当前位置:文档之家› 50球阀设计计算书

50球阀设计计算书

50球阀设计计算书
50球阀设计计算书

两片式内螺纹球阀设计计算说明书

JS/50Q11F-16P

编制:_________

审核:_________

批准:_________

温州昌一阀门有限公司

2011年04月

目录

一、壳体壁厚S B验算 (1)

二、密封副设计与计算 (2)

三、阀杆强度校核 (4)

四、手柄长度W计算 (6)

参考文献

[1]、陆陪文主编《阀门实用设计手册》第二版

[2]、杨源泉主编《阀门设计手册》第二版

[3]、章华友主编《球阀设计与选用》

Dmin =

2

3

Fu = (

= (

= ×

4

= d=

5

6

减压孔板快速计算书

减压孔板 在室内给排水工程中,减压孔板可用于消除给水龙头和消火栓前的剩余水头,以保证水系统均衡供水,达到节水、节能的目的。 (1) 减压孔板孔径的计算:水流通过孔板式的水头损失,按式中计算: )10(242 pa g H υξ= 1式 式中 H ——水流通过孔板的水头损失值(Pa ); ξ——孔板的局部阻力系数; υ——水流通过孔板后的流速(m/s ); g ——重力加速度(m/s )。 ξ值可从下列式中求得: ξ= 2式 式中 D ——给水管道直径(mm ); ——孔板孔径(mm )。 为简化计算,将各种不同管径及孔板孔径代入公式1式、2式,求得相应的H 值,所得计算结果列于表1.使用时,只要已知剩余水头及给水立管直径D ,九可从表中查的所需孔板孔径。 表1: 减压孔板的水头损失 D (mm ) 3 4 5 6 7 8 9 10 11 12 13 15 20 25 32 40 50 81.03 262.30 24.54 81.03 201.77 9.49 32.16 81.03 222.21 4.25 14.91 38.13 10 5.59 262.30 2.09 7.68 19.98 56.00 140.02 1.10 4.25 11.31 3 2.16 81.03 201.77 0.59 2.48 6.79 19.61 49.84 124.80 0.33 1.51 4.25 12.53 32.16 81.03 0.18 0.94 2.75 8.30 21.56 54.70 0.09 0.59 1.83 5.67 14.91 38.13 0.04 0.38 1.24 3.96 10.58 27.30 D

孔板流量计计算书

TAG : --- Timestamp:---Review number:--- Sales order number:Serial number :Person in charge : Sizing Sheet -data sheet Operating Conditions *The user is responsible for the selection of process-wetted materials in view of their corrosion resistance. Endress+Hauser makes no guarantees and assumes no liability for the corrosion resistance of the materials selected here for the application described above. ** The PED category is an Endress+Hauser recommendation and depends on the fluid category, process data as well from the max. permissible pressure of the selected pressure rating.The fluids of the Applicator data base are classified to 67/548/EWG.

TAG : --- Timestamp:---Review number:--- Sales order number:Serial number :Person in charge : Sizing Sheet -installation / options Pipe Dimensions *The Enduser is responsible for the correct selection of the piping. Applicator does not calculate necessary pipe wall thickness according to application data. Endress + Hauser takes no liability for the suitability of the pipe dimensions. Mounting Position Compact version / horizontal pipe Gas / pointing left in direction of flow Optimization criterion Optimized by Endress+Hauser

球阀设计计算书

球阀设计计算书 产品名称固定球阀 10STQ3R59CG 设计计算书 目录 阀体壁厚验算1 阀盖壁厚验算2 密封面上的计算比压3 133倍中腔泄压能力的计算4 阀杆启闭扭矩的计算5 阀杆强度验算 7 阀杆扭转变形的计算8 阀杆键连接强度验算9 中法兰螺栓强度验算10 流量系数计算11 吊耳的强度计算12 参考资料 API 6D 管道阀门 ASME B1634 阀门法兰螺纹和焊端连接的阀门 ASME 锅炉与压力容器规范第Ⅱ卷 ASME 锅炉与压力容器规范第Ⅷ卷 API 600 钢制闸阀法兰和对焊连接端螺栓连接阀盖说明

以公称压力作为计算压力 对壳体壁厚的选取在满足计算壁厚的前提下按相关标准取壳体最小壁厚且圆整整数已具裕度 涉及的材料许用应力值按-29~38℃时选取 适用介质为水油气等介质 不考虑地震载荷风载荷等自然因数 瞬间压力不得超过使用温度下允许压力11倍 管路中应安装安全装置以防止压力超过使用下的允许压力 型号 10STQ3R59CG 简 图零件名称阀体材料牌号ASTM A105 计算内容壁厚验算根据ASME1634 序号计算数据名称符号公式数值单位 1 壳体计算壁厚 t1 15Pcd 2S-12Pc 1238 mm 2 计算压力Pc 设计给定300 psi 3计算内径 d d d0 254 mm 4 基本应力系数S 设计给定7000 psi 5 附加厚度 C 设计给定40 mm 6 阀体标准厚度tm ASTM B1634 84 mm 7 阀座外径DH 设计给定270 mm 8 理论内径 d Dn15 180 mm 9 公称内径d0 设计给定 254 mm 10 阀体实际壁厚t 设计给定25 mm ASTM A216 WCB材料许用应力取值 1 常温下抗拉强度35 Re2035 200000 psi 2 常温下抗拉强度查ASME-Ⅱ-D 70000 psi 3 常温下屈服强度15 Rm2015 240000 psi 4 常温下屈服强度查ASME-Ⅱ-D 36000 psi Re2035>7000 Rm2015>7000 取基本应力系数7000满足要求结论 t>t1 t>tm

流量孔板设计

节流孔板在发电厂的应用 摘要:通过对液体汽蚀现象的分析,提出了采用节流孔板来降低发电厂汽水管道压力,从而防止流体产生汽蚀的方法。介绍了选择节流孔板的计算方法,包括节流孔板级数、压力差和孔径的计算。 关键词:汽水管道;汽蚀;节流孔板 Applying throttle orifice to power plants Abstract:With the analysis on liquid cavitation, the use of throttle orifice is suggested to lower the pressure in steam water piping of power plants so as to prevent liquid cavitation. As for the selection of throttle orifice, methods for calculating the number of orifice stages, pressure difference and orifice diameter are described as well. Keywords:steam water piping;cavitation;throttle orifice 在工程中,当发电厂汽水管道不需要根据系统的要求调节不同压力,但管道的前后压差较大时,往往采用增加节流孔板的方式,其原理是:流体在管道中流动时,由于孔板的局部阻力,使得流体的压力降低,能量损耗,该现象在热力学上称为节流现象。该方式比采用调节阀要简单,但必须选择得当,否则,液体容易产生汽蚀现象,影响管道的安全运行。 1汽蚀现象 节流孔板的作用,就是在管道的适当地方将孔径变小,当液体经过缩口,流束会变细或收缩。流束的最小横断面出现在实际缩口的下游,称为缩流断面。在缩流断面处,流速是最大的,流速的增加伴随着缩流断面处压力的大大降低。当流束扩展进入更大的区域,速度下降,压力增加,但下游压力不会完全恢复到上游的压力,这是由于较大内部紊流和能量消耗的结果(见图1)。如果缩流断面处的压力p vc降到液体对应温度下的饱和蒸汽压力p v以下,流束中就有蒸汽及溶解在水中的气体逸出,形成蒸汽与气体混合的小汽泡,压力越低,汽泡越多。如果孔板下游的压力p2仍低于液体的饱和蒸汽压力,汽泡将在下游的管道继续产生,液汽两相混合存在,这种现象就是闪蒸。如果下游压力恢复到高于液体的饱和蒸汽压力,汽泡在高压的作用下,迅速凝结而破裂,在汽泡破裂的瞬间,产生局部空穴,高压水以极高的速度流向这些原汽泡占有的空间,形成一个冲击力。由于汽泡中的气体和蒸汽来不及在瞬间全部溶解和凝结,在冲击力作用下又分成小汽泡,再被高压水压缩、凝结,如此形成多次反复,并产生一种类似于我们可以想象的砂石流过管道的噪音,此种现象称为空化(见图2)。流道材料表面在水击压力作用下,形成疲劳而遭到严重破坏。我们把汽泡的形成、发展和破裂以致材料受到破坏的全部过程称为汽蚀现象。 闪蒸和空化的主要区别在于汽泡是否破裂。存在闪蒸现象的系统管道,由于介质为汽水两相流,介质比容和流速成倍增加,冲刷表面磨损相当厉害,其表现

多孔板计算书

富 春 江 励 骏 酒 店 裙 房 穿 孔 铝 板 施 工 方 案 结 构 计 算 书( ZONE 5) STRUCTURAL CALCULATION OF ALUM. PANEL CURTAIN WALL SYSTEM AT FU CHUN RIVER LEGEND HOTEL Hangzhou , China

2 Check: File: al-panel.xlsPage : 1) 荷载数据(Loading) 水平风荷载(horizontal wind load) 杭州市基本风压按全国基本风压分布图取0.45KPa(50年一遇的风压)杭州市风压高度变化系数B类地区查表: a.)注:0 ~20.4m ( above artificial base level )W o :基本风压,可取0.45 Kpa Wk = βz *μz *μsl *Wo βgz :高度z处的阵风系数,可取1.684 = 1.684 x 1.256 x 1.11 x 0.45 μz : 风压高度变化系数,可取1.256 = 1.056 KPa μs : 风荷载体型系数,按建筑拐角处:可取1.11 A=1.5x5.1x0.3=2.3m^2 >1m^2,考虑折减风压 μsl (A)=μsl (1)+[μsl (10)—μsl (1)]1ogA=1.11 用于幕墙的铝板计算的水平荷载组合值 垂直于幕墙平面的水平地震作用(按7度抗震设防考虑) ( Horizontal distributed seimic load)注:穿孔铝板的实心率是30% q E =βE x αmax x G / A (穿孔铝板自重取28 x 3 x 0.3/1000 = 0.025 KPa) = 5.0 x 0.08 x 0.025 KPa (dead load of alum. panel say as 0.025 KPa) = 0.01 KPa 0 ~20.4m ( above artificial base level ) 水平荷载设计值组合 ( Combined design loading ) Ws = 1.0 x 1.4 x 1x0.3 + 0.5 x 1.3 x 0.01 = 0.427 KPa 水平荷载标准值组合 ( Combined characteristic loading ) Wo = 1.0 x 1.0 x 1x0.3 + 0.5 x 1.0 x 0.01 = 0.31 KPa 主要的设计依据(DESIGN CRITERIAL)

(整理)150LB球阀设计计算书1.

球阀设计计算书2″~8″Q41F-150Lb 编制: 审核: 二○○三年五月二十三日 浙江阀门制造有限公司

目录 1.阀体壁厚计算————————————————————1 2.中法兰强度计算———————————————————2 3.法兰螺栓拉应力验算—————————————————7 4.力矩计算——————————————————————8 5.阀杆强度校算————————————————————11 6.密封比压计算————————————————————13 7.作用在手柄上的启闭所需力——————————————15

一、 阀体壁厚计算: 计算公式: C P S d P t c c +-=)2.12.( 5.1 式中:t -阀体计算壁厚(英寸); Pc -额定压力等级(磅);Pc=150 d -公称通径(英寸); S -材料需要用的应力(磅/平方英寸)S=7000 C -附加余量(英寸)按ANSI B16.34 C=0.1英寸 英寸(毫米) 实际确定壁厚≥计算壁厚为合格

二.中法兰强度计算: 1.中法兰的轴向应力计算: []5.1302 1=≤= H i o H D fM σλδσ 式中: σH -法兰颈的轴向应力(Mpa); Mo -作用平炉钢于法兰的总轴向力矩(N ·mm); f -整体法兰颈部应力校正系数(查表); δ1-法兰颈部大端有效厚度(mm); D i -为阀体中腔内径(mm); λ-系数; [σH ]-法兰颈许用轴向应力(Mpa); M O =F D S D +F r S r +F G S G 式中: F D -作用在法兰内径面积上的流体静压轴向力(N); S D -从螺栓孔中园致力FD 作用位置处的径向距离(mm); F r -总的流体静压轴向力与作用在法兰直径面积上的流体静压轴向 力之差(N); S r -从螺栓孔中心园致力于Fr 作用位置处的径向距离(mm); F G -用于窄面法兰垫片载荷(N); S G -从螺栓孔中心园致力FG 作用位置处的径向距离(mm);

设计计算书(止回阀)DN50

DN50 PN20 (A2″150Lb) 旋启式止回阀 设计计算书 计算朱德兴 校核 审定 天津市卡尔斯阀门有限公司 2010年06月

目录 一、阀体最小壁厚计算 (3) 二、密封面比压计算 (3) 三、中法兰螺栓抗拉强度 (4) 四、阀门流量系数计算 (5) 五、设计计算参考文献目录 (5)

㈠、阀体最小壁厚计算 依据美国国家标准ASME B16.34—2004《法兰、螺纹和焊接端连接的阀门》强制性附录Ⅵ最小壁厚的基本公式: 150磅级直径50<d≤100t m(150)=0.02d+4.50 (1.1) 式中:t m—最小厚度(mm) d—阀门公称通径(mm) 将d=300代入公式(1.2),经计算得出: t m (150)=0.02×50+4.5=5.5 (mm) 附加考虑因素: 考虑铸、锻造偏差、工艺性和流体腐蚀的附加裕量: 根据经验取C =2mm 因此确定阀体的壁厚值t t=t m+c =+2 =7.5mm 设计采用值:设计实际壁厚取t=8.5mm, 评定准则:t>t m 结论:设计实际壁厚t大于标准规定最小壁厚t m,阀体壁厚值安全,满足要求。 ㈡、密封面上总作用力Q MZ: 依据《2006版实用阀门设计手册》第四篇《设计与计算》表4-82 密封面上总作用力Q MZ=密封面处介质作用力Q MJ Q MJ =P(d M+b M)2π/4=2(90+10.5)2π/4=15857.39 q= Q MJ/π(d M+b M)b M=15857.39/π(90+10.5)10.5=4.79 MPa [q]=5 Mpa q MF= 1.8+0.9P/√b M/10=3.51 MPa q MF<q<[q] 符合设计要求

限流孔板的工艺计算

限流孔板计算表编制说明PS323-03 限流孔板计算表编制说明 1范围 本标准规定了限流孔板计算表的格式和填写要求,以及限流孔板的计算方法,适用于工程设计。 2引用标准 HG/T 20570.15—95 《管路的限流孔板》 3限流孔板的使用场所 限流孔板适用于以下几个方面: 3.1工艺物料需要降压且精度要求不高。 3.2在管道中阀门上、下游需要有较大压降时,为减少流体对阀门的冲蚀,当经 孔板节流不会产生气相时,可在阀门上游串联孔板。 流体需要小流量且连续流通的地方,如泵的冲洗管道、热备用泵的旁路管道(低流量保护管道)、离心泵出口返回贮槽(罐)的旁路管、分析取样管等场所。 4限流孔板计算表填写 限流孔板计算表的格式见附表1,计算表应注明工程名称和装置名称。 4.1限流孔板位号 由系统专业提出并填写。 4.2PID图号 根据PID图填写。 4.3管道号 根据限流孔板所在的管道号填写。 4.4管道类别 根据限流孔板所在的管道填写。 4.5介质 根据工艺专业提供的工艺数据填写。 4.6流量 根据工艺专业提供的工艺数据填写。 4.7孔板流量系数 —1—

限流孔板计算表编制说明PS323-03 由系统专业根据Re和d。/D值查附图(附图1)填写。 4.8液体密度 根据工艺专业提供的工艺数据填写。 4.9分子量 根据工艺专业提供的工艺数据填写。 4.10压缩系数 由系统专业根据流体对比压力、对比温度查气体压缩系数图求取 4.11孔板前温度 根据工艺专业提供的工艺数据填写。 4.12绝热指数 根据工艺专业提供的工艺数据填写。 4.13粘度 根据工艺专业提供的工艺数据填写。 4.14板数 见5.2中说明。 4.15孔板允许压差 见5.2中说明。 4.16孔板前绝压 见5.2中说明。 4.17孔板后绝压 见5.2中说明。 4.18开孔数 见5.1中说明。 4.19计算孔径 见5.3中说明。 4.20选用孔径 由系统专业按计算的孔径圆整后填写。 5限流孔板的计算 5.1限流孔板孔数的计算 5.1.1管道公称直径小于或等于150m时,通常采用单孔孔板;大于150m时,采 —2—

阀门强度计算

目录 1. 目的 (4) 2. 适用范围 (4) 3. 计算项目 (4) 4. 中法兰强度计算 (5) 5. 闸阀力计算 (17) 6. 闸板、阀杆拉断计算 (21) 7. 闸板应力计算 (26) 8. 压板、活节螺栓强度计算 (28) 9. 截止阀力计算 (30) 10. 止回阀阀瓣、阀盖厚度计算 (34) 11. 自紧密封结构计算 (38) 12. 阀体壁厚计算 (47) 附录A 参考资料 (48)

1.目的 为了保证本公司所设计的阀门的统一性和质量。 2.适用范围 本公司所设计的闸阀、截止阀、止回阀。 3.计算项目 ●3.1 闸阀需要计算项目4、5、6、7、8 ●3.2 截止阀需要计算项目4、8、9 ●3.3 止回阀需要计算项目4、10 ●3.4 自紧密封结构设计需要计算项目11 4.中法兰计算 ●4.1适用范围 该说明4.2~4.4适用于圆形中法兰的计算;4.5适用于椭圆形中法兰的计算 ●4.2输入参数 4.2.1 设计基本参数 4.2.1.1 口径(DN) 4.2.1.2 压力等级(CLASS) 4.2.1.3 阀种(TYPE) 4.2.1.4 设计温度(T0)取常温380C。 4.2.1.5 设计压力(P)按ASME B16.34-2004 P27,P29,P48取值如表1。

4.2.1.6法兰许用应力(FQB) 按ASME第Ⅱ卷(2004版)材料D篇表1A,乘以铸件系数0.8 WCB 110.4MPa (11.26Kgf/mm2) (P16第8行) LCB 102.4MPa (10.45Kgf/mm2) (P10第29行) CF8M 110.3MPa(11.26Kgf/mm2) (P66第18行) 4.2.1.7螺栓许用应力(BQB) 按ASME 第Ⅱ卷(2004版)材料D篇表3, B7 17.6 kgf/mm2. (P384第33行) L7M 14.08 kgf/mm2. (P384第31行) B8 17.6 kgf/mm2. (≤3/4) (P390第29行) 14.08 kgf/mm2. (3/4~1) (P390第27行) 13.3 kgf/mm2. (1以上) (P390第23行) 4.2.1.8 垫片密封压力(Y),按ASME 第Ⅷ卷(2004版)第一册P298表2-5.1,如表2。 4.2.1.9 垫片系数(M)按表2。

全焊接球阀设计计算书2014.8.22

12"Q367F400Lb 全焊接球阀设计计算书 1 弹簧预紧力设计 1.1 弹簧最小预计力F YJ a F YJ a=(π/4)*( D MW2-D MN2)* q YJ =0.785*(3262-3202) *1.5=4564N 式中: q YJ-最小预紧比压,q YJ取1.5MPa; D MW-密封圈外径,设计给定326mm; D MN-密封圈内径,设计给定320mm。 1.2自泄压阀座超压推力F OP F OP=(π/4)*0.33*P*( D HW2-D MP2)=0.785*2.2*(3302-3232)=7894N 式中: P-最大工作压力,设计给定压力等级是400Lb,取MAP@38℃=6.8MPa; D HW-阀座支撑圈外径,设计给定330mm; D MP-密封面平均直径,D MP=0.5*(D MW+D MN)= 0.5*(326+320)=323mm; 1.3判定 弹簧预紧力设计既要满足阀座低压密封要求,也不能使阀座丧失自泄压功能,即:F YJ a≤F YJ≤F OP 式中:F YJ-弹簧设计的预紧力,设计给定为6720N 显然4564<6720<7894,满足要求,故弹簧预紧力设计合格! 2密封面的比压设计 2.1设计比压q q=(F MJ+F YJ)/[(π/4)*(D MW2-D MN2)] =(24400+6720)/[0.785*(3262-3202)]=10.2MPa 式中: F MJ-介质水平密封力, F MJ =π/4*(D HW2-D MP2)*P=0.785*(3302-3232)*6.8=24400N 2.2必须比压q b q b=m*((a+cp/√b))=1.4*(1.8+0.9*6.8)/√3)=6.44 MPa 式中: m-与流体性质相关的系数,根据设计给定的介质和温度选取m=1.4 ;

孔板流量计计算公式

0 引言 孔板是典型的差压式流量计,它结构简单,制造方便,在柳钢炼铁厂使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度( 情况) 在孔板前后发生了很大的变化,从而且在孔板前后形成了差压,通过测量差压可以反映流体流量大小[1]。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 (1) 其中Q ——体积流量,Nm3/h; Q max——设计最大流量,Nm3/h; ΔP ——实际差压,Pa; ΔP设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动( 变化) 较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;笔者经过大量的数据统计获

得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。 1 孔板流量计计算公式 1.1通用计算公式(2) (2) 其中Q——体积流量,Nm3/h; K——系数; d——工况下节流件开孔直径,mm; ε——膨胀系数; α——流量系数; ΔP——实际差压,Pa; ρ——介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方程,有 (3) P ——压力,单位Pa; V ——体积,单位m3; T ——绝对温度,K; n ——物质的量; R ——气体常数。

限流孔板的工艺计算

限流孔板计算表编制说明 1范围 本标准规定了限流孔板计算表的格式和填写要求,以及限流孔板的计算方法,适用于工程设计。 2引用标准 HG/T 20570.15—95 《管路的限流孔板》 3限流孔板的使用场所 限流孔板适用于以下几个方面: 3.1工艺物料需要降压且精度要求不高。 3.2在管道中阀门上、下游需要有较大压降时,为减少流体对阀门的冲蚀,当经孔板节流不会产生气相时,可在阀门上游串联孔板。 流体需要小流量且连续流通的地方,如泵的冲洗管道、热备用泵的旁路管道(低流量保护管道)、离心泵出口返回贮槽(罐)的旁路管、分析取样管等场所。 4限流孔板计算表填写 限流孔板计算表的格式见附表1,计算表应注明工程名称和装置名称。 4.1限流孔板位号 由系统专业提出并填写。 4.2PID图号 根据PID图填写。 4.3管道号 根据限流孔板所在的管道号填写。 4.4管道类别 根据限流孔板所在的管道填写。

4.5介质 根据工艺专业提供的工艺数据填写。 4.6流量 根据工艺专业提供的工艺数据填写。 4.7孔板流量系数 由系统专业根据Re和d。/D值查附图(附图1)填写。 4.8液体密度 根据工艺专业提供的工艺数据填写。 4.9分子量 根据工艺专业提供的工艺数据填写。 4.10压缩系数 由系统专业根据流体对比压力、对比温度查气体压缩系数图求取4.11孔板前温度 根据工艺专业提供的工艺数据填写。 4.12绝热指数 根据工艺专业提供的工艺数据填写。 4.13粘度 根据工艺专业提供的工艺数据填写。 4.14板数 见5.2中说明。 4.15孔板允许压差 见5.2中说明。 4.16孔板前绝压

孔板流量计计算公式

孔板流量计计算公式-CAL-FENGHAI.-(YICAI)-Company One1

0引言 孔板是典型的差压式流量计,它结构简单,制造方便,在柳钢炼铁厂使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度( 情况) 在孔板前后发生了很大的变化,从而且在孔板前后形成了差压,通过测量差压可以反映流体流量大小[1]。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 (1) 其中Q ——体积流量,Nm3/h; Q max——设计最大流量,Nm3/h; ΔP ——实际差压,Pa; ΔP设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动( 变化) 较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;笔者经过大量的数据统计获得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。

1孔板流量计计算公式 1.1通用计算公式(2) (2) 其中Q——体积流量,Nm3/h; K——系数; d——工况下节流件开孔直径,mm; ε——膨胀系数; α——流量系数; ΔP——实际差压,Pa; ρ——介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方程,有 (3) P ——压力,单位Pa; V ——体积,单位m3; T ——绝对温度,K; n ——物质的量; R ——气体常数。 相同( 一定) 质量的气体在温度和压力发生变化时,有:

限流孔板的工艺计算

限流孔板的工艺计算内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

限流孔板计算表编制说明 1范围 本标准规定了限流孔板计算表的格式和填写要求,以及限流孔板的计算方法,适用于工程设计。 2引用标准 HG/T —95 《管路的限流孔板》 3限流孔板的使用场所 限流孔板适用于以下几个方面: 3.1工艺物料需要降压且精度要求不高。 3.2在管道中阀门上、下游需要有较大压降时,为减少流体对阀门的冲蚀,当经孔板节流不会产生气相时,可在阀门上游串联孔板。 流体需要小流量且连续流通的地方,如泵的冲洗管道、热备用泵的旁路管道(低流量保护管道)、离心泵出口返回贮槽(罐)的旁路管、分析取样管等场所。 4限流孔板计算表填写 限流孔板计算表的格式见附表1,计算表应注明工程名称和装置名称。 4.1限流孔板位号 由系统专业提出并填写。 4.2PID图号 根据PID图填写。

4.3管道号 根据限流孔板所在的管道号填写。 4.4管道类别 根据限流孔板所在的管道填写。 4.5介质 根据工艺专业提供的工艺数据填写。 4.6流量 根据工艺专业提供的工艺数据填写。 4.7孔板流量系数 由系统专业根据Re和d。/D值查附图(附图1)填写。 4.8液体密度 根据工艺专业提供的工艺数据填写。 4.9分子量 根据工艺专业提供的工艺数据填写。 4.10压缩系数 由系统专业根据流体对比压力、对比温度查气体压缩系数图求取4.11孔板前温度 根据工艺专业提供的工艺数据填写。 4.12绝热指数 根据工艺专业提供的工艺数据填写。 4.13粘度 根据工艺专业提供的工艺数据填写。

固定球阀扭矩计算

固定球阀扭矩和比压计算 阀前阀座密封的固定球阀的扭矩计算 总扭矩M:M=M m+M t+M u+M c (N·mm) 式中M m—球体与阀座密封圈间的摩擦扭矩(N·mm); M t—阀杆与填料间的摩擦扭矩(N·mm); M u—阀杆台肩与止推垫的摩擦扭矩(N·mm); M c—轴承的摩擦扭矩(N·mm); (1)M m的计算 M m=QR(1+cosφ)μt/2cosφ; Q—固定球阀的密封力(N),Q=(Q MJ-Q J)+2Q1-Q2; Q MJ—流体静压力在阀座密封面上引起的作用力(N),Q MJ=πp(d12-D12)/4; d1—浮动支座外径(mm); D1—浮动支座内径,近似等于阀座密封圈内径(mm); P—流体压力(MPa); Q J—流体静压力在阀座密封面余隙中的作用力(N),Q J=πP J (D22-D12)/4; P J—余隙中的平均压力,当余隙中压力呈线性分布时,可近似地取P J=P/2 (N); D2—阀座密封圈外径(mm); Q1—预紧密封力(N),Q1=πq min (D22-D12)/4; q min—预紧所必需的最小比压,q min=0.1P (MPa),并应保证q min≥2MPa,弹性元件应根据Q1值的大小进行设计; Q2—阀座滑动的摩擦力(N); Q2=πd1(0.33+0.92μ0d0P) d0—阀座O型圈的横截面直径(mm); μ0—橡胶对金属的摩擦系数,μ0=0.3~0.4;有润滑时,μ0=0.15; R—球体半径(mm); φ—密封面对中心斜角(°); μt—球体与密封圈之间的摩擦系数,F-4:μt=0.05;填充F-4:μt=0.05~0.08; 尼龙:μt=0.15;填充尼龙:μt=0.32~0.37; (2)M t的计算 M t=M t1+ M t2 M t1—V型填料及圆形片状填料的摩擦转矩 M t1=0.6πμt Zhd T2P(N.mm) Z—填料个数;

限流孔板计算20080829

管路限流孔板的计算 限流孔板作为节流元件,由于具有结构简单、易加工、制造成本低、安装方便等优点,在满足工艺要求的前提下,使用限流孔板代替调节阀来限定流量或降低压力,将会大大地降低投资和操作维修费用。 特点 1.可以限定流量。 2.可以降低压力。 3.可同时限流降压。 流体为气体时,如果只是为了限定流量,对下游的压力没有要求,单段限流孔板即可满足要求。但如果在限定流量的同时还要限制孔板下游侧压力,单段限流孔板就满足不了这一要求,因为单段限流孔板不大可能在限定流量的同时还限制下游的压力,这时就应采用多段限流孔板来实现。 工作原理 孔板可以作为节流元件用来限定流量和降低压力。当孔板前后存在一定压差,流体流经孔板,对于一定的孔径,流经孔板的流量随着压差增大而增大。但当压差超过某一数值(称为临界压差)时,流体通过孔板缩孔处的流速达到音速,这时,无论压差如何增加,流经孔板的流量将维持在一定数值而不再增加。限流孔板就是根据这一原理来限定流体的流量和降低压力的。 规格 DN10~1000 目的:化工厂、石油化工厂装置管路的限流孔板设置在管道上,用于限制流体的流量或降低流体的压力。 使用范围:管路的限流孔板应用于以下几个方面: 限流孔板为一同心锐孔板,用于限制流体的流量或降低流体的压力。流体通过孔板就会产生压力降,通过孔板的流量则随压力降的增大而增大。但当压力降超过一定数值,即超过临界压力降时,不论出口压力如何降低,流量将维持一定的数值而不再增加。限流孔板就是根据这个原理用来限制流体的流量或降低流体的压力。 1.工艺物料需要降压且精度要求不高。 2.在管道中阀门上、下游需要有较大压降时,为减少流体对阀门的冲蚀,当经孔板节流不会产生气相时,可在阀门上游串联孔板。 3.流体需要小流量且连续流通的地方,如泵的冲洗管道、热备用泵的旁路管道(低流量保护管道)、分析取样管等场所。 4.需要降压以减少噪声或磨损的地方,如放空系统。 (《工艺系统工程设计技术规定》HG/T20570.15-1995)

厌氧塔设计计算书

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E= V= 3084000 .570 .0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2) 单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 ( *14.3222 ' m h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3 'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.176********h m m S Q V r =??== 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 187'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之

阀门力矩计算1

350FJ547Y-220I阀杆力矩重力计算 序号计算数据名称符号公式单位 1 阀瓣重力G G=mg N 2352 2 阀瓣质量m Kg 240 3 重力加速度g m/s2 9.8 平衡力计算 1 平衡力 F P F P=P(S-Sg) N 1694337.8 87 2 设计压力P 设计给定MPa 22 3 平衡腔直径Dp设计给定mm 322 4 阀杆直径D F 设计给定mm 75 5 平衡腔截面积S ΠDp2/4 mm 2 81433.223 17 6 阀杆截面积Sg ΠD F 2/4 mm 2 4417.8646 69 盘根填料与阀杆的摩擦力 1 阀杆与填料的摩 擦力F T1 F T1=1.2πPD F ZH J f N 65313.711 27 2 设计压力P 设计给定Mpa 22 3 阀杆直径D F 设计给定mm 75 4 单圈填料与阀杆 的接触高度H J 设计给定 mm 10 5 填料圈数Z 设计给定个7 6 填料与阀杆的摩 擦系数 f 设计给定0.15 盘根填料与阀瓣的摩擦力 1 阀瓣与填料的摩 擦力F T2 F T2=1.2πPD F ZH J f N 238861.57 26 2 设计压力P 设计给定Mpa 22 3 阀瓣直径D F设计给定mm 320 4 单圈填料与阀瓣 的接触高度H J 设计给定mm 10 5 填料圈数Z 设计给定个 6 6 填料与阀杆的摩 擦系数 f 设计给定0.15

7 密封力 F MF 密封比压中已计 算 N 165814.96 23 8 密封面上介质静 压力F MJ 密封比压中已计 算 N 1570678.1 24 防转块与导向槽的摩擦力 1 防转块与导向槽 的摩擦力 F'J F'J=F MF+F MJ+F T1+FT2 /(R/F j R FM-1) N 19658.668 63 2 计算半径R 设计给定mm 150.5 3 防转键中摩擦系 数 Fj 设计给定0.2 4 关闭时阀杆螺纹 的摩擦半径R FM 查实用机械设计 手册表3-16 mm 7.18 1 关闭瞬间阀杆总 轴向力F'FZ F'FZ=F MF+F MJ+F T1+F T2+F'J-G-F P N 363637.15 21 2 关闭时阀杆螺纹 的摩擦力矩M'FL M'FL=F'FZ×R FM N·mm 2610914.7 52 3 关闭时阀杆螺纹 的摩擦半径R FM 查实用机械设计 手册表3-16 mm 7.18 4 关闭时阀杆最大 转矩M'FZ M'FL/1000 N·mm 2610.9147 52 5 R FM R FM=0.5d2tan(αL+ ρL) cm 0.9840812 88 6 阀杆螺纹的螺纹 升角αL αL=arctan(p/π d2) 1.5659631 45 7 ρL ρL=arctan(f L) 0.1683901 57 8 螺纹摩擦系数f L查表 9-3 0.17 9 螺距P设计给定mm 10 10 螺纹中经d 2查实用机械设计 手册表3-16 mm 65

闸阀截止阀球阀扭矩计算

闸阀截止阀操作转矩计算法(热工所/罗托克经验公式) 此计算方法,比“三化”使用的计算方法要简便得多,计算结果接近实际转矩,已由对电厂实测结果证实。此计算方法主要由以下几个部分组成: 1、计算介质压力对阀门闸板或阀芯施加的推力乘阀门系数,即:P1=F×P×K 式中:F=阀门的通径面积(cm2);P =介质的工作压力(kg/cm2);K =阀门系数,视介质种类、温度及阀门行驶而定。 阀门系数表 2、计算填料的摩擦推力和转矩,以及阀杆的活塞效应所产生的推力总和P2。 压紧填料压盖,会给明杆闸阀的阀杆增加摩擦力,给旋转杆阀门的阀杆增加转矩。管道压力作用于阀杆(通过填料压盖处)的截面积上,为开启阀门的趋势。当道压力在64kgf/cm2以上时介质对明杆闸阀阀杆的推力是很大的,即所谓活塞效应。故当介质压力≥64kgf/cm2时,对于明杆闸阀应予考虑。而对截止阀,其阀杆面积已包括在阀芯面积中,所以活塞效应可忽略。对于暗杆阀,以上3项均应计算。 填料的摩擦推力和转矩以及阀杆的活塞效应表 3、计算阀门阀杆的总推力(Kgf),即ΣP=P1+P2,再将此推力乘以下表中的阀杆系数,获得阀门操作转矩Kgf.M 梯形螺纹的阀杆系数(kgf.m/kgf)表 (阀杆尺寸=直径×螺距,单位:mm)

道压力高,则采用管道压力),阀门形式、介质的种类、阀杆直径与螺距。现以下列示例来说明计算的方法与步骤。有一明杆楔式闸阀,公称直径为 100mm,管道压力为 40kgf/cm2,阀杆为 Tr28*5mm,介质为 520℃蒸汽,求阀门的操作转矩。 1.由表 1查得阀门通道面积:78.540cm2; 2.取压差,阀门工作恶劣情况是在管道压力下开启,故,压差:40kgf/cm2; 3.由表 2查得阀门系数:0.45; 4.净推力为:P1=F×P×K=(1)×(2)(×3)=78.540×40×0.45=1413.72 kgf; 5.由表 3查得摩擦推力 P2:680kgf; 6.如管道压力为 64 kgf/cm2以上,应加入介质对阀杆的推力,即活塞效应,因此例管道压力为 40 kgf/cm2,故不加。 7.总推力ΣP=P1+P2=(4)+(5)=1413.72+680=2093.72kgf; 8.由表 4查得阀杆系数:0.00266; 9.阀门操作转矩=ΣP*阀杆系数=(7)*(8)=2093.72*0.00266=5.57kgf.m; 10.换算成 N.m,因1kgf.m=10N.m,所以5.57kgf.m=55.7N.m,圆整后为60N.m。 附闸阀密封面上总作用力及计算比压公式 密封面上总作用力=密封面处介质作用力+密封面上密封力 密封面处介质作用力=0.785×(密封面内径+密封面宽度)2×公称压力PN值的1/10 密封面上密封力=3.14×(密封面内径+密封面宽度)×密封面宽度×密封面必须比压密封面必须比压(查表实用阀门设计手册笫三版表3-21) 密封面计算比压=密封面上总作用力/ 3.14×(密封面内径+密封面宽度)×密封面宽度 <密封面许用比压(查表实用阀门设计手册笫三版表3-22)

相关主题
文本预览
相关文档 最新文档