分。电刷装置是定子上的一个主要部件,其主要作用是将直流电机电枢绕组与外部电路连接起来。

转子的电枢铁心与主磁极铁心、机座等组成直流电机的磁路,且用于嵌放电枢绕组;电枢绕组的作用是用以感应电动势和通过电流,它是实现机电能量转换的重要部件;换向器是直流电机的一个典型部件,与电刷装置配合起“机械整流器”的作用,可将电枢绕组中的交流电量(感应电动势、电流)变换为电刷两端的直流电量(电压、电流),或者将电刷两端的直流电量变换为电枢绕组中的交流电量。转子的转轴是支撑整个转子的部件,风扇则起通风散热的作用。

5-2、直流电机中感应电势与哪些因素有关?感应电势的性质与电机的运行方式有何关系?其方向如何判断?

答:由公式E

a =C

e

Φn可知,对已制成的直流电机,电枢电动势正比于每个极面下的磁通量Φ及电

机的转速n。如果每个极面下的磁通量一定,则E

a

∝n,故转速的快慢会影响电枢两端电动势大小;

如果转速一定,则E

a ∝Φ∝I

f

。也就是说,调节励磁电流I

f

,可改变每个主磁极产生的磁通Φ,从

而可调节电枢电动势E

a

的大小。

直流电机感应电势的性质有“正电势”和反电势之分。所谓“正电势”,就是电源的电动势,是表

在电枢绕组中就感应出电动势,当与负载连接,就可向外部电路提供电能,因此直流发电机电枢绕组的电动势是“正电势”,是电源的电动势。对于直流电动机,转子转动后也将在电枢绕组中感应电动势,它是消耗电能用于将电能转换成机械能的,它具有阻碍电流通过的特征,与电枢电流方向相反,因此直流电动机电枢绕组的电动势是反电势,是与电源电压相平衡的电动势。

要判断直流电机感应电势的性质,可以根据感应电势与电枢电流的方向进行判断:直流发电机,感应电势与电枢电流方向相同;直流电动机,感应电势与电枢电流方向相反。

5-3、直流电机中电磁转矩与哪些因素有关?电磁转矩的性质与电机的运行方式有何关系?

答:从电磁转矩公式T=C

T ΦI

a

可知,直流电机中电磁转矩与励磁I

f

和电枢电流I

a

有关。当电机励

磁I

f 不变,则每个主磁极产生的磁通Φ也不变,电磁转矩T与电枢电流I

a

成正比;若电枢电流I

a

不变,则电磁转矩T与励磁I

f 或磁通Φ有关。励磁I

f

越大,产生的主磁通Φ越大,电磁转矩T

也越大。

直流电机中电磁转矩的性质可分为驱动转矩和制动转矩两种。如果电机作为电动机运行,直流电动机将电源提供的电能转换为机械能,因此电磁转矩是驱动性质的驱动转矩;如果电机作为发电机运行,直流发电机将机械能转换成电能,电磁转矩要与原动机提供的机械转矩相平衡,起阻碍电机转子转动的作用,因此其电磁转矩为阻碍性质的制动转矩。

5-4、直流电机的电磁功率是指什么?如何说明在直流电动机中由电能转换为机械能?

答:直流电机是将直流电能和机械能相互转换的电气装置,其电磁功率就是指通过气隙进行转换的

功率。从电能的角度看电磁功率为电枢绕组感应的电动势与电枢电流通过的电流的乘积,即为E

a I

a ;

从机械能的角度看电磁功率为电磁转与转子的角速度的乘积,即为TΩ。

当直流电动机接上直流电源后,将有电枢电流流过转子的电枢绕组,根据电动力定律电枢电流在定子主磁极产生主磁场的作用下将产生电磁转矩T,使转子转动,通过转轴向机械负载输出机械功率。转子转动后根据电磁感应定律电枢两端将感应电动势,从整个电路看,电枢通过电流I

a

后,直流

电动机感应的电动势E

a

使电源提供的电压产生压降,因此,直流电动机用来进行机电转换的电磁

功率为E

a I

a

。而从机械角度看,转子受到电磁转矩T的驱动,产生角速度Ω,因此,直流电动机通

过机电转换得到的电磁功率为TΩ,通过转轴的传送,就可向机械负载输出机械功率了。当然,电枢绕组通电后,也将消耗部分铜损耗;转子转动后,也将产生一定的机械损耗。因此可以这么说,电源向直流电动机提供直流电功率UI

a

,扣除电枢绕组等产生的损耗外,剩下的电功率转换成机械

功率,即电磁功率:E

a I

a

=TΩ,转换成的机械功率还要克服转子、转轴等消耗的摩擦损耗,然后才

从轴上输出机械功率P

2=T

2

Ω/这就是直流电动机中由电能(电功率)转换为机械能(机械功率)的

过程。

5-5、何谓电枢反应?电枢反应对气隙磁场有什么影响?E=C

e Φn、T=C

T

ΦI

a

的计算式中,Φ应该是

什么磁通?

答:直流电机励磁后,由励磁磁动势F

f 产生气隙磁场,电枢绕组内通过由电枢电流I

a

产生的电枢

磁动势F

a

,这个磁动势对气隙磁场的影响称为电枢反应。简单地说,电枢磁场对气隙磁场的影响就是电枢反应。

由于电枢磁场总是和主极磁场正交如下图a)所示,电枢反应将使气隙磁场波形畸变。对于直流发电机,电枢磁场与主极磁场的波形如下图的c)、d)和e)所示。若不考虑磁路饱和,电枢反应使气隙磁场波形畸变的同时,将使物理中性线偏离几何物理中性线(两者不再重合)。若考虑磁路的饱和,则发电机的后极尖(电动机的前极尖)增磁量就小于发电机的前极尖(电动机的后极尖)的去

物理中性线将影响直流电机的换向(使换向性能变坏),气隙总磁通减小则发电机的端电压减小,电动机的电枢电流增大。

在E=C

e Φn、T=C

T

ΦI

a

的计算式中,Φ指的是是直流电机气隙每极产生的总磁通。不考虑磁路饱和

时,这个磁通就是励磁绕组产生的每极主磁通,考虑饱和时,则这个磁通小于励磁绕组产生的每极主磁通。

5-6、试述发电机的空载特性曲线,它与磁极的磁化有何区别?又有何联系?

答:直流电机磁路的磁化曲线是指电机主磁通与励磁磁动势的关系曲线Φ

0=f(F

f

),电机的空载特

性曲线是指电机在保持额定转速不变,空载电压与励磁电流的关系曲线U

0=f(I

f

)。由于U

=E=C

e

Φ

n∝Φ

0,F

f

=2N

f

I

N

∝I

f

,因此,空载特性曲线的实质就是磁路的磁化曲线。即,两者的形状相似,只

要选择合适的坐标量纲,两条曲线可以完全重合。它们的区别主要表现在具体所表示的含义上,磁化曲线的是电机磁路的磁性能,空载特性曲线则主要表示直流电机端电压调节的性能等。

5-7、何谓自励起压?直流发电机自励起压的条件是什么?

答:自励起压是指,自励发电机在没有外加励磁电源的情况下,原动机的拖动电枢转子转动,电枢绕组自动建立起电压。直流发电机自励起压的条件是:①发电机要有剩磁;②励磁电流磁场与剩磁场方向相同(或者说,电枢绕组与励磁绕组接线正确);③励磁电路的电阻要小于建压临界电阻(或者说,励磁电路的电阻足够小)。

5-8、直流电机在各种不同励磁方式下,外部电流I、电枢电流I

a 以及励磁电流I

f

三者之间的关系

如何?

答:直流电机的励磁方式一般有四种:他励、并励、串励和复励,如右图所示。其中,复励还可根据串励绕组的位置不同分为短复励和长复励。

并励:对于直流电动机,I=I

a +I

f

,外部电流I是电枢电流I

a

与励磁电流I

f

之和。对于直流发电机,

I=I

a -I

f

,外部电流I是电枢电流I

a

与励磁电流I

f

之差;

串励:I=I

f =I

a

;外部电流I、电枢电流I

a

以及励磁电流I

f

完全相等;

短复励:对于直流电动机,I

s =I=I

a

+I

f

,串励电流I

s

等于外部电流I是电枢电流I

a

与并励电流I

f

和。对于直流发电机,I

s =I=I

a

-I

f

,串励电流I

s

等于外部电流I是电枢电流I

a

与并励电流I

f

之差;

长复励:对于直流电动机,I

s =I

a

=I-I

f

,串励电流I

s

等于电枢电流I

a

是外部电流I与并励电流I

f

差。对于直流发电机,I

s =I=I

a

-I

f

,串励电流I

s

等于电枢电流I

a

是外部电流I与并磁电流I

f

之和。

5-9、船用直流发电机的励磁方式一般采用何种方式?

答:船用直流发电机的励磁方式常采用复励方式,即可采用短复励接线,也可采用长复励接线。作为船舶主电源的直流发电机一般为平复励发电机。作为交流船上使用变流机组的直流发电机,一般要求具有软的或陡降的外特性,则应该采用差复励直流发电机(如起货机、舵机等使用的变流机组及船用直流电焊发电机)。

5-10、某直流电动机铭牌的参数为:U

N =220V, n

N

=1000r/min ,I

N

=40A, 电枢电路电阻R

a

=0.5Ω。若

电枢回路不串联起动电阻在额定电压下直接起动,则起动电流为多少?

解:设,该直流电动机为并励直流电动机。若电枢回路不串联起动电阻,在额定电压下直接起动的电流为:

I st =U

N

/R

a

=220/0.5=440(A)

答:若电枢回路不串联起动电阻在额定电压下直接起动,则起动电流为440A。

5-11、一台并励直流电动机,在额定电压U

N =220V,额定电流I

N

=80A的情况下运行,电枢绕组电阻

R a =0.0992Ω,电刷接触压降2ΔU

S

=2V,励磁绕组电阻=110.1Ω,额定负载时的效率η

N

=85%,求:

(1) 额定输入功率P

1N

(2) 额定输出功率P

2

(3) 总损耗ΣP;

(4) 励磁回路铜耗P

Cuf

(5) 电枢回路铜耗P

Cua

(6) 电刷接触损耗P

S

(7) 附加损耗P

Δ(设P

Δ

=1%P

N

);

(8) 机械损耗和铁耗之和P

Ω+P

Fe

解:

⑴额定输入功率P

1N : P

1N

=U

N

×I

N

=220×80=17.6(kW)

⑵额定输出功率P

2: P

2

N

×P

1N

=17.6×0.85=14.96(kW)

⑶总损耗ΣP:ΣP= P

1N -P

2

=17.6-14.96=2.64(kW)

⑷励磁回路铜耗P

Cuf : P

C u f

=U

N

2/R

f

=2202/110.1=439.6(W)

⑹电刷接触损耗P

S : P

S

=2ΔU

S

×I

a N

=2ΔU

S

×(I

N

-U

N

/R

f

)=2×(40-220/110.1)=76(W)

⑺附加损耗P

Δ; P

Δ

=1%P

N

=0.01×14960=149.6(W)

⑻机械损耗和铁耗之和P

Ω+P

F e

P Ω+P

F e

=ΣP-P

C u f

-P

C u a

-P

S

-P

Δ

=2640-439.6-143.26-76-149.6=1.832(kW)

答:⑴额定输入功率为17.6kW;⑵额定输出功率为14.96kW;⑶总损耗为2.64kW;⑷励磁回路铜耗为439.6W;⑸电枢回路铜耗为143.26W;⑹电刷接触损耗76W;⑺附加损耗为149.6W;⑻机械损

耗和铁耗之和P

Ω+P

F e

约为1832W。

6-1、转子不动时,异步测速发电机为何没有电压输出?转动时,为何输出电压值与转速成正比,但频率却与转速无关?

答:当异步测速发电机的转子不动时,励磁绕组在其轴线方向上产生的脉振磁通与输出绕组的轴线方向垂直,因而不能在输出绕组中感应电势,也就无电压输出。转动时测速发电机(杯形)转子切割励磁绕组产生的脉振磁通,将在转子导体中感应电势、产生电流;此电流所产生的转子磁通与输出绕组轴线方向基本一致,输出绕组与转子这部分导体的关系就如变压器原副绕组的关系一样,因而输出绕组将有电压输出。

由于切割励磁磁通的转子导体感应电势的大小与励磁磁通和转子转速成正比,励磁磁通是脉振磁通(幅值不变,频率为励磁电源频率),所以异步测速发电机感应的电势为交变电势,电势的大小正比于转速,交变电势的频率为励磁电源的频率,与转速无关。

6-2、改变交流伺服电动机转向的方法有哪些?

答:要改变交流伺服电动机的转动方向,可单独改变它的励磁绕组的接线(即,将其两根引线脱开对调一下再接上);或可单独改变它的控制绕组的接线(即,将其两根引线脱开对调一下再接上)。也可不改变接线,仅通过控制装置,单使控制电压相位变反来实现。

6-3、当直流伺服电动机电枢电压,励磁电压不变时,如将负载转矩减少,此时电动机的电枢电流,电磁转矩、转速将怎样变化?

答:①根据如右图所示的直流伺服电动机机械特性曲线可知,电动机电枢电压不变时,负载转矩减小,转速将升高。②根据直流电机感应电势公式E=CeΦn可知,转速升高则感应电势增大,再根据直流电机电枢电路电压平衡方程式Ia=(U-E)/Ra,电压不变感应电势升高,则电枢电流将减小Ia。

③根据电磁转矩公式T=C

T

ΦI a可知,电枢电流减小,电磁转矩也减小。因此,当直流伺服电动机电枢电压,励磁电压不变时,如将负载转矩减少,此时电动机的电枢电流将减小、转速将升高、电磁转矩也将减小。一直到电磁转矩与负载转矩平衡,直流伺服电动机转速停止升高,电流停止减小,直流伺服电动机稳定运行。

【简单回答】:当直流伺服电动机的励磁电压U

1和控制电压(电枢电压)U

2

不变时,如将负载转

矩减小,则电枢电流I

2和电磁转矩T都将随之减小,转速n将随之增大。这是因为负载转矩T

2

小,T>T

2,转速n将增大,电枢电势E随之增大,而电压不变,I

2

减小,T也减小。

6-4、什么是步进电动机的步距角?什么是单三拍、六拍和双三拍?

答:步进电动机每次通电工作时,其转子都将相应转动一个角度,这一过程称为一步。工作时每一步,步进电动机转子转过的角度称为步进电动机的步距角。步进电动机从一相绕组通电换接到另一相绕组通电称为“一拍”,每次只有一个绕组通电用“单拍”以示区别于每次有两个绕组通电的则称为“双拍”。所谓“单三拍”通电方式是指:步进电动机每次只有一个绕组通电,且完成一个轮流通电的周期需要三拍的工作方式。

机电一体化答案

习题三(盐城工学院B机电081) 1.机电一体化系统中的机械装置包括那些内容? 主要包括传动、支承、导轨等 2.机电一体化传动系统有哪几种类型?各有什么作用? (1) 齿轮传动是机电一体化系统中常用的传动装置,它在伺服运动中的主要作用是实现伺服电机与执行机构间的力矩匹配和速度匹配,还可以实现直线运动与旋转运动的转换。(2) 螺旋传动是机电一体化系统中常用的一种传动形式。它是利用螺杆与螺母的相对运动,将旋转运动变为直线运动(3) 滑动摩擦导轨直线运动导轨的作用是用来支承和引导运动部件按给定的方向作往复直线运动滚动摩擦导轨是在运动件和承导件之间放置滚动体(滚珠、滚柱、滚动轴承等),使导轨运动时处于滚动摩擦状态。 3.齿轮传动间隙对系统有何影响?有那些方法可以消除该因素引起的系统误差? (1)偏心轴套调整法(2) 双片薄齿轮错齿调整法(3) 垫片调整法(4) 轴向压簧调整法 (5) 周向弹簧调整法 4.消除直齿间隙的常用方法有哪些?各有什么特点? 偏心轴套调整法: 这种方法结构简单,但侧隙调整后不能自动补偿。双片薄齿轮错齿调整法: 这种错齿调整法的齿侧间隙可自动补偿,但结构复杂。 5.导向机构都有哪几种类型?各有什么特点? 滑动摩擦导轨的运动件与承导件直接接触。其优点是结构简单、接触刚度大;缺点是摩擦阻力大、磨损快、低速运动时易产生爬行现象。 滚动摩擦导轨是在运动件和承导件之间放置滚动体(滚珠、滚柱、滚动轴承等),使导轨运动时处于滚动摩擦状态。滚动导轨的特点是:①摩擦系数小,并且静、动摩擦系数之差很小,故运动灵便,不易出现爬行现象;②定位精度高,一般滚动导轨的重复定位误差约为0.1~0.2μm,而滑动导轨的定位误差一般为10~20μm。因此,当要求运动件产生精确微量的移动时,通常采用滚动导轨;③磨损较小,寿命长,润滑简便;④结构较为复杂,加工比较困难,成本较高;⑤对脏物及导轨面的误差比较敏感。液体静压导轨的优点是:①摩擦系数很小(起动摩擦系数可小至0.0005),可使驱动功率大大降低,运动轻便灵活,低速时无爬行现象;②导轨工作表面不直接接触,基本上没有磨损,能长期保持原始精度,寿命长;③承载能力大,刚度好;④摩擦发热小,导轨温升小;⑤油液具有吸振作用,抗振性好。 静压导轨的缺点是:结构较复杂,需要一套供油设备,油膜厚度不易掌握,调整较困

机电一体化技术—考试题库及答案

------单选 滚珠丝杠螺母副结构类型有外循环插管式和_________等类型. 收藏 A. 内循环反向器式 B. 外循环反向器式 C. 内、外双循环 D. 内循环插管式 回答错误!正确答案: B PWM指的是________. 收藏 A. 计算机集成系统 B. 可编程控制器 C. 机器人 D. 脉宽调制 回答错误!正确答案: D 检测环节能够对输出进行测量,并转换成比较环节所需要的量纲,一般包括传感器和_______. 收藏 A. 转换电路 B. 调制电路 C. 控制电路 D. 逆变电路 回答错误!正确答案: A 下列关于机电一体化的说法中正确的是________. 收藏 A. 机电一体化设计主要是指产品的设计,不需要系统论方面的知识 B. 机电一体化技术是由传统机械技术及电子技术两方面技术构成 C. 机电一体化是指机电一体化技术,而不包含机电一体化产品 D. 机电一体化技术是以机械为主体 回答错误!正确答案: D 伺服控制系统一般包括控制器、被控对象、执行环节、比较环节和_________等个五部分.

收藏 A. 换向结构 B. 检测环节 C. 存储电路 D. 转换电路 回答错误!正确答案: B 电压跟随器的输出电压________输入电压. 收藏 A. 大于等于 B. 大于 C. 小于 D. 等于 回答错误!正确答案: D 滚珠丝杠螺母副结构类型有两类:外循环插管式和________. 收藏 A. 内循环反向 B. 内循环插管式 C. 外循环反向器式 D. 内、外双循环 回答错误!正确答案: A 受控变量是机械运动的一种反馈控制系统称________. 收藏 A. 伺服系统 B. 工业机器人 C. 顺序控制系统 D. 数控机床 回答错误!正确答案: A 下列关于机电一体化系统的伺服系统稳定性说法中错误的是________. 收藏 A.

传感器与检测技术习题答案周杏鹏

传感器与检测技术习题 答案周杏鹏 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

传感器与检测技术习题答案 第一章 答:随着我国工业化、信息化步伐加快,现代化建设中的各行各业高效生产对传感器也检测技术的依赖逐步加深。比如:先进的传感器技术助力现代化石油钻井平台建设。 为了能够可靠地采集钻井平台钴机塔架上运动部件的终点位置,使用了感应式传感器。在整个新型钻井中共使用了60个这样的感应式传感器,方形的接近开关对钢质目标的感应距离增大到20mm, 满足了近海海上勘探工作环境极为恶劣的所有要求。 他因素的干扰影响亦很小,重复性要好。 ③灵敏度:即被测参量较小的变化就可使传感器获得较大的输出信号。 ④其他:如耐腐蚀性、功耗、输出信号形式、体积、售价等。 答:功能:

信号调理:在检测系统中的作用是对传感器输出的微弱信号进行检波、转换、滤波、放大等,以方便检测系统后续处理或显示。 信号处理:信号处理时自动检测仪表,检测系统进行数据处理和各种控制的中枢环节,其作用和人类的大脑相类似。 区别: 信号调理作用是把信号规格化,滤除干扰,信号处理则是提取信号中的信息,并对这些信息按照功能要求进行处理。可以说,信号调理是进行信号处理的基础。 组成: 信号调理:信号放大、信号滤波、A/D转换 信号处理:主要是各种信号的嵌入式微控制器、专用高速数据处理器(DSP)等 答:分类见表1-1(P8) 答:按照被测参量分类,可以分成测量:电工量、热工量、机械量、物性和成分量、光学量、状态量等。 答:1.不断拓展测量范围,提高管检测精度和可靠性 2重视非接触式检测技术研究 3检测系统智能化

机电一体化系统设计;课后答案-

目录 机电一体化技术第1章习题-参考答案 (1) 1-1 试说明较为人们接受的机电一体化的含义。 (1) 1-4 何谓机电一体化技术革命? (1) 1-7.机电一体化系统有哪些基本要素组成?分别实现哪些功能? (1) 1-8.工业三大要素指的是什么? (1) 1-12.机电一体化系统的接口功能有哪两种? (1) 1-16.什么是机电互补法、融合法、组合法? (1) 机电一体化技术第2章习题-参考答案 (2) 2-1 设计机械传动部件时,为确保机械系统的传动精度和工作稳定性,常常提出哪些要求? (2) 2-2 机电一体化系统传动机构的作用是什么? (2) 2-3 机电一体化系统(产品)对传动机构的基本要求是什么? (2) 2-10 现有一双螺母齿差调整预紧式滚珠丝杠,其基本导程λ0=6mm、一端的齿轮齿数为100、另一端的齿轮齿数为98,当其一端的外齿轮相对另一端的外齿轮转过2 个齿时,试问:两个螺母之间相对移动了多大距离? (2) 2-16 各级传动比的分配原则是什么?输出轴转角误差最小原则是什么? (2) 2-17 已知:4 级齿轮传动系统,各齿轮的转角误差为?φ1=?φ2=?φ3=...=0.005 ra d,各级减速比相同,即?1=?2=...=?4=1.5。求:该传动系统的最大转角误差?φmax;为缩小?φmax,应采取何种措施? .. (2) 2-18 谐波齿轮传动有何特点?传动比的计算方法是什么? (3) 2-19.设有一谐波齿轮减速器,其减速比为 100,柔轮齿数为 100.当刚轮固定时,试求该谐波减速器的刚轮齿数及输出轴的转动方向(与输入轴的转向相比较) (3) 2-20.齿轮传动的齿侧间隙的调整方法有哪些? (3) 2-25.轴系部件设计的基本要求有哪些? (4) 机电一体化技术第3章参考答案 (5) 3-1 简述机电一体化系统执行元件的分类及特点。 (5) I

机电一体化考试答案

《机电系统设计》复习题 一、填空 1、机电一体化系统由机械系统(机构)、信息处理系统(计算机)、传感检测系统(传感器)、动力系统、执行元件系统等五个子系统组成。 2、机电一体化系统(产品)的设计类型大致有开发型设计、适应性设计和变异性设计等三种。 3、常用的机械传动部件有螺旋传动、齿轮传动、同步带传动、高速带传动、各种非线性传动部件等。 4、导向支承部件的作用是支撑和限制运动部件按给定的运动要求和规定的运动方向运动。 5、执行元件根据使用能量的不同,可以分为电动势、液压式和气压式等类型。 6、步进电动机是将电脉冲信号转换成机械角位移的执行元件。从励磁相数来分有三相、四相、五相、六相等步进电动机。 7、单片机应用系统中,常使用LED(发光二级管) 、CRT 和LCD(液晶显示器)作为显示器件。 8、工业机器人一般应由机械系统、驱动系统、控制系统、检测传感系统和人工智能系统等组成。 9、CNC机床按工艺用途分类可分为普通数控机床、机械加工中心、多坐标数控机床。 10、机电一体化系统设计的一般方法包括机电互补法、融合(结合)法、组合法。 11、机座或机架既起支承作用,承受其它零部件的重量及在其上保持相对的运动,又起基准作用,确保部件间的相对位置。 12、对伺服系统的基本要求有精度要求更高、可靠性更好、响应速度更快。 13、交流伺服电机消除“自转”现象的解决办法是。 14、两相交流伺服电动机的控制方法有三种:①幅值控制;②相位控制;⑧幅值—相位控制。机电一体化系统中应用较多的控制方法是。 15、步进电机步距角是指在一个脉冲作用下(即一拍)电动机转子转过的角位移,失调角是指转子轴上袈加一负载转矩时转子齿中心线与定子齿中心线所错过的电度角,最大静转矩是指失调角=正负90度。 16、按照校正装置在系统中的联接方法,可把校正分为有源校正和无源校正。 17、常用的执行元件是电气执行元件,其输入是电能,输出为机械能。 18、按刀具相对工件移动的轨迹分类,数控机床可分为点位控制数控机床、点位直线控

传感器与检测技术试题与答案

第1章传感器与检测技术基础思考题答案 l.检测系统由哪几部分组成? 说明各部分的作用。 答:一个完整的检测系统或检测装置通常是由传感器、测量电路和显示记录装置等几部分组成,分别完成信息获取、转换、显示和处理等功能。当然其中还包括电源和传输通道等不可缺少的部分。下图给出了检测系统的组成框图。 被测量 传感器测量 电路 电源 指示仪 记录仪 数据处 理仪器 检测系统的组成框图 传感器是把被测量转换成电学量的装置,显然,传感器是检测系统与被测对象直接发生联系的部件,是检测系统最重要的环节,检测系统获取信息的质量往往是由传感器的性能确定的,因为检测系统的其它环节无法添加新的检测信息并且不易消除传感器所引入的误差。 测量电路的作用是将传感器的输出信号转换成易于测量的电压或电流信号。通常传感器输出信号是微弱的,就需要由测量电路加以放大,以满足显示记录装置的要求。根据需要测量电路还能进行阻抗匹配、微分、积分、线性化补偿等信号处理工作。 显示记录装置是检测人员和检测系统联系的主要环节,主要作用是使人们了解被测量的大小或变化的过程。 2.传感器的型号有几部分组成,各部分有何意义? 依次为主称(传感器)被测量—转换原理—序号 主称——传感器,代号C; 被测量——用一个或两个汉语拼音的第一个大写字母标记。见附录表2; 转换原理——用一个或两个汉语拼音的第一个大写字母标记。见附录表3; 序号——用一个阿拉伯数字标记,厂家自定,用来表征产品设计特性、性能参数、产品系列等。若产品性能参数不变,仅在局部有改动或变动时,其序号可在原序号后面顺序地加注大写字母A、B、C等,(其中I、Q不用)。 例:应变式位移传感器:C WY-YB-20;光纤压力传感器:C Y-GQ-2。 3.测量稳压电源输出电压随负载变化的情况时,应当采用何种测量方法? 如何进行? 答:测定稳压电源输出电压随负载电阻变化的情况时,最好采用微差式测量。此时输出电压认可表示为U0,U0=U+△U,其中△U是负载电阻变化所引起的输出电压变化量,相对U来讲为一小量。如果采用偏差法测量,仪表必须有较大量程以满足U0的要求,因此对△U,这个小量造成的U0的变化就很难测准。测量原理如下图所示: 图中使用了高灵敏度电压表——毫伏表和电位差计,R r和E分别表示稳压电源的内阻和电动势,凡表示稳压电源的负载,E1、R1和R w表示电位差计的参数。在测量前调整R1

机电一体化练习及答案

一、选择题(每小题2分,共20分,多选漏选均不得分) 1.一个典型的机电一体化系统,应包含以下几个基本要素:( ABCD ) A、机械本体 B、动力与驱动部分 C、执行机构 D、控制及信息处理部分 2.齿轮传动的总等效惯量与传动级数( C ) A. 有关 B. 无关 C. 在一定级数内有关 D. 在一定级数内无关 3. 某伺服电动机最高转速为1200r/min,通过丝杠螺母传动带动机床进给运动,丝杠螺距为6mm,最大进给速率可达( C ) A. 72m/min B. 7.2m/min C. 5m/min D. 3.6m/min 4.计算步进电动机转速的公式为(B) A. 360o r mz c B. 60 r f mz c C. 180 cos o sm T mc D. 360 180 o o mc 5. 通过计算机网络,将计算机辅助设计、计算机辅助规划以及计算机辅助制造,统一连接成一个大系统称为( B ) A. 顺序控制系统 B. 计算机集成制造系统 C. 柔性制造系统 D. 伺服系统 6.滚珠丝杠副的基本导程指丝杠相对于螺母旋转2π弧度时,螺母上基准点的( B ) A.径向位移B.轴向位移C.螺旋线长度D.坐标值 7. 步进电机一般用于( A )控制系统中。 A. 开环 B. 闭环 C. 半闭环 D. 前馈 8.某三相步进电动机,转子40个齿,欲使其步距角为1.5o,应采用的通电方式为( C ) A. 单拍制 B. 双拍制 C. 单双拍制 D. 细分电路 9.为了提高滚珠丝杠副的旋转精度,滚珠丝杠副在使用之前应该进行( B )A.调整径向间隙B.预紧C.预加载荷D.表面清洗 10. 下列属于变磁阻电动机的是( C ) A. 直流电动机 B. 交流感应电动机 C.步进电动机D. 永磁同步电动机

机电一体化系统设计试题及答案

一、名词解释(每小题2分,共10分) 1、测量 2、灵敏度 3、压电效应 4、动态误差 5、传感器 二、填空题(每小题2分,共20分) 1、滚珠丝杆中滚珠的循环方式: _内旋换与外循环 2、机电一体化系统,设计指标与评价标准应包括___ _______, __________, __________ , __________。 3、顺序控制系统就是按照预先规定的次序完成一系列操作的系统, 顺序控制器通常用________。 4、某光栅的条纹密度就是50条/mm,光栅条纹间的夹角θ=0、001孤度, 则莫尔条纹的宽度就是_______________________。 5、连续路径控制类中为了控制工具沿任意直线或曲线运动,必须同时控制 每一个轴的______________________,使它们同步协调到达目标点。 6、某4极交流感应电机,电源频率为50Hz,转速为1470r/min,则转差率为_____________。 7、齿轮传动的总等效惯量与传动级数__________________________________________。 8、累计式定时器工作时有_____________________________________________________。 9、复合控制器必定具有__________________________________。 10、钻孔、点焊通常选用_______________________________________类型。 三、选择题(每小题2分,共10分) 1、一般说来,如果增大幅值穿越频率ωc的数值,则动态性能指标中的调整时间ts ( ) A、产大 B、减小 C、不变 D、不定 2、加速度传感器的基本力学模型就是( ) A、阻尼—质量系统 B、弹簧—质量系统 C、弹簧—阻尼系统 D、弹簧系统 3、齿轮传动的总等效惯量与传动级数( ) A、有关 B、无关 C、在一定级数内有关 D、在一定级数内无关 4、顺序控制系统就是按照预先规定的次序完成一系列操作的系统,顺序控制器通常用( ) A、单片机 B、2051 C、PLC D、DSP 5、伺服控制系统一般包括控制器、被控对象、执行环节、比较环节与检测环节等个五部分。 A 换向结构 B 转换电路 C 存储电路D检测环节 四、判断题(每小题2分,共10分) 1、伺服控制系统的比较环节就是将输入的指令信号与系统的反馈信号进行比较,以获得输出与输入间的偏差信号。( ) 2、电气式执行元件能将电能转化成机械力,并用机械力驱动执行机构运动。如交流电机、直流电机、力矩电机、步进电 机等。( ) 3、对直流伺服电动机来说,其机械特性越硬越好。( ) 4、步进电机的步距角决定了系统的最小位移,步距角越小,位移的控制精度越低。( ) 5、伺服电机的驱动电路就就是将控制信号转换为功率信号,为电机提供电能的控制装置,也称其为变流器,它包括电压、 电流、频率、波形与相数的变换。( ) 五、问答题(每小题10分,共30分) 1、步进电动机常用的驱动电路有哪几种类型? 2、什么就是步进电机的使用特性? 3、机电一体化系统设计指标大体上应包括哪些方面? 一、名词解释(每小题2分,共10分) 1、就是人们借助于专门的设备,通过一定的方法对被测对象收集信息,取得数据概念的过程。 2、指在稳态下,输出的变化量ΔY与输入的变化量ΔX的比值。即为传感器灵敏度。 S=dy/dx=ΔY/ΔX 3、某些电介质,当沿着一定的方向对它施加力而使它产生变形时,内部就会产生极化现象,同时在它的两个表面上将产生 符号相反的电荷。当外力去掉后,它又重新恢复到不带电的状态,这种现象被称为压电效应。 4、动态误差在被测量随时间变化过程中进行测量时所产生的附加误差称为动态误差。

自动检测技术_马西秦_第三版_习题答案

检测方法:主动和被动、直接与间接、接触式与非接触式、动态和静态。 静态特性:灵敏度(S=dy/dx )与分辨率、线性度、迟滞、测量范围与量程、精度等级。 动态特性:幅频特性、相频特性。 ???? ??? ???? 系统误差 绝对误差静态误差表示方法出现的规律随机误差被测量与时间的关系相对误差动态误差粗大误差 绝对误差:(指示值与被测量的真值之差) 相对误差:(绝对误差与被测量真值之差) 引用误差:(绝对误差与仪表量程L 的比值) 最大引用误差不能超过允许值的划分精度等级的尺度。 系统误差的大小表明测量结果的正确度,系统误差越小,测量结果的正确度越高。 随机误差的大小表明精密度,随机误差大,测量结果分散,精密度低(精确度)。 粗大误差(过失误差)主要是人为因素造成的。 电阻应变片的工作原理:导体或半导体材料在外力作用下产生机械变形时,其电阻也想应发生变化的物理现象,电阻应变效应。 ?? ?? ?? ?? ?? ??金属电阻应变片 体型电阻应变片半导体应变片(压阻效应)薄膜型扩散型 △R/R=K0?(K0金属电阻丝的应变灵敏度系数) 金属材料:几何尺寸的改变影响K 0值得大小 半导体材料:电阻率相对变化决定K 0值得大小 传感器的功能:检测,转换 电桥平衡条件:电桥相对臂的阻值乘积相等 铂电阻作为复现温标的基准器(铂易于提纯,化学性质稳定,电阻率较大,耐高温) 热敏电阻类型:正温度系数,负温度系数,临界热敏电阻 电容式传感器是把被测量转换为电容量变化的一种传感器C=?A/d 变面积式、变间隙式、变介电常数式, 自感式电感传感器:变面积型、变间隙型、螺管型 可见采用带相敏整流的交流电桥,输出信号既能反映位移的大小又能反映位移的方向 差动变压器形式:变隙型,螺线管型 Z 轴(光轴)X 轴(电轴)Y 轴(机械轴) 当沿着Z 轴方向受力时不产生压电效应 压电传感器可以等效为与电流源并联或与电压源串联 热电偶基本组成部分:热电极 热电偶的基本定律:均质导体定律、中间导体定律、标准电极定律、中间温度定律。 光电效应分类: 外光电效应(光电管,光电倍增管) 内光电效应(光敏电阻,光敏晶体管) 光生伏特效应(光电池) 光电传感器类型:模拟式光电传感器、脉冲式光电传感器。 光敏二极管在电路中常处于反向偏置状态 抑制形成干扰的"三要素" 消除或抑制干扰源; 阻断或减弱干扰的藕合通道或传输途径; 削弱接收电路对干扰的灵敏度。 硬件抗干扰措施:屏蔽技术、接地技术、浮空技术、隔离技术、滤波器等; 软件抗干扰措施:数字滤波、冗余技术等微机软件的抗干扰措施。 干扰的来源: 外部干扰:检测装置周围的电气设备、电磁场、电火花、电弧焊接、高频加热、晶闸管整流装置等强电系统的影响。雷电、大气电离、宇宙射线、太阳黑子活动以及其他电磁波干扰。 内部干扰:内部干扰是由装置内部的各种元器件引起的。 干扰形成条件:干扰源、对干扰敏感的接收电路、干扰源到接收电路之间的传输途径。 02044 ()4444RR R U R U U U K R R R R U R U U K UK R εεε ??????=== ? ?+??????????? === ? ????????? 检测系统由哪几部分组成? 说明各部分的作用? 一个完整的检测系统或检测装置通常是由传感器、测量电路和显示记录装置等几部分组成,分别完成信息

机电一体化课后习题答案

1.步进电动机的结构及工作原理是什么?驱动方式有哪些?各有何特点?并举一个例子说明步进电动机是如何驱动和控制的. 答:(1)步进电动机的工作原理 步进电动机是一种将电脉冲信号转换成角位移或线位移的机电元件。步进电动机的输入量是脉冲序列,输出量则为相应的增量位移或步进运动。正常运动情况下,它每转一周具有固定的步数;做连续步进运动时,其旋转转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接受数字量的控制,所以特别适宜采用微机进行控制。 图1 三相反应式步进电动机的结构示意图 1——定子2——转子3——定子绕组{{分页}} 图1是最常见的三相反应式步进电动机的剖面示意图。电机的定子上有六个均布的磁极,其夹角是60o。各磁极上套有线圈,按图1连成A、B、C三相绕组。转子上均布40个小齿。所以每个齿的齿距为θE=360o/40=9o,而定子每个磁极的极弧上也有5个小齿,且定子和转子的齿距和齿宽均相同。由于定子和转子的小齿数目分别是30和40,其比值是一分数,这就产生了所谓的齿错位的情况。若以A相磁极小齿和转子的小齿对齐,如图1,那么B相和C相磁极的齿就会分别和转子齿相错三分之一的齿距,即3o。因此,B、C极下的

磁阻比A磁极下的磁阻大。若给B相通电,B相绕组产生定子磁场,其磁力线穿越B相磁极,并力图按磁阻最小的路径闭合,这就使转子受到反应转矩(磁阻转矩)的作用而转动,直到B磁极上的齿与转子齿对齐,恰好转子转过3o;此时A、C磁极下的齿又分别与转子齿错开三分之一齿距。接着停止对B相绕组通电,而改为C相绕组通电,同理受反应转矩的作用,转子按顺时针方向再转过3o。依次类推,当三相绕组按A→B→C→A顺序循环通电时,转子会按顺时针方向,以每个通电脉冲转动3o的规律步进式转动起来。若改变通电顺序,按A→C→B→A顺序循环通电,则转子就按逆时针方向以每个通电脉冲转动3o的规律转动。因为每一瞬间只有一相绕组通电,并且按三种通电状态循环通电,故称为单三拍运行方式。单三拍运行时的步矩角θb为30o。三相步进电动机还有两种通电方式,它们分别是双三拍运行,即按AB→BC→CA→AB顺序循环通电的方式,以及单、双六拍运行,即按A →AB→B→BC→C→CA→A顺序循环通电的方式。六拍运行时的步矩角将减小一半。反应式步进电动机的步距角可按下式计算: θb=360o/NE r(1) 式中E r——转子齿数; N——运行拍数,N=km,m为步进电动机的绕组相数,k=1或2。 (2) 步进电动机的驱动方法 步进电动机不能直接接到工频交流或直流电源上工作,而必须使用专用的步进电动机驱动器,如图2所示,它由脉冲发生控制单元、功率驱动单元、保护单元等组成。图中点划线所包围的二个单元可以用微机控制来实现。驱动单元与步进电动机直接耦合,也可理解成步进电动机微机控制器的功率接口,这里予以简单介绍。

机电一体化试题及答案

填空题 1. 机电一体化技术的内涵是微电子技术和机械技术渗透过程中形成的一个新概念。 2. 机电一体化系统(产品)是机械和微电子技术的有机结合。 3. 工业三大要素是物质、能量、信息;机电一体化工程研究所追求的三大目标是:省能源、省资源、智能化。 4. 机电一体化研究的核心技术是接口问题。 5. 机电一体化系统(产品)构成的五大部分(或子系统)是:机械系统、电子信息处理系统、动力系统、传感检测系统、执行元件系统。 6. 机电一体化接口按输入/输出功能分类机械接口、物理接口、信息接口、环境接口。 7. 机电一体化系统(产品)按设计类型分为:开放性设计、适应性设计、变异性设计。 8. 机电一体化系统(产品)按机电融合程度分为:机电互补法、机电结合(融合)法、机电组合法。 9. 机电一体化技术是在机械的主功能、动力功能、信息与控制功能基础上引入微电子技术,并将机械装置与电子装置用相关软件有机地结合所构成系统的总称。 10.机电一体化系统实现三大功能应具有的两大重要特征(转换作用方式): 以能源转换为主和以信息转换为主。 11. 丝杠螺母机构的基本传动形式有:螺母固定丝杆转动并移动、丝杆转动螺母移动、螺母转动丝杆移动、丝杆固定螺母转动并移动

四种形式。 12. 滚珠丝杠副按螺纹滚道截面形状分为单圆弧和双圆弧两类;按滚珠的循环方式分为内循环和外循环两类。 13. 滚珠丝杠副轴向间隙调整与预紧的基本方法有:双螺母螺纹预紧调整、双螺母齿差预紧调整、双螺母垫片调整预紧、弹簧自动调整预紧四种方式。 14. 滚珠丝杠副常选择的支承方式有:单推—单推式、双推—双推式、双推—简支式、双推—自由式。 15. 机电一体化系统(产品)常用齿轮传动形式有定轴轮系、行星轮系和谐波轮系三种形式。 16. 在机电一体化系统机械传动中,常用的传动比分配原则有:重量最轻原则、转动惯量最小原则、传动精度最优原则等。 17. 常用导轨副的截面形式有:三角形导轨、矩形导轨、燕尾形导轨、圆形导轨四种形式。 18. 导轨刚度主要指:结构刚度、接触刚度和局部刚度。 19. 机电一体化系统(产品)中,常可选择的执行元件:电磁式、液压式、气压式和其他形式的执行元件。 20. 电动机的工作特性分为恒转矩工作和恒功率两个阶段,其转折点的转速和功率分别称为:额定转速和额定功率;伺服电动机用于调速控制时,应该工作在恒转矩阶段。 21. 步进电机按转子结构形式可分为:反应式步进电机、永磁式步进电机、混合式步进电机三种。 22. 步进电机的工作方式有:单拍工作方式和倍拍工作方式。 23. 步进电机的开环控制精度主要由步进电机的结构形式和工作

检测技术答案

《检测技术》答案 第2章 2-1 二阶系统的频率特性受阻尼比ξ的影响较大。分析表明,ξ越小,系统对输入扰动容易发生超调和振荡,对使用不利。在ξ=0.6-0.7时,系统在宽广的频率范围内由于幅频特性和相频特性而引起的失真小,系统可以获得较为合适的综合特性。比如二阶系统在单位阶跃激励下时,如果阻尼比ξ选择在0.6-0.7范围内,则最大超调量不超过10%,且当误差允许在(5-2)%时趋于“稳态”的调整时间也最短。 2-2 频率特性是指测试系统反映出来的输出与输入幅值之比和两者之相位差是输入频率的函数的这样一个特性。当测试系统的输入为正弦信号时,将该信号的输出与输入之比定义为频响函数。工作频带是指测试装置的适用频率范围,在该频率范围内,仪器装置的测试结果均能保证达到其它相关的性能指针。 2-3 不失真测试要求测试系统的输出波形和输入波形精确相一致,只是幅值相对增大和时间相对延迟。而实际的测试系统很难做到无限频带上完全符合不失真测试的条件,即使测取一个理想的三角波,在某一频段范围内,也难以完全理想地实现不失真测试。三角波呈周期性变化,其测试装置的非线性度必然引起波形的畸变,导致输出失真。由此只能努力使波形失真限制在一个允许的误差范围内,即做到工程意义上的不失真测量。 2-4 系统的总灵敏度为:90×0.005×20=9mm/Mpa 偏移量为:9×3.5=31.5mm 2-5 由 ,得 用该装置测量频率为50Hz 的正弦信号时, ,即幅值误差为1.3% 相角差为: 2-6 ()[] () ( ) t 10t 1000/t 2 e 39.0t 40cos 05.0t 40sin 01.0t 4cos 34.0t 4sin 86.0e 39.096.75t 40sin 048.080.21t 4sin 93.0sin e t sin ) (1A )t (y ---+-+-=+-+-=-++= ? ?ωωττ k ()()() ()ωτ ?ω?ωωωωarctan a e t sin a 1 )t (y s a s 1 s Y 2 2at 2 22 2-=++ ++= ++= - 注:设输入t Asin )t (x ω= 2-7 由 得 输入信号的频率范围是: 2-8 环节一的灵敏度为: 1.5/5=0.3 环节二的灵敏度为: 41 故串联后的灵敏度为:0.3×41=12.3 2-9 由 测量频率为400Hz 变化的力参量时 : 若装置的阻尼比为0.7,则:

机电一体化试题及答案汇总

目录 机电一体化复习题 一、名词解释 1机电一体化 2伺服控制 3闭环控制系统 4逆变器 5 6单片机 7 接口 8 通道 9 串行通信 10直接存储器存取() 二、判断题: 1 在计算机接口技术中通道就是接口。(×) 2 滚珠丝杆不能自锁。(√) 3 无论采用何种控制方案,系统的控制精度总是高于检测装置的精度。(×) 4 异步通信是以字符为传输信息单位。(√) 5 同步通信常用于并行通信。(×) 6 无条件方式常用于中断控制中。(×) 7从影响螺旋传动的因素看,判断下述观点的正确或错误

(1)影响传动精度的主要是螺距误差、中径误差、牙型半角误差(√) (2)螺杆轴向窜动误差是影响传动精度的因素(√)(3)螺杆轴线方向与移动件的运动方向不平行而形成的误差是影响传动精度的因素(√) (4)温度误差是影响传动精度的因素(√) 三、单项选择题 1. 步进电动机,又称电脉冲马达,是通过( B )决定转角位移的一种伺服电动机。 A 脉冲的宽度 B 脉冲的数量 C 脉冲的相位 D 脉冲的占空比 2. 对于交流感应电动机,其转差率s的范围为(B)。 A.1

A.插补 B.切割 C.画 线 D.自动 四、填空题 1. 在计算机和外部交换信息中,按数据传输方式可分为:串行通信和并行通信。 2. 微机控制系统中的输入与输出通道一般包括模拟量输入通道模拟量输出通道、数字量输入通道数字量输出通道四种通道。 3. 在伺服系统中,在满足系统工作要求的情况下,首先应保证系统的稳定性和精度并尽量高伺服系统的响应速度。 4. 一般来说,伺服系统的执行元件主要分为电磁式液压式气压式和其它等四大类型。 5. 在变频调速系统中,通常载波是等腰三角波,而调制波是正弦波 6.异步交流电动机变频调速: a)基频(额定频率)以下的恒磁通变频调速,属于恒转矩 调速方式。 b)基频(额定频率)以上的弱磁通变频调速,属于恒功率 调速方式。 7. 开环步进电动机控制系统,主要由. 环形分配器功率驱动器步进电机等组成。

机电一体化期末考试试题及答案

1.什么是“机电一体化”?以打夯机为例,内含机械与电器,问这是不是机电 一体化产品? 答:机电一体化又称机械电子工程,是机械工程与自动化的一种,英语称为Mechatronics,它是由英文机械学Mechanics的前半部分与电子学Electronics 的后半部分组合而成。 打夯机不属于机电一体化产品。因为打夯机只是普通的机械加电器,它属于硬连接或者称为机械连接只能应用在就地或者小范围场合使用,不能满足大面积和远程控制。而机电一体化就不一样了,它不光有硬连接、机械连接还有软连接。机电一体化属于同时运用机械、电子、仪表、计算机和自动控制等多种技术为一体的一种复合技术。它不光可以就地操作,小范围应用,还可以大面积使用操作,远程监测、控制。 2.机电一体化的技术构成是什么? 答:机械技术、微电子技术、信息技术 3.产品实现机电一体化后,可以取得那些成效? 答:产品实现机电一体化后可以取得的成效:产品性能提高、功能增强、结构简化、可靠性提高、节约能源、改善操作、提高灵活性等。 4.数字量传感具有哪三种类型?他们有什么区别? 数字传感器按结构可分成三种类型: 1.直接式数字量传感器——其分辨率决定于数字量传感器的位数。 被测物理量→数字编码器→信息提取装置→数字量输出 2.周期计数式数字传感器 它的结构示意图如下图1所示。此种结构的位移分辨率对低精度的周期计数式数字传感器而言,仅由周期信号发生器的性质决定。例如,光栅当长1mm有100条刻线时,其分辨率即为0.01mm;对高精度的周期计数式数字传感器而言,还要考虑到电子细分数。如在100倍电子细分数下,此光栅的分辨率就是0.1μm。此种结构属于增量式结构,结构的特点(位移方向的要求)决定它不但备有辨向电路,而且周期计数器还具有可逆性质。 图1 周期计数式数字量传感器的结构方框图 3.频率式数字传感器 其结构示意图如下图2所示。按振荡器的形式,可将此种数字传感器分成带有晶体谐振器的和不带晶体谐振器的两种。前者,按被测量的作甩点,又分作用在石

检测技术课后答案

习题答案 第二章 2-1 二阶系统的频率特性受阻尼比ξ的影响较大。分析表明,ξ越小,系统对输入扰动容易发生超调和振荡,对使用不利。在ξ=0.6-0.7时,系统在宽广的频率范围内由于幅频特性和相频特性而引起的失真小,系统可以获得较为合适的综合特性。比如二阶系统在单位阶跃激励下时,如果阻尼比ξ选择在0.6-0.7范围内,则最大超调量不超过10%,且当误差允许在(5-2)%时趋于“稳态”的调整时间也最短。 2-2 频率特性是指测试系统反映出来的输出与输入幅值之比和两者之相位差是输入频率的函数的这样一个特性。当测试系统的输入为正弦信号时,将该信号的输出与输入之比定义为频响函数。工作频带是指测试装置的适用频率范围,在该频率范围内,仪器装置的测试结果均能保证达到其它相关的性能指针。 2-3 不失真测试要求测试系统的输出波形和输入波形精确相一致,只是幅值相对增大和时间相对延迟。而实际的测试系统很难做到无限频带上完全符合不失真测试的条件,即使测取一个理想的三角波,在某一频段范围内,也难以完全理想地实现不失真测试。三角波呈周期性变化,其测试装置的非线性度必然引起波形的畸变,导致输出失真。由此只能努力使波形失真限制在一个允许的误差范围内,即做到工程意义上的不失真测量。 2-4 系统的总灵敏度为:90×0.005×20=9mm/Mpa 偏移量为:9×3.5=31.5mm 2-5 由,得 用该装置测量频率为50Hz的正弦信号时, ,即幅值误差为1.3% 相角差为: 2-6 由,得:

2-7 由 输入信号的频率范围是: 2-8 环节一的灵敏度为: 1.5/5=0.3 环节二的灵敏度为:41 故串联后的灵敏度为:0.3×41=12.3 2-9 由 测量频率为400Hz变化的力参量时: 若装置的阻尼比为0.7,则: 2-10 由,得: 又:由,得: 频率响应函数为:

机电一体化技术第二版课后习题答案

第1章 1-1、机电一体化是在机械主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。 1-2、机电一体化系统的主要组成、作用及其特点是什么? a、机械本体:用于支撑和连接其他要素,并把这些要素合理地结合起来,形成有机的整体。 b、动力系统:为机电一体化产品提供能量和动力功能,驱动执行机构工作以完成预定的主功能。 c、传感与监测系统:将机电一体化产品在运行过程中所需要的自身和外界环境的各种参数及状态转换成可以测定的物理量,同时利用监测系统的功能对这些物理量进行测定,为机电一体化产品提供运行控制所需的各种信息。 d、信息处理及控制系统:接收传感器与检测系统反馈的信息,并对其进行相应的处理、运算和决策,以对产品的运行施以按照要求的控制,实现控制的功能。 e、执行装置:在控制信息的作用下完成要求的动作,实现产品的主功能。 1-3、工业三大要素:物质、能量、信息。 1-4、机电一体化产品与传统的机械电气化产品相比,具有较高的功能水平和和附加值,它为开发者、生产者和用户带来越来越多的社会经济效益。 1-7、机电一体化的主要支撑技术:传感检测技术、信息处理技术、自动控制技术、伺服驱动技术、接口技术、精密机械技术、系统总成技术。 1-8、机电一体化的发展趋势:智能化、模块化、网络化、微型化、绿色化、人格化、自适应化。 第2章 2-1、机电一体化系统对传动机构的基本要求:传动间隙小、精度高、低摩擦、体积小、重量轻、运动平稳、响应速度快、传动转矩大、高谐振频率以及与伺服电动机等其他环节的动态性能相匹配等要求。 2-2、丝杆螺母机构的传动形式及其特点:a、螺母固定、丝杆转动并移动;b、丝杆转动、螺母移动;c、螺母转动、丝杆移动;d、丝杆固定、螺母转动并移动;e、差动传动。 2-3、滚珠丝杆副的组成及特点:由丝杆、螺母、滚珠和反相器四部分组成;具有轴向刚度高、运动平稳、传动精度高、不易磨损、使用寿命长等优点。 2-4、滚珠丝杆副的选择:结构形式的选择、结构尺寸的选择 2-5、齿轮传动各级传动比分配原则:①等效转动惯量最小原则②重量最轻原则③输出轴转角误差最小原则(最末两级的传动比应取大一些,并尽量提高最末一级齿轮副的加工精度); 2-8、齿轮传动侧隙的调整有偏心套调整、双片薄齿轮错齿调整和轴向垫片调整等多种方法。 2-9、机械执行机构的基本要求:①惯量小、动力大;②体积小、重量轻;③便于维修、安装;④易于计算机控制。 2-10、简述各种传感器的特性及选用原则? 一、静态特性是指当测量处于稳定状态下,传感器的输入值与输出值之间的关系。主要技术指标包括:1、线性度。2、灵敏度。3、迟滞。4、重复性。5、分辨率。6、零飘。二、动态特征是指传感器测量动态信号时输出对输入的响应特性。 (1)电气式,具有操纵方便、适宜编程、响应快、伺服性能好、易与微机相接等优点;(2)液压式,优点是输出功率

机电一体化技术基本试题及答案

一、名词解释(每小题2分,共10分) 1. 测量 2.灵敏度 3. 压电效应 4. 动态误差 5. 传感器 二、填空题(每小题2分,共20分) 1. 滚珠丝杆中滚珠的循环方式:__________,________________。 2. 机电一体化系统,设计指标和评价标准应包括__________,__________, __________ ,__________。 3. 顺序控制系统是按照预先规定的次序完成一系列操作的系统, 顺序控制器通常用___________________________________。 4. 某光栅的条纹密度是50条/mm,光栅条纹间的夹角θ=0.001孤度, 则莫尔条纹的宽度是_______________________。 5. 连续路径控制类中为了控制工具沿任意直线或曲线运动,必须同时控制 每一个轴的 ______________________ ,使它们同步协调到达目标点。 6. 某4极交流感应电机,电源频率为50Hz,转速为1470r/min,则转差率为_____________。 7. 齿轮传动的总等效惯量与传动级数__________________________________________。 8. 累计式定时器工作时有_____________________________________________________。 9. 复合控制器必定具有__________________________________。 10. 钻孔、点焊通常选用_______________________________________类型。 三、选择题(每小题2分,共10分) 1. 一般说来,如果增大幅值穿越频率ωc的数值,则动态性能指标中的调整时间ts ( ) A. 产大 B. 减小 C. 不变 D. 不定 2. 加速度传感器的基本力学模型是( ) A. 阻尼—质量系统 B. 弹簧—质量系统 C. 弹簧—阻尼系统 D. 弹簧系统 3. 齿轮传动的总等效惯量与传动级数( ) A. 有关 B. 无关 C. 在一定级数内有关 D. 在一定级数内无关 4. 顺序控制系统是按照预先规定的次序完成一系列操作的系统,顺序控制器通常用( ) A. 单片机 B. 2051 C. PLC D. DSP 5、伺服控制系统一般包括控制器、被控对象、执行环节、比较环节和()等个五部分。 A 换向结构 B 转换电路 C 存储电路D检测环节 四、判断题(每小题2分,共10分) 1、伺服控制系统的比较环节是将输入的指令信号与系统的反馈信号进行比较,以获得输出与输入间的偏差信号。( ) 2、电气式执行元件能将电能转化成机械力,并用机械力驱动执行机构运动。如交流电机、直流电机、力矩电机、步进 电机等。() 3、对直流伺服电动机来说,其机械特性越硬越好。( ) 4、步进电机的步距角决定了系统的最小位移,步距角越小,位移的控制精度越低。() 5、伺服电机的驱动电路就是将控制信号转换为功率信号,为电机提供电能的控制装置,也称其为变流器,它包括电压、 电流、频率、波形和相数的变换。( ) 1. 是人们借助于专门的设备,通过一定的方法对被测对象收集信息,取得数据概念的过程。 2. 指在稳态下,输出的变化量ΔY与输入的变化量ΔX的比值。即为传感器灵敏度。 S=dy/dx=ΔY/ΔX 3. 某些电介质,当沿着一定的方向对它施加力而使它产生变形时,内部就会产生极化现象,同时在它的两个表面上将

机电一体化习题答案

第1章机电一体化概论1 1.1 机电一体化的概念1 1.1.1 机电一体化的发展历史1 1.1.2 机电一体化系统的特征2 1.1.3 机电一体化的意义5 1.2 机电一体化的技术基础6 1.2.1 机械设计和制造技术6 1.2.2 微电子技术6 1.2.3 传感器技术6 1.2.4 软件技术7 1.2.5 通信技术7 1.2.6 驱动技术7 1.2.7 自动控制技术7 1.2.8 系统技术8 1.3 机电一体化的发展及应用概况8 习题与思考题10 第2章精密机械技术11 2.1 概述11 2.1.1 机电一体化对机械系统的基本要求11 2.1.2 机械系统的主要组成12 2.2 传动机构12 2.2.1 传动机构的性能要求12 2.2.2 精密传动机构——滚珠丝杠副12 2.2.3 齿轮传动18 2.2.4 同步带传动20 2.2.5 间歇传动22 2.3 导向机构23 2.3.1 导轨副的组成及种类23 2.3.2 导轨的基本要求24 2.3.3 滑动导轨副27 2.3.4 滚动直线导轨副和圆柱直线滚动导轨副31 2.3.5 静压导轨副33 2.4 执行机构34 2.4.1 执行机构及其技术特点34

2.4.2 电磁执行机构34 2.4.3 压电驱动器与超声电机39 2.4.4 微动机构47 2.4.5 液压机构51 2.4.6 气动机构57 习题与思考题62 第3章工业控制计算机64 3.1 概述64 3.1.1 机电一体化对控制系统的基本要求64 3.1.2 机电一体化控制系统的类型、特点与选用64 3.2 工控机的特点、组成及总线67 3.2.1 工控机及其特点67 3.2.2 工控机的组成67 3.2.3 工控机的ISA总线和PCI总线69 3.3 工控机的主板79 3.4 工控机的接口卡79 3.4.1 模拟量输入/输出卡79 3.4.2 数字量输入/输出卡85 3.4.3 运动控制卡85 3.4.4 RS-232/RS-485模块89 3.4.5 CAN总线接口卡91 3.5 工业组态软件94 3.5.1 工业组态软件简介94 3.5.2 工业组态软件设计的基本步骤96 3.5.3 工业组态软件的设备连接与测试96 3.5.4 工业组态软件的报警显示97 3.5.5 工业组态软件实现实时数据、历史数据、实时曲线与历史曲线的显示97 3.5.6 工业组态软件的工程安全机制97 3.6 工控机与组态软件的应用98 习题与思考题99 第4章基于单片机的控制器101 4.1 MCS-51单片机101 4.2 模拟数据采集101 4.2.1 传感器102

相关主题
文本预览
相关文档 最新文档