当前位置:文档之家› 51单片机红外遥控解码程序(自己修改过的)

51单片机红外遥控解码程序(自己修改过的)

51单片机红外遥控解码程序(自己修改过的)
51单片机红外遥控解码程序(自己修改过的)

阅读:

编者按:以下是网友编写的遥控解码程序!一种用延时等待的解码方法,比较容易理解,但缺点是占用CPU运行时间,第二种方法用定时器和外中断的解码方法,初学不易理解,但优点也很明显,第二种方法如果能解决连发解码就比较完美,更完善的红外遥控解码程序,请参考本站TOPAV-2008,TOP51-2005所配程序。

解码方法一

;//单片机接收红外解读程序\\

;硬件结构:8951,P0口数码管段码,P2.0-P2.3为位,P1为8个LED

;P3.2为红外接收头,P2.7蜂鸣器,晶振12M

;适用UPD6121 6122芯片接收

;---------------------------------------------------------

ORG 0000H

AJMP MAIN ;转入主程序

ORG 0003H ;外部中断P3.2脚INT0入口地址

AJMP INT ;转入外部中断服务子程序(解码程序)

;以下为主程序进行CPU中断方式设置

MAIN: SETB EA ;打开CPU总中断请求

SETB IT0 ;设定INT0的触发方式为脉冲下降沿触发

SETB EX0 ;打开INT0中断请求

AJMP $

;以下为进入P3.2脚外部中断子程序,也就是解码程序

INT: CLR EA ;暂时关闭CPU的所有中断请求

MOV R6,#10

SB: ACALL YS1 ;调用882微秒延时子程序

JB P3.2,EXIT ;延时882微秒后判断P3.2脚是否出现高

; 电平如果有就退出解码程序

DJNZ R6, SB ;重复10次,目的是检测在8820微秒内

;如果出现高电平就退出解码程序

;以上完成对遥控信号的9000微秒的初始低电平信号的识别。JNB P3.2, $ ;等待高电平避开9毫秒低电平引导脉冲ACALL YS2 ;延时4.74毫秒避开4.5毫秒的结果码

MOV R1,#1AH ;设定1AH为起始RAM区

MOV R2,#4

;

PP: MOV R3,#8

JJJJ: JNB P3.2,$ ;等待地址码第一位的高电平信号

LCALL YS1 ;高电平开始后用882微秒的时间尺去判断信

;号此时的高低电平状态

MOV C,P3.2 ;将P3.2引脚此时的电平状态0或1存入C中JNC UUU ;如果为0就跳转到UUU

LCALL YS3

;

UUU: MOV A,@R1 ;将R1中地址的给A

RRC A ;将C中的值0或1移入A中的最低位

MOV @R1,A ;将A中的数暂时存放在R1中

DJNZ R3,JJJJ ;接收地址码的高8位

INC R1 ;对R1中的值加1,换下一个RAM

DJNZ R2,PP ;接收完16位地址码和8位数据码和8位数据反

; 码,存放在1AH/1BH/1CH/1DH的RAM中

MOV A,1CH ;比较数据码和数据反码是否正确?

CPL A

XRL A,1DH ;将1CH的值取反后和1DH比较不同则无效丢弃,核对数据是否准确JNZ EXIT

MOV DPTR,#TAB ;表头地址送指针

MOV A,1DH

ANL A,#0FH ;相与,得到低四位码

MOVC A,@A+DPTR

MOV 1EH,A ;查表得表码存入1EH

MOV A,1DH

SWAP A

ANL A,#0FH

MOVC A,@A+DPTR

MOV 1FH,A ;查表得高四位码存入1F

MOV R7,#20H

DISP:

MOV P0,1FH ;送数码管显示

CLR P2.1

ACALL YS2

SETB P2.1

MOV P0,1EH

CLR P2.2

ACALL YS2

SETB P2.2

MOV P1,1DH ;将按键的键值通过P1口的8个LED显示出来! CLR P2.7 ;蜂鸣器鸣响-嘀嘀嘀-的声音,表示解码成功LCALL YS2

SETB P2.7 ;蜂鸣器停止

DJNZ R7,DISP

EXIT: SETB EA ;允许中断

RETI ;退出解码子程序

YS1: MOV R4,#20 ;延时子程序1,精确延时882微秒

D1: MOV R5,#20

DJNZ R5,$

DJNZ R4,D1

RET

YS2: MOV R4,#10 ;延时子程序2,精确延时4740微秒

D2: MOV R5,#235

DJNZ R5,$

DJNZ R4,D2

RET

YS3: MOV R4,#2 ;延时程序3,精确延时1000微秒

D3:MOV R5,#248

DJNZ R5,$

DJNZ R4,D3

RET

TAB: DB 0C0H,0DEH,0A2H,8AH,9CH,89H,81H,0DAH,80H,88H,90H,85H,0E1H,86H,0A1H,0B1 H;数据表,0-9-A-F

END

解码方法二

你的解码程序和我现在用的解码程序大体是一样的,我自己实际做了一下,发现按下遥控器,接收到红外信号后,数码管闪的厉害。我用的是6位动态数码管。不知道你有没有遇到这样的情况?

分析解码程序,感觉是中断的时间太长了,数码管当然会闪了。如果把数码管用定时器刷新的话,又存在定时中断和外中断的优先级问题,好难解决啊。

我初步有个想法。就是用定时器计算两次外中断间隔的时间。以此来确定是连发码,数据“0”,数据“1”。不知道这个想法可否行的通。这几天没有时间试,因为广州有个电子产品交易会,我要赶着做样机。过了几天我有空了在仔细的做一遍。把结果告诉大家。

不用连续解码,只需在中断时读取定时器的时间,然后判断是0或者1就可以了,实际测试已经OK了,谢谢两位的热心帮助。

为了这个程序,弄了两天的时间,饭都吃不好,现在弄通了,感觉真的很好。

我现在用6个数码管显示遥控器的用户码,用户反码,按键码,无论怎么按遥控器,数码管都不会闪的。

楼上的,我是这样解决闪烁问题的,用显示子程序计算出适当次数代替延时YS1 YS2 YS 3子程序

;======================================================================== ==============

;红外解码程序

;晶体:11.0592M

;日期:2005-10-14

;功能:将6122发射IC发射的红外码解码,储存在CODE1--CODE4中,并用6个数码管显示用户码,用户反码,按键码

;======================================================================== ==============

ORG 0000H

AJMP MAIN

ORG 0003H

AJMP REMOT

ORG 000BH

AJMP TIME0

;------------------------------------------------------

IR BIT P3.2

CODE1 EQU 30H ;遥控用户码

CODE2 EQU 31H ;遥控用户反码

CODE3 EQU 32H ;按键码

CODE4 EQU 33H ;按键反码

TIME1_REMOT EQU 34H ;每次接收的码BIT数

TIME2_REMOT EQU 35H ;允许重码次数

TIME3_REMOT EQU 36H ;按键数目存放

;---------------------------------------------------------

DIG1 BIT P2.1;第一位数码管选通

DIG2 BIT P2.5;第二位数码管选通

DIG3 BIT P2.0;第三位数码管选通

DIG4 BIT P2.4;第四位数码管选通

DIG5 BIT P2.6;第五位数码管选通

DIG6 BIT P2.3;第六位数码管选通

;----------------------------------------

D1 EQU 40H

D2 EQU 41H

D3 EQU 42H

D4 EQU 43H

D5 EQU 44H

D6 EQU 45H

ORG 0030H

;=============================初始化=============================== MAIN:

SETB EA ;开总中断

MOV TMOD,#1H ;定时器0工作于方式1

SETB ET0 ;启动定时器0

SETB TR0

MOV TH0,#0 ;预置数0

MOV TL0,#0

SETB EX0 ;开外中断0

SETB IT0

MOV TIME1_REMOT,#32 ;接收的码一共32BIT:4*8

CLR P1.0

MOV D1,#10H

MOV D2,#10H

MOV D3,#10H

MOV D4,#10H

MOV D5,#10H

MOV D6,#10H

;============================初始化完毕============================

;=============================主程序============================== LOOP:

; ACALL FENLI

ACALL DIG

AJMP LOOP

;=============================主程序完毕==========================

;=============================红外解码中断程序========================= ;=============================================

;以下为红外中断解码程序

;接收头引脚P3.2

;按键反码: CODE1

;按键码:CODE2

;用户反码: CODE3

;用户码:CODE4

;接收码的BIT数:TIME1_REMOT

;重码次数:TIME3_REMOT;

;入口函数:

;出口函数:R0---按键反码R1----按键码R2---用户反码R3----用户码R4---按键标准键值;=============================================

REMOT:

CLR EA ;关总中断

PUSH ACC

PUSH PSW

PUSH DPH

PUSH DPL

CLR P1.7

;-----------------判断定时器运行时间是否大于12.288MS-----------------

MOV A,TH0 ;读入此时TH0,判断是否大于设定的数

CLR C ;清除C避免误判

SUBB A,#2CH ;11.0592-2C 12M-30 6M-18 4M-10 24M-60

JC REMOT1 ;小于12.220往下判断

AJMP EXIT_REMOT1 ;大于2BFF*1.085=12.220MS则异常退出

;-----------------判断定时器运行时间是否小于0.768MS------------------

REMOT1:

MOV A,TH0

CLR C

SUBB A,#23H ;11.0592-2 12M-3 6M*-1 4M-1 24M-6

JNC REMOT2

AJMP EXIT_REMOT ;小于0.768作误码,正常退出

;------------------判断定时器运行时间是否小于2MS---------------------

REMOT2:

MOV A,TH0

CLR C

SUBB A,#7H ;11.0592-7 12M-7 6M-3 4M-2 24M-0FH

JC REMOT4

AJMP REMOT3 ;小于2MS,做数据:"0:处理

;-----------------判断定时器运行时间是否小于11.5MS------------------- REMOT3:

MOV A,TH0

CLR C

SUBB A,#29H ;11.0592-29 12M-2C 6M-16 4M-0EH 24M-59

JC REMOT5 ;小于11.5MS,做数据"1"处理

AJMP REMOT6 ;否则作重码处理

;----------------数据"0"----------------------

REMOT4:

CLR C

AJMP REMOT7

;----------------数据"1"--------------------

REMOT5:

SETB C

AJMP REMOT7

;----------------重码------------------------

REMOT6:

DJNZ TIME3_REMOT,EXIT_REMOT

MOV TIME3_REMOT,#2

AJMP EXIT_REMOT1

;---------------储存数据--------------------

REMOT7:

MOV A,CODE1

RRC A

MOV CODE1,A

MOV A,CODE2

RRC A

MOV CODE2,A

MOV A,CODE3

RRC A

MOV CODE3,A

MOV A,CODE4

RRC A

MOV CODE4,A

DJNZ TIME1_REMOT,EXIT_REMOT

MOV TIME1_REMOT,#32;判断是否接收完32位, MOV R0,CODE1

MOV R1,CODE2

MOV R2,CODE3

MOV R3,CODE4

AJMP BIJIAO ;此处设置断点,R0--按键反码

;R1---按键码

;R2---用户反码

;R3---用户码

;---------------用户码判断-------------------------

BIJIAO:

; MOV A,CODE4

; CJNE A,#10H,EXIT_REMOT

; MOV A,CODE3

; CJNE A,#0EFH,EXIT_REMOT

;---------------按键码判断-----------------------

MOV A,CODE2

CPL A

XRL A,CODE1

JNZ EXIT_REMOT

ACALL FENLI

AJMP EXIT_REMOT1

;--------------将按键码转换为标准的码值-----------

OK_REMOT:

MOV TIME3_REMOT,#15 ;按键数:15个按键

MOV R4 DPTR,#TAB_REMOT ;指针指向按键码值表

OK_REMOT1:

MOV A,TIME3_REMOT ;将码值表第一个数与CODE2比较

MOVC A,@A+DPTR

XRL A,CODE2

JZ OK_REMOT2 ;相同,已经找到,跳转出口

DJNZ TIME3_REMOT,OK_REMOT1;不同,未找到,取下一个按键码值比较,直到相同为止AJMP EXIT_REMOT1 ;已经找完码值表,未找到匹配数据,退出

;-------------

OK_REMOT2:

MOV R4,TIME3_REMOT ;将标准码值存入R4

AJMP EXIT_REMOT

;--------------------按键码值表------------------------

TAB_REMOT:

DB 0H

;SETB

;ST.BY-INPUT-REST

DB 04H,02H,06H

;

;FR- MAST+ FR+

DB 0EH,07H,00H

; ;SUB- MUTE SUB+

DB 10H,0FH,12H

; ;CEN- MAST+ CEN+

DB 13H,03H,0AH

; ;SUR- SET75 SUR+

DB 11H,08H,01H

;---------------解码中断退出程序--------------------

EXIT_REMOT1: ;异常退出

MOV TIME1_REMOT,#32

EXIT_REMOT: ;正常退出

MOV TH0,#0 ;重设定时器0

MOV TL0,#0

SETB EA

SETB TR0 ;开中断

; SETB EX0

CLR IE0 ;清外中断标志,避免反复中断

POP DPL

POP DPH

POP PSW

POP ACC ;出栈

SETB P1.7

RETI

;=========================红外解码中断程序完毕==================== ;=========================定时中断程序============================ ;============================================================

;以下为定时器中断程序

;功能:每120MS清除遥控用户码缓存

;入口函数:

;============================================================ TIME0:

CLR EA

MOV TH0,#0

MOV TL0,#0

MOV CODE1,#0

MOV CODE2,#0

MOV CODE3,#0

MOV CODE4,#0

SETB EA

RETI

;============================================================== ;=======================以下为数码管显示数分离子程序================ ; ;功能:将遥控器的用户码,用户反码,按键码,的十位与个位分离

;入口函数:R3--用户码,R2--用户反码,R1---按键码

;出口函数:D1-用户码十位,D2--用户个位,D3--用户反码十位,D4---用户反码个位,

; ;D5---按键码十位,D6---按键码个位

;----------------------------------------------------------

FENLI:

MOV A,R3 ;分离用户反码

MOV B,#16

DIV AB

MOV D2,B

MOV A,R2 ;分离用户码

MOV B,#16

DIV AB

MOV D3,A

MOV D4,B

MOV A,R1 ;分离按键码

MOV B,#16

DIV AB

MOV D5,A

MOV D6,B

RET

;-----------分离完毕-------------------------

;===================以下为数码管显示子程序======================= ;入口函数:D1---D6

;--------------------------------------------------------------

DIG:

MOV DPTR,#TAB_DIG ;显示用户反码十位

MOV A,D1

MOVC A,@A+DPTR

MOV P2,#0FFH

MOV P0,A

ACALL YS2MS

MOV DPTR,#TAB_DIG ;显示用户反码个位MOV A,D2

MOVC A,@A+DPTR

MOV P2,#0FFH

MOV P0,A

CLR DIG2

ACALL YS2MS

MOV DPTR,#TAB_DIG ;显示用户码十位MOV A,D3

MOVC A,@A+DPTR

MOV P2,#0FFH

MOV P0,A

CLR DIG3

ACALL YS2MS

MOV DPTR,#TAB_DIG ;显示用户码个位MOV A,D4

MOVC A,@A+DPTR

MOV P2,#0FFH

MOV P0,A

CLR DIG4

ACALL YS2MS

MOV DPTR,#TAB_DIG ;显示按键码十位

MOV A,D5

MOVC A,@A+DPTR

MOV P2,#0FFH

MOV P0,A

CLR DIG5

ACALL YS2MS

MOV DPTR,#TAB_DIG ;显示按键码个位

MOV A,D6

MOVC A,@A+DPTR

MOV P2,#0FFH

MOV P0,A

CLR DIG6

ACALL YS2MS

;---------------------------显示完毕-----------------------------------

RET

;------------------------------数码管段码表------------------------------------

TAB_DIG: ;0 1 2 3 4 5 6 7 8 9 A B C D E F 全亮消隐

DB 5H,0B7H,51H,31H,0A3H,29H,9H,37H,1H,21H,3H,89H,4DH,4DH,49H,4BH,0h,0ffh ;------------------------------延时-------------------------------------------

YS2MS:

MOV R7,#15

DEL1:MOV R6,#100

基于单片机的红外遥控智能小车设计报告

基于单片机的红外遥控智能小车设计报告

毕业设计(论文)题目:基于单片机的红外遥控智能小车

西安邮电学院 毕业设计(论文)任务书 学生姓名指导教师职称工程师学院电子工程学院系部光电子技术 专业光电信息工程 题目基于单片机的红外遥控智能小车 任务与要求 任务:以51单片机为控制核心,实现具有自动避障、加速、减速等功能的红外遥控智能小车。 要求:1 搜集资料,熟悉单片机开发流程;熟悉红外传感器等相关器件; 掌握单片机接口和外围电路应用;具备一定的单片机开发经 验。 2 学会电路设计、仿真等相关软件的使用; 3 具备一定的硬件调试技能。 4 学会查阅资料; 5 学会撰写科技论文。 开始日期2010年3月22日完成日期2010年6月27日主管院长(签字) 年月日

西安邮电学院 毕业设计 (论文) 工作计划 学生姓名赵美英指导教师崔利平职称工程师学院电子工程学院系部光电子技术 专业光电信息工程 题目基于单片机的红外遥控智能小车 工作进程

主要参考书目(资料) 1、何立民,单片机应用系统设计,北京:航天航空大学出版社; 2、李广弟,单片机基础,北京:北京航空航天大学出版社,2001; 3、何立民,MCS-51系列单片机应用系统设计系统配置与接口技术,北 京航空航天大学出版社,1990.01; 4、赵负图,传感器集成电路手册,第一版,化学工业出版社,2004; 5、Atmel.AT89S51数据手册.https://www.doczj.com/doc/f910656491.html, 主要仪器设备及材料 1.普通计算机一台,单片机开发环境; 2.电路安装与调试用相关仪器和工具。 (如示波器、万用表、电烙铁、镊子、钳子等)。 论文(设计)过程中教师的指导安排 每周四进行交流与总结;其余时间灵活安排,及时解决学生问题。 对计划的说明 依学生实际情况,适当调整工作进度。

基于51单片机的红外遥控

基于51单片机的红外遥控 红外遥控是无线遥控的一种方式,本文讲述的红外遥控,采用STC89C52单片机,1838红外接收头和38k红外遥控器。 1838红外接收头: 红外遥控器: 原理: 红外接收的原理我不赘述,百度文库上不少,我推荐个网址,这篇文章写得比较清楚,也比较全面,https://www.doczj.com/doc/f910656491.html,/view/c353e8360b4c2e3f57276349.html 我主要讲下程序的具体意思,在了解原理的基础上,我们知道,当我们在遥控器上每按下一个键,遥控器上的红外发射头都会发出一个32位的编码(32位编码分成4组8位二进制编码,前16位为用户码和用户反码,后16位为数据码和数据反码,用户码表示遥控器类型,数据码表示按键编码),不同的键对应不同的编码,红外接收头接收到这个编码后,发送给单片机,再进行相关操作。 源程序1:(这个程序的功能是将用户码和用户反码,数据码和数据反码显示在1602液晶上,因为遥控器买回来是不会说明按键对应什么码值,所以先自己测试,确定每个 按键的码值) #include #include #include #define uint unsigned int #define uchar unsigned char #define _Nop() _nop_() #define TURE 1 #define FALSE 0

/*端口定义*/ sbit lcd_rs_port = P3^5; /*定义LCD控制端口*/ sbit lcd_rw_port = P3^6; sbit lcd_en_port = P3^4; #define lcd_data_port P0 /////////////////////////////////// void delay1 (void)//关闭数码管延时程序 { int k; for (k=0; k<1000; k++); } //////////////////////////////////// uchar code line0[16]={" user: "}; uchar code line1[16]={" data: "}; uchar code lcd_mun_to_char[16]={"0123456789ABCDEF"}; unsigned char irtime;//红外用全局变量 bit irpro_ok,irok; unsigned char IRcord[4];//用来存放用户码、用户反码、数据码、数据反码unsigned char irdata[33];//用来存放32位码值 void ShowString (unsigned char line,char *ptr); ////////////////////////////////////////////// void Delay(unsigned char mS); void Ir_work(void); void Ircordpro(void); void tim0_isr (void) interrupt 1 using 1//定时器0中断服务函数 { irtime++; } void ex0_isr (void) interrupt 0 using 0//外部中断0服务函数 { static unsigned char i; static bit startflag; if(startflag){ if(irtime<63&&irtime>=33)//引导码TC9012的头码 i=0; irdata[i]=irtime; irtime=0; i++; if(i==33){ irok=1; i=0; }

单片机的红外遥控器解码设计

第1章红外解码系统分析 第1节设计要求 整个控制系统的设计要求:被控设备的控制实时反应,从接收信号到信号处理及对设备控制反映时间应小于1s;整个系统的抗干扰能力强,防止误动作;整个系统的安装、操作简单,维护方便;成本低。 红外载波、编码电路设计要求:单片机定时器精确产生38KHz红外载波;根据控制系统要求能对红外控制指令信号精确编码并迅速发送。 红外解码电路设计要求:精确接收红外信号,并对所接收信号进行解码、放大、整形、解调等处理,最后输出TTL电平信号;对非红外光及边缘红外光抗干扰能力强。 设备扩展模块设计要求:直流控制交流;抗干扰能力强;反应迅速不产生误动作;能承受大电流冲击。 第2节总体设计方案 2.1方案论证 驱动与开关 方案一:采用晶闸管直接驱动。 其优点是体积小,电路简单,外围元件少。但控制电流小,大电流晶闸管成本高,并且隔离性能差。 方案二:采用三极管驱动继电器。 其体积大,外围元件多。优点是控制电流大,隔离性能好。 根据实际情况,拟采用方案二。 2.2总体设计框图 经过上述方案的分析选择,得出系统硬件由以下几部分组成:电视红外遥控器,51单片机最小系统,接收放大于一体集成红外接收头,1602液晶显示驱动电路。 整体设计思路为:根据扫描到不同的按键值转至相对应的ROM表读取数据。确认设备及菜单选择键后AT89S2将从ROM读取出来的值,按照数据处理要求从P2.5输出控制脉冲与T0产生的38KHz的载波(周期是26.3μs)进行调制,经NPN三极管对信号放大驱动红外发光管将控制信号发送出去。红外数据接收则是采用HS0038一体化红外接收头,内部集成红外接收、数据采集、解码的功能,只要在接收端INT0检测头信号低电平的到来,就可完成对整个串行的信号进行分析得出当前控制指令的功能。然后根据所得的指令去操作相应的用电器件工作,如图1-1所示。

51单片机实验程序

3 3 3 用查表方式编写y=x1 +x2 +x3 。(x 为0~9 的整数) #include void main() { int code a[10]={0,1,8,27,64,125,216,343,512,729}; //将0~9 对应的每位数字的三次方的值存入code中,code为程序存储器,当所存的值在0~255 或-128~+127 之间的话就用char ,而现在的值明显超过这个范围,用int 较合适。int 的范围是0~65535 或-32768~32767 。 int y,x1,x2,x3; //此处定义根据习惯,也可写成char x1,x2,x3 但是变量y 一定要用int 来定义。 x1=2; x2=4; x3=9; //x1,x2,x3 三个的值是自定的,只要是0~9 当中的数值皆可,也可重复。 y=a[x1]+a[x2]+a[x3]; while(1); //单片机的程序不能停,这步就相当于无限循环的指令,循环的内容为空白。 } //结果的查询在Keilvision 软件内部,在仿真界面点击右下角(一般初始位置是右下角)的watch 的框架内双击“double-click or F2 to add”文字输入y 后按回车,右侧会显示其16 进制数值如0x34,鼠标右键该十六进制,选择第一行的decimal,可查看对应的10 进制数。 1、有10 个8 位二进制数据,要求对这些数据进行奇偶校验,凡是满足偶校验的 数据(1 的个数为偶数)都要存到内RAM50H 开始的数据区中。试编写有关程序。 #include void main() { int a[10]={0,1,5,20,24,54,64,88,101,105}; // 将所要处理的值存入RAM 中,这些可以根据个人随意设定,但建议不要超过0~255 的范围。 char i; // 定义一个变量 char *q=0x50; // 定义一个指针*q 指向内部0x50 这个地址。 for(i=9;i>=0;i--) //9~0 循环,共十次,也可以用for(i=0;i<10;i++) { ACC=a[i]; //将a[i] 的值赋给累加器ACC if (P==0) //PSW0 位上的奇偶校验位,如果累加器ACC 内数值1 的个数为偶数那么P 为0,若为奇数,P 为1。这里的P 是大写的。 { *q=a[i]; q++; // 每赋一个值,指针挪一个位置指向下一个。 } } while(1); //同实验一,程序不能停。 }

基于51单片机的红外遥控小车设计和制作

基于51单片机的红外遥控小车设计和制作 论文关键字:AT89C51单片机直流电机红外线遥控循迹 L298 论文摘要:本文介绍一款红外线遥控小车,以AT89S51单片机为核心控制器,用L289驱动直流电机工作,控制小车的运行。本款小车具有红外线遥控手动驾驶、自动驾驶、寻迹前进等功能。本系统采用模块化设计,软件用C语言编写。 一、设计任务和要求 以AT98C51单片机为核心,制作一款红外遥控小车,小车具有自动驾驶,手动驾驶和循迹前进等功能。自动驾驶时,前进过程中可以避障。手动驾驶时,遥控控制小车前进、后退、左转、右转、加速等操作。寻迹前进时小车还可以按照预先设计好的轨迹前进。 二、系统组成及工作原理 本系统由硬件和软件两部分组成。硬件部分主要完成红外编码信号的发射和接受、障碍物检测、轨迹检测、直流电机运行的发生等功能。软件主要完成信号的检测和处理、设备的驱动及控制等功能。AT89S51单片机查询红外信号并解码,查询各个检测部分输入的信号,并进行相应处理,包括电机的正反转,判断是否遇到障碍物,判断是否小车其那金中有出轨等。系统结构框图如图1所示。 图1 系统结构框图 三、主要硬件电路 1、遥控发射器电路 该电路的主要控制器件为遥控器芯片HT6221,如图2所示。HT6221将红外码调制成38KHZ的脉冲信号通过红外发射二极管发出红外编码。图2中D1是红外发射二极管,D2是按键指示灯,当有按键按下时D2点亮。 HT6221的编码规则是:当一个键按下超过36ms,振荡器使芯片激活,如果这个按键按下且延迟大约108ms,这108ms发射代码由一个起始码(9ms),一个结果码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9~18ms),8位数据码(9~18ms)和这8位数据码的反码(9~18ms)组成,如果按键按下超过108ms仍未松开,接下来发射的代码将仅由起始码(9ms)和结束码(2.5ms)组成。按照上图的接法,K1~K8的数据码分别为:0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07。 图2 遥控发射器电路原理图 2、红外线接收模块 该模块使用一体化红外接收头1838,其电路如图3所示。瓷片电容104为去耦电容,DOUT即是解调信号的输出端,直接与单片机的P3.2口相连。有红外编码信号发射时,输出为检波整形后的方波信号,并直接提供给单片机。 图3 红外接收原理图 3、电机驱动模块 该模块主要由芯片L298控制两个电机的正反转,以及改变电机的转速,其电路如图4所示。L298 芯片是一种高压、大电流双全桥式驱动器。其中SENSEA、SENSEB分别为两个H桥的电流反馈脚,不用时可以直接接地。VCC,VS是接电源引脚,电压范围分别是4.5~7V、2.5~46V,设计中VCC端与单片机电源端共用5V工作电源,VS端独立接9V电

51单片机考试常见试题简答 题

简答题部分 1、什么叫堆栈? 答:堆栈是在片内RAM中专门开辟出来的一个区域,数据的存取是以"后进先出"的结构方式处理的。实质上,堆栈就是一个按照"后进先出"原则组织的一段内存区域。 2、进位和溢出? 答:两数运算的结果若没有超出字长的表示范围,则由此产生的进位是自然进位;若两数的运算结果超出了字长的表示范围(即结果不合理),则称为溢出。 3、在单片机中,片内ROM的配置有几种形式?各有什么特点? 答:单片机片内程序存储器的配置形式主要有以下几种形式:(1)掩膜(Msak)ROM型单片机:内部具有工厂掩膜编程的ROM,ROM中的程序只能由单片机制造厂家用掩膜工艺固 化,用户不能修改ROM中的程序。掩膜ROM单片机适合于 大批量生产的产品。用户可委托芯片生产厂家采用掩膜方法 将程序制作在芯片的ROM。 (2)EPROM型单片机:内部具有紫外线可擦除电可编程的只读存储器,用户可以自行将程序写入到芯片内部的EPROM 中,也可以将EPROM中的信息全部擦除。擦去信息的芯片 还可以再次写入新的程序,允许反复改写。 (3)无ROM型单片机:内部没有程序存储器,它必须连接程序存储器才能组成完整的应用系统。 无ROM型单片机价格低廉,用户可根据程序的大小来选择外接 程序存储器的容量。这种单片机扩展灵活,但系统结构较复 杂。 (4)E2ROM型单片机:内部具有电可擦除叫可编程的程序存储器,使用更为方便。该类型目前比较常用 (5) OTP(One Time Programmable)ROM单片机:内部具有一次可编程的程序存储器,用户可以在编程器上将程序写入片 内程序存储器中,程序写入后不能再改写。这种芯片的价 格也较低。 4、什么是单片机的机器周期、状态周期、振荡周期和指令周期?它们之间是什么关系? 答:某条指令的执行周期由若干个机器周期(简称M周期)构成,一个机器周期包含6个状态周期(又称时钟周期,简称S周期),而一个状态周期又包含两个振荡周期(P1和P2,简称P周期)。也就是说,指令执行周期有长有短,但一个机器周期恒等于6个状态周期或12个振荡周

基于单片机的红外遥控小车设计

单片机系统设计实例 红外遥控小车 专业:信息对抗技术 姓名:吴志飞 学号:1411050121 指导教师:张东阳

目录 1 绪论 (1) 2 系统分析 (2) 2.1系统框架 (2) 2.2电机驱动模块 (3) 2.3 LCD显示模块 (4) 3 系统硬件设计 (5) 3.1主控模块的电路设计 (6) 3.1.1AT89C51单片机的简介 (8) 3.1.2AT89C51管脚功能 (8) 3.2红外遥控模块的电路设计 (9) 3.2.1红外遥控的实现原理 (10) 3.2.2红外发射器 (11) 3.2.3红外接收器 (12) 3.3电机驱动模块的电路设计 (12) 3.4显示模块的电路设计 (13) 4 系统软件设计 (14) 4.1程序代码 (14) 4.2软件流程图 (17) 5 调试与仿真 (18) 5.1在keil中进行调试 (18) 5.2在Proteus中进行仿真 (19) 6 总结 (21) 参考文献 (22) I

沈阳理工大学课程设计说明书 1 绪论 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,,智能化程度越来越高,应用范围也越来越广,包括海洋开发、宇宙探测、工农业生产、军事、社会服务、娱乐等各个领域。智能电动小车系统以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科。主要由路径识别、角度控制及车速控制等功能模块组成。同时,当今机器人技术发展的如火如荼,其在国防等众多领域的应用广泛开展。神五、神六升天、无人飞船等等无不得益于机器人技术的迅速发展。一些发达国家已把机器人制作比赛作为创新教育的战略性手段,参加者多数为学生,目的在于通过大赛全面培养学生的动手能力、创造能力、合作能力和进取精神,同时也普及智能机器人的知识。从某种意义上来说,机器人技术反映了一个国家综合技术实力的高低,而智能电动小车是机器人的雏形,它的控制系统的研制将有助于推动智能机器人控制系统的发展,同时为智能机器人的研制提供更有利的手段。 本次课设设计的红外遥控智能小车可以分为四大组成部分:红外遥控部分、显示部分、执行部分、控制部分。智能小车可以实现按遥控指示前行,后退,左转和右转。该设计主要通过对系统硬件电路的设计,软件设计和程序的编写,然后通过后期软硬件调试达到设计初衷。 1

基于51单片机的红外遥控器设计

天津职业大学 二○一五~二○一六学年第1学期 电子信息工程学院 通信系统综合实训报告书 课程名称:通信系统综合实训 班级:通信技术(5)班 学号:1304045640 1304045641 1304045646姓名:韩美红季圆圆陈真真指导教师:崔雁松 2015年11月17日

一、任务要求 利用C51单片机设计开发一套红外线收发、显示系统。 具体要求: ●编写相关程序(汇编、C语言均可); ●用Proteus绘制电路图并仿真实现基本功能; ●制作出实物 二、需求分析(系统的应用场景、环境条件、参数等) 现在各种红外线技术已经源源不断进入我们的生活中,在很多场合发挥着作用。 机场、宾馆、商场等的自动门,会在人进出时自动地开启和关闭。原来,在自动门的一侧有一个红外线光源,发射的红外线照射到另一侧的光电管上,红外线是人体察觉不到的。当人走到大门口,身体挡住红外线,电管接收不到红外线了。根据设计好的指令,触发相应开关,就把门打开了。等人进去后,光电管又可以接到红外线,恢复原来的线路,门又会自动关闭。因此这种光电管被称为“电眼”,在许多自动控制设备中大显身手。 在家庭中,许多电子设备如彩色电视、空调、冰箱和音响等,都使用了各种“红外线遥控器”。利用它我们可以非常方便的转换电视频道或设定空调的温度档次。 三、概要设计(系统结构框图/系统工作说明流程图) 红外线收发、显示系统硬件由以下几部分组成:红外遥控器,51单片机最小系统,接收放大器一体集成红外接收头,LED灯显示电路。 红外线接收是把遥控器发送的数据(已调信号)转换成一定格式的控制指令脉冲(调制信号、基带信号),是完成红外线的接收、放大、解调,还原成发射格式(高、低电位刚好相反)的脉冲信号。这些工作通常由一体化的接收头来完成,输出TTL兼容电平。最后通过解码把脉冲信号转换成数据,从而实现数据的传输。 红外遥控系统电路框图

c51、c52单片机红外线遥控接收解码c程序(可直接使用)

/ 亲,此程序以经过测试,可直接使用!!!/ #include #define uchar unsigned char #define uint unsigned int void delay(uchar x); sbit IRIN = P3^2; uchar IRCOM[4]; void main() { IE = 0x81; TCON = 0x01; IRIN=1; /* 此处可以根据按键码自由编写程序 /以下为3*7遥控按键码/ /(也可以应用与其他类型遥控,本程序只以3*7遥控为例)/ / 0x45 0x46 0x47 / / 0x44 0x40 0x43 / / 0x07 0x15 0x09 / / 0x16 0x19 0x0d / / 0x0c 0x18 0x5e / / 0x08 0x1c 0x5a / / 0x42 0x52 0x4a / 例如: while(1) {switch(IRCOM[2]) {case 0x45: P2=0x7f; break; case 0x44: P2=0xbf; break; case 0x07: P2=0xdf; break; case 0x16: P2=0xef; break; case 0x0c: P2=0xf7; break; case 0x08: P2=0xfb; break; case 0x42: P2=0xfd; break; case 0x52: P2=0xfe; break; case 0x4a: P2=0xff; break; case 0x5a: P2=0x00; break;} } */ while(1); } //end main /**********************************************************/ void IR_IN(void) interrupt 0 //外部中断服务程序 {unsigned char j,k,N=0; EX0 = 0; delay(15); if (IRIN==1) { EX0 =1;

单片机如何运行程序

单片机如何运行程序 知道了单片机通过I/O口与外设打交道,也知道了单片机的程序与数据如何保存,到底单片机是如何运行程序的?原来单片机和其他微机一样,也拥有一个中央处理器(CPU),它是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU 负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。它在单片机中的核心地位见图2.10所示。它通过单片机的内部总线,将单片机内部的各个部分:程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等联系在一起,内部总线有三种:数据总线,专门用来传送数据信息,地址总线专门用来传送地址信息,选中各操作单元,控制总线专门用来传送CPU各种控制命令,以便CPU统一指挥协调工作。完成程序所要执行的各种功能。CPU执行程序一般包括两个主要过程:第一,就是从程序存储器中取出指令,指令的地址由PC指针提供,在前面我们已经知道,PC指针在CPU取指后会自动加一,所以PC指针总是指向下一个将要取出的指令代码或操作数。这样,就能保证程序源源不断往下执行。第二,就是执指过程,取出的指令代码首先被送到CPU中控制器中的指令寄存器,再通过指令译码器译码变成各种电信号,从而实现指令的各种功能。 4.怎样保证CPU工作? 现在我们知道了单片机怎样取指、执指,即怎样运行程序了。那么怎样才能保证CPU有序的工作?这就必须提到单片机的两个非常重要的外围电路:单片机的时钟电路和复位电路。在单片机上面有两个引脚,分别是它的第18、19脚,其功能如下。

Pin19:时钟XTAL1脚,片内振荡电路的输入端。 Pin18:时钟XTAL2脚,片内振荡电路的输出端。 89S51的时钟有两种方式,一种是片内时钟振荡方式,但需在18和19脚外接石英晶体和振荡电容,振荡电容的值一般取10p~30p。另外一种是外部时钟方式,即将XTAL1接地,外部时钟信号从XTAL2脚输入。如图2.11 当时钟电路起振后,产生一定频率的时钟信号,单片机的CPU在时钟信号的控制下,就能一步一步完成自己的工作。通常我们必须了解以下几种周期。 【振荡周期】:单片机外接石英晶体振荡器的周期。如外接石英晶体的频率若为12MHz,这其振荡周期就是1/12微秒。 【状态周期】:单片机完成一个最基本的动作所需的时间周期。如扫描一次定时器T0引脚状态所需要的时间。一个状态周期=2个振荡周期。 【机器周期】:单片机完成一次完整的具有一定功能的动作所需的时间周期。如一次完整的读操作或写操作对应的时间。一个机器周期=6个状态周期。 【指令周期】:执行完某条指令所需要的时间周期,一般需要1~4个机器周期,如MUL AB指令是四机器周期指令。一个指令周期=1~4个机器周期。 单片机工作时,除了需要时钟支持外,还必须有一个初始状态,即单片机的复位状态。在单片机外部引脚第9脚,就是专门给单片机提供复位脉冲的。 Pin9:RESET/Vpd复位信号复用脚,当89S51通电,时钟电路开始工作,在RESET 引脚上出现24个时钟周期以上的高电平,系统即初始复位。

基于单片机的红外遥控智能小车毕业设计报告

毕业设计(论文)题目:基于单片机的红外遥控智能小车

西安邮电学院 毕业设计(论文)任务书 学生姓名指导教师职称工程师学院电子工程学院系部光电子技术 专业光电信息工程 题目基于单片机的红外遥控智能小车 任务与要求 任务:以51单片机为控制核心,实现具有自动避障、加速、减速等功能的红外遥控智能小车。 要求:1 搜集资料,熟悉单片机开发流程;熟悉红外传感器等相关器件; 掌握单片机接口和外围电路应用;具备一定的单片机开发经验。 2 学会电路设计、仿真等相关软件的使用; 3 具备一定的硬件调试技能。 4 学会查阅资料; 5 学会撰写科技论文。 开始日期2010年3月22日完成日期2010年6月27日主管院长(签字) 年月日

西安邮电学院 毕业设计 (论文) 工作计划 学生姓名赵美英指导教师崔利平职称工程师学院电子工程学院系部光电子技术 专业光电信息工程 题目基于单片机的红外遥控智能小车 工作进程

主要参考书目(资料) 1、何立民,单片机应用系统设计,北京:航天航空大学出版社; 2、李广弟,单片机基础,北京:北京航空航天大学出版社,2001; 3、何立民,MCS-51系列单片机应用系统设计系统配置与接口技术,北京航 空航天大学出版社,1990.01; 4、赵负图,传感器集成电路手册,第一版,化学工业出版社,2004; 5、Atmel.AT89S51数据手册.https://www.doczj.com/doc/f910656491.html, 主要仪器设备及材料 1.普通计算机一台,单片机开发环境; 2.电路安装与调试用相关仪器和工具。 (如示波器、万用表、电烙铁、镊子、钳子等)。 论文(设计)过程中教师的指导安排 每周四进行交流与总结;其余时间灵活安排,及时解决学生问题。 对计划的说明 依学生实际情况,适当调整工作进度。

红外遥控编码原理及C程序,51单片机红外遥控

红外遥控解解码程序 #include #include #define uchar unsigned char #define uint unsigned int sbit lcden=P1^0; sbit rs=P1^2; sbit ir=P3^2; sbit led=P1^3; sbit led2=P3^7; unsigned int LowTime,HighTime,x; unsigned char a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u; unsigned char flag;//中断进入标志位 uchar z[4]; uchar code table[]={"husidonghahahah"}; uchar code table1[]={"User Code:"}; void delay(uint x) { uint i,j; for(i=x;i>0;i--) //i=xms即延时约xms毫秒for(j=100;j>0;j--); } void write_com(uchar com) {//写液晶命令函数 rs=0; lcden=0; P2=com; delay(3); lcden=1; delay(3); lcden=0; } void write_date(uchar date) {//写液晶数据函数 rs=1; lcden=0; P2=date; delay(3); lcden=1;

delay(3); lcden=0; } void init_anjian() //初始化按键 { a=0;b=0;c=0;d=0; e=0;f=0;g=0;h=0; i=0;j=0;k=0;l=0; m=0;n=0;o=0;p=0; q=0;r=0;s=0;t=0; u=0; } void init_1602() {//初始化函数 uchar num; lcden=0; rs=0; write_com(0x38);//1602液晶初始化 write_com(0x0c); write_com(0x06); write_com(0x01); write_com(0x80); for(num=0;num<14;num++)//写入液晶固定部分显示{ write_date(table[num]); delay(3); } write_com(0x80+0x40); for(num=0;num<9;num++) { write_date(table1[num]); delay(3); } } void write_dianya(uchar add,char date) {//1602液晶刷新时分秒函数4为时,7为分,10为秒char shi,ge; shi=date%100/10; ge=date%10; write_com(0x80+0x40+add); write_date(0x30+shi); write_date(0x30+ge); }

基于51单片机的无线遥控小车

本科生产实习报告(2013 —2014学年第二学期) 姓名: 学号: 年级: 专业:电子信息技术及仪器 系室:测控技术与仪器系 2014年7月6日

目录 目录 (2) 1 生产实习计划安排 (3) 2 电路板制作 (3) 2.1实习目的 (3) 2.2所需器件介绍 (3) 2.3制作过程 (5) 2.4成果展示 (7) 3 小车控制系统软硬件设计 (7) 3.1实习目的 (7) 3.2所需器件介绍 (7) 3.3制作过程 (9) 3.4功能演示 (11) 4新飞电器公司实习 (11) 4.1优秀毕业设计讲解 (11) 4.2新飞公司 (13) 5、生产实习心得体会 (18) 附录:单片机C语言程序 (20)

1 生产实习计划安排 2 电路板制作 2.1实习目的 能够熟练使用一些常用软件进行基本的程序编写(keil)、制板(Altium Designer等);进一步了解电子产品开发、生产、测试等内容,培养自身的动手能力,并通过组队让我们了解团队合作的重要性,并为做一些实际的项目积累经验。 2.2 所需器件介绍

①Altium Designer Winter 09 :电路原理图、PCB图绘制软件 ②打印机、转印纸:将设计完成的PCB图打印在转印纸光面上 ③覆铜板、砂纸、热转印机:将转印纸上的电路图热转印到铜板上 ④腐蚀液:将铜板上墨迹以外的部分腐蚀掉 ⑤打孔机:将铜板上需要留孔的地方进行打孔 ⑥电烙铁、锡丝等:将元器件焊接在制作的铜板上 图1利用Altium Designer 绘制原理图的流程图

2.3 制作过程 1、原理图的绘制过程的流程图如图1所示: ⑴、使用Altium Designer绘图软件,画出单片机最小系统板的原理图,正确选择放置所需要的元器件并正确连接,适当添加元件库。必须用到的有微处理器芯片STC89C52RC、串口通信芯片MAC232等一系列电子元件。 ⑵、原理图设计完成后对各元件进行封装,以生成和现实元器件具有相同外观和尺寸的封装网络表。单片机最小系统板原理图如图2所示: 图2利用Altium Designer绘制的原理图 ⑶、生成PCB图。网络表生成以后,根据PCB面板的大小来放置各元件的位置,在放置时需要确保各元件引脚不交叉。经过规则的设置及调整,无错误完成PCB的布局布线。布线完成后的PCB图如图3所示: 图3布线完成后的PCB图 ⑷、利用转印纸将设计完成的PCB图通过打印机打印输出,然后将印有电路图的一面与铜板固定压紧,最后放到热转印机上进行热转印,高温下将转印纸上的电路图墨迹转印到铜板上。 ⑸、准备腐蚀液,将有墨迹的铜板放在溶液中,等待一段时间,铜板上除了墨迹以外的部分全部被腐蚀。取出铜板并清洗,妥善处理溶液。必须注意的一点是,清洗完毕后需立即擦干铜板,否则石墨线上附着的腐蚀液会继续腐蚀铜线部

基于51单片机的红外遥控

基于51单片机的红外遥控 红外遥控就是无线遥控的一种方式,本文讲述的红外遥控,采用STC89C52单片机,1838红外接收头与38k红外遥控器。 1838红外接收头: 红外遥控器: 原理: 红外接收的原理我不赘述,百度文库上不少,我推荐个网址,这篇文章写得比较清楚,也比较全面, 我主要讲下程序的具体意思,在了解原理的基础上,我们知道,当我们在遥控器上每按下一个键,遥控器上的红外发射头都会发出一个32位的编码(32位编码分成4组8位二进制编码,前16位为用户码与用户反码,后16位为数据码与数据反码,用户码表示遥控器类型,数据码表示按键编码),不同的键对应不同的编码,红外接收头接收到这个编码后,发送给单片机,再进行相关操作。 源程序1:(这个程序的功能就是将用户码与用户反码,数据码与数据反码显示在1602液晶上,因为遥控器买回来就是不会说明按键对应什么码值,所以先自己测试,确定每个按 键的码值) #include #include #include #define uint unsigned int #define uchar unsigned char #define _Nop() _nop_() #define TURE 1 #define FALSE 0

/*端口定义*/ sbit lcd_rs_port = P3^5; /*定义LCD控制端口*/ sbit lcd_rw_port = P3^6; sbit lcd_en_port = P3^4; #define lcd_data_port P0 /////////////////////////////////// void delay1 (void)//关闭数码管延时程序 { int k; for (k=0; k<1000; k++); } //////////////////////////////////// uchar code line0[16]={" user: "}; uchar code line1[16]={" data: "}; uchar code lcd_mun_to_char[16]={"0123456789ABCDEF"}; unsigned char irtime;//红外用全局变量 bit irpro_ok,irok; unsigned char IRcord[4];//用来存放用户码、用户反码、数据码、数据反码unsigned char irdata[33];//用来存放32位码值 void ShowString (unsigned char line,char *ptr); ////////////////////////////////////////////// void Delay(unsigned char mS); void Ir_work(void); void Ircordpro(void); void tim0_isr (void) interrupt 1 using 1//定时器0中断服务函数 { irtime++; } void ex0_isr (void) interrupt 0 using 0//外部中断0服务函数 { static unsigned char i; static bit startflag; if(startflag){ if(irtime<63&&irtime>=33)//引导码TC9012的头码 i=0; irdata[i]=irtime; irtime=0; i++; if(i==33){ irok=1; i=0; }

基于89C51单片机的红外线通信接口电路

基于89C51单片机的红外线通信接口电路 简介:在通信系统中,常利用非电信号来传递控制信号和数 ... 关键字:红外线 在通信系统中,常利用非电信号来传递控制信号和数据,以实现遥控或遥测的功能红外通信,具有控制简单、实施方便,传输可靠性高的特点,是一种较为常用的通信方式。红外通信利用950 nm近红外波段的红外线作为传递信息的媒体,发送端采用脉时调制方式,将二进制数字信号调制成某一频率的脉冲序列,并驱动红外发射管以光脉冲的形式发送,接收端将收到的光脉冲转换成电信号。再经过放大、滤波处理后送给解调电路,还原为二进制 数字信号后输出。 1 系统的总体构成 红外通信系统采用红外光传输及无限工作机制,其组成结构主要包括:红外发射器,通 信信道,红外接收器三大部分组成。 (1)完成信号的电光变换并向空间发射红外脉冲 红外发射器的关键是红外发光二极管和响应的驱动电路。红外发光耳机光首先要满足其调制带宽大于信号的频谱宽度,保证通信线路畅通。此外发光二极管的发射波长应与接收端的光电探测器(选用硅光二极管)的峰值响应相匹配,最大程度地抑制背景杂散光干扰,现阶段一般选用780nm~950 nm的红外波段进行数字信号传输。由于红外无线通信系统的信噪比与发射功率的平方成正比,所以适当提高红外发射器的发射功率,并采用空间分集、全息漫射片等可使发射端的光功率在空间均匀分布的措施来降低误码率,提高通信质量。其原 理图如图1所示。 (2)红外接收器 红外接收器包括红外接收部分以及后续的信号采滤波、判决、量化、均衡和解码等其原 理框图如图2所示。

红外接收端的工作过程,首先进行光电转换,将红外脉冲信号变为电信号,经过适当的频域均衡后进行码元判决,码元判决电路是接收器设计的核心部分。由于信号采用红外无线进行穿社,其电平变化范围较大,所以码元判决电路必须是自适应的。接收的信号经自适应码元判决后变成数字信号,再进行适当的解码转换为差分信号进入计算机网卡的信号输入端。 (3)通信信道 红外无线数字通信的信道泛指发射器与接收器之间的空间。由于自然光及人工光源等背景光信号的介入,信号源以及发射、接收设备中电学或光学噪声的影响,红外无线数字通信在某些场合的通信质量较差,需要采用信道编码技术来提高抗干扰能力。 在红外线通信系统中,由于红外发射器的发射功率较小,而且信号采用红外线进行传输,易受外界环境的影响,这些因素导致了红外接收器的信号很弱,并且电平变化范围较大。因此,低噪声的前置放大器设计和自适应的码元判决电路是必须的。低噪声的前置放大器一般选用输入阻抗较高的场效应管放大器,并要求带宽大,增益高,噪声低,干扰小,频率响应与信道脉冲响应匹配。自适应的码元判决电路能自动跟踪输入信号电平的变化,得到最佳的阈值电平,并根据此阈值电平对信号进行判决,将其变换为数字电平之后进行解码,恢复原始信号。同时,为了滤去低频噪声及人为干扰采用带通滤波器,为了与调制特性匹配并消除码间干扰常采用均衡技术,为了获得较大的光接收器工作范围及瞬时视场采用球形光学透镜。这些措施都是将有利于红外无线通信质量的提高。 2 红外串行通信接口电路设计 单片机控制的红外通信系统主要有红外发射器,红外接收器,以及单片机89C51三部分组成,单片机本身并不具备红外通信接口,可以利用单片机的串行接口与片红外发射和接收电路,组成一个单片机控制系统的红外串行通信接口。 2.1 发射部分设计 红外发送电路包括脉冲振荡器、三极管和红外发射管等部分。其中脉冲振荡器有NE55

用单片机解码红外遥控器

用单片机解码红外遥控器 遥控器使用方便,功能多.目前已广泛应用在电视机、VCD、DVD、空调等各种家用电器中,且价格便宜,市场上非常容易买到。如果能将遥控器上许多的按键解码出来.用作单片机系统的输入.则解决了常规矩阵键盘线路板过大、布线复杂、占用I/O口过多的弊病。而且通过使用遥控器,操作时可实现人与设备的分离,从而更加方便使用。下面以TC9012编码芯片的遥控器为例。谈谈如何用常用的51系统单片机进行遥控的解码。 一、编码格式 1、0和1的编码 遥控器发射的信号由一串O和1的二进制代码组成.不同的芯片对0和1的编码有所不同。通常有曼彻斯特编码和脉冲宽度编码。TC9012的O和1采用PWM方法编码,即脉冲宽度调制,其O码和1码如图1所示(以遥控接收输出的波形为例)。O码由O.56ms低电平和0.56ms高电平组合而成.脉冲宽度为1.12ms.1码由0.56ms低电平和1.69ms高电平组合而成.脉冲宽度为2.25ms。在编写解码程序时.通过判断脉冲的宽度,即可得到0或1。 2、按键的编码

当我们按下遥控器的按键时,遥控器将发出如图2的一串二进制代码,我们称它为一帧数据。根据各部分的功能。可将它们分为5部分,分别为引导码、地址码、地址码、数据码、数据反码。遥控器发射代码时.均是低位在前。高位在后。由图2分析可以得到.引导码高电平为4.5ms,低电平为4.5ms。当 接收到此码时.表示一帧数据的开始。单片机可以准备接收下面的数据。地址码由8位二进制组成,共256种.图中地址码重发了一次。主要是加强遥控器的可靠性.如果两次地址码不相同.则说明本帧数据有错.应丢弃。不同的设备可以拥有不同的地址码.因此。同种编码的遥控器只要设置地址码不同,也不会相互干扰。图中的地址码为十六进制的0EH(注意低位在前)。在同一个遥控器中.所有按键发出的地址码都是相同的。数据码为8位,可编码256种状态,代表实际所按下的键。数据反码是数据码的各位求反,通过比较数据码与数据反码.可判断接收到的数据是否正确。如果数据码与数据反码之间的关系不满足相反的关系.则本次遥控接收有误.数据应丢弃。在同一个遥控器上.所有按键的数据码均不相同。在图2中,数据码为十六进制的0CH,数据反码为十六进制的0F3H(注意低位在前).两者之和应为0FFH。 二、单片机遥控接收电路

51单片机多任务运行

51单片机多任务运行 最近发现有的幺弟在对系统的内核感兴趣,加上我也是部分内核的初学者,突然来兴,便用了两天写了一个简单的内核。这个内核简单得不能再简单了,加上空格行、大括号和详细的注解只有246行,还带了4个点亮LED的任务。至今为止我所见最简单的内核~~~ 就跟这个内核取个“多任务分时处理内核”吧!这个内核和ucos系统思想有很大的差异,但是能够帮助我们学习理解ucos系统,能够帮我们了解51的内部结构,以及大多数的单片机运行处理数据的原理~~~ 好废话就不说啦!希望我们能互相学习共同进步 1、先来讲讲原理: 首先,我们看书时会知道51单片机在执行中断的时候,会有以下几个步骤和几种情况。 根据KEIL的编译惯例(这个编译惯例你可以在编完程序后点仿真,里面有个后缀为.src 的文件,这个文件里面是一句C对应一句汇编,你就可以知道你编译的C代码它是怎么处理的,能帮助你学习汇编哦~~~),通常把进入中断后的所使用的通用寄存器组根据情况选择压栈。也就是说,中断前后使用的寄存器组可能不一样,中断前可能使用0,中断中可能使用1。如果使用的同一组寄存器,为了保存现场,KEIL就PUSH现场数据,然后POP 就行啦。但是keil很多时候不是你想象中那样,你叫它怎样他就怎样编译。所以在程序中嵌入了少量的汇编。 其实,嵌入汇编是很简单的事情。 只要在C代码中加入#pragma asm 和#pragma endasm并在他俩的中间加入汇编就行。别忘了还要在工程文件中添加C51S.LIB,这个文件在KEIL/C51/LIB中,这个文件也很重要,不然编译会出现警告,记得把文件类型选择为全部文件,不然看不见它。 接下来说说KEIL的中断汇编。在C51中,中断到来时,CPU响应中断保存当前PC 指针地址压栈SP所指地址。然后将PC指针指向中断向量地址,在中断向量地址中只有一句汇编程序:LJMP XX 意思是跳转到某地址。因为中断后只有8个寄存器,但是你的代码量远远不只有8个寄存器能装下的。这也就是说,响应中断后,先跳转到硬件规定的地址,再由那个地址跳转到中断程序入口。 然后,PC指针跳转到中断程序地址,开始从SP所指地址压栈ACC,B,DPH,DPL,PSW,按理说还需要压栈R0~R7,但KEIL一般是通过换通用寄存器来实现的(也就是改变RS1和RS0来实现的)。也就说KEIL根本不压栈R0~R7。 这个怎么能行,当然不行!不保存我们就不能完全的返回先前压栈的任务啦!好吧,那我们就只有手动保存压栈,这样不就行了,简单吧! 所以我们来帮它。已经通过前面知道它在进入中断的时候已经把中断前的PC指针压栈到中断前SP所指的地址了,所以进入中断后,实际在SP中断前所指地址中已经按顺序压栈了PC低8位,PC高8位,ACC,B,DPH,DPL,PSW总共7个数据,SP是向上增长的,也就是说每压一次堆栈SP+1。然后再把我们的R0~R7寄存器压入堆栈,这不就行啦,就保护现场所需的全部数据,就算有时R0~R7寄存器用不上我们也得加进去,为了为了保证正确的返回现场。 因此我们保存一次数据就需要7+8=15字节的堆栈,每个任务的起始地址保存一次,中间临时要保存一次,共需要15+15=30字节的堆栈。所以定义程序空间为现场保存空间为 0~29。名字叫:unsigned char TASK_STACK[TASK_MAX][30];//程序现场保存数组。TASK_MAX是程序个数,因为每一个程序都需要保存两次,每次15个变量来保存现场,并且51是8位的单片机所以用unsigned char。 然后就是程序现场保存数组的初始化使每个数据都是0。 首先,根据响应中断后的压栈顺序,知道了数组0位和1位保存的是中断前程序的地

相关主题
文本预览
相关文档 最新文档