当前位置:文档之家› 大桥高墩爬模施工方案

大桥高墩爬模施工方案

大桥高墩爬模施工方案
大桥高墩爬模施工方案

重庆G3项目两河口大桥高墩爬模施工方案随着多年山区、跨河、跨海桥梁的建设,我国桥梁高墩施工技术已基本成熟,主要工艺有落地脚手架施工技术、滑升模板技术、爬升模板技术和翻转模板技术。根据具体工程特点、施工条件以及自身情况的不同,选择经济合理和满足特定工程需要的工艺手段,以达到确保工程质量、加快工程进度、节约工程成本的目的。两河口大桥高墩确定采用无支架爬模施工并编制技术方案及质量控制措施如下:

1、工程概况

两河口大桥全长892米,桥位区位于酉阳县龙潭镇江丰乡井岗和桐岭附近,桥位地处四川盆地东南部盆缘山区南侧的青华山山脉一带,地貌类型属构造剥蚀—溶蚀丘陵低山地貌。桥位区主要发育井岗河,沟内常年流水,枯期流量347L/s,两岸地形坡度较陡,山脊以鸡爪型分布均显单薄,切沟较深。场区高程442.29~538.32 m,地形相对高差约96 m。

上构为31×40米T梁结构,左右分幅,桥墩为实心圆柱墩、矩形实心墩和薄壁矩形空心墩,双柱结构。5#、6#、7#、8#、9#、10#、11#、12#、14#、16#墩最高,为50~85米,为矩形高墩;横桥向为等截面,宽度为2.5m,顺桥向为变截面,按100:1收坡,宽度由3.7m 渐变到2m。

两河口大桥薄壁墩高及墩宽(顺桥向为变截面)数量统计表

2、两河口矩形高墩爬模法施工

模板采用北京卓良CB240桁架式模板。

2.1桁架式模板组成:由桁架主背楞、模板、斜撑、后移装置、承重三角架、埋件系统、吊平台及加高节等七部分组成。

,通过连接板连接,并安装平台立杆,背楞调节座可微调主背楞的高度和位置,背楞扣件就是固定和连接主背楞和模板横肋。

,每块模板设置2个,吊钩安装时左右对称,螺栓采用双螺母安装;竖肋,采用木工字梁,高20cm,宽8cm,I=4500cm4,允许弯矩5KN.M,允许剪力11KN;横肋采用两根14槽钢背靠背用14螺栓连接而成;连接抓,连接木工字梁和钢横肋,带吊钩的木梁两侧均装连接爪,不带吊钩的木梁只装一个连接爪,并且连接爪安装要相互错开,拼装好后做好标记;芯带,就是连接两块已拚装好的模板,即将两块模板的钢横肋连接成整体;芯带插销,就是使用芯带时用,起锁固作用;模板面板采用21mm厚胶合板,面板允许偏差为1mm,板面平整度小于1/1000,面板拼装时要平齐、不错台,地板钉布置间距300 mm,每块面板四个角及边沿中点用纤维板钉钉紧,防止翘起。

由三角架横梁、三脚架短斜撑杆、三脚架立杆、三脚架长斜撑杆组成。

,配件有碟形螺母、齿轮销、安全销Ф20、插销Ф20等。

2.2、施工工艺介绍:充分利用模板自身锚固作用(按设计要求设置预埋件),采用塔吊配合提升模板,逐段爬升完成墩身混凝土浇注施工。厂家提供模板设计图。

墩身模板采用定型模板,由厂家定做。墩身模板高4.65米,共8套,一次可浇注4.5米高。根据各墩断面尺寸和考虑模板周转,横桥向为等宽2.5米,顺桥向取最大宽度,共加工八个墩身的模板,周转三次即可。现场进行组拼,通过竖向大肋和横向大肋(柱箍)等进行加固。模板面板厚21㎜,采用80㎜×200㎜木工字梁做竖肋,两根14槽钢背靠背做横肋,竖肋间距26.5、26.8、27.5㎝,横肋间距26、71、120㎝,对拉螺杆采用M20,对拉螺杆设置PVC套管在与混凝土和模板接触内侧面设置锥型橡胶止浆垫块,可重复使用。

墩身模板及加固构造图(厂家根据施工方要求设计并提供)

2.3、墩身模板验算

对模板侧压力Pm按内部振捣器时计算:Pm=K×r×h

墩身4.5m高混凝土最大方量为(0.4×(3.7×2+2.5×2)+0.3×0.3×2)×4.5=25.965m3,混凝土拌和及运输能力可达到20m3/ h,最短时间可在1.3小时内浇注完成,考虑混凝土入模及振捣等因素影响,计划在2小时内浇完,则浇注速度为V=2.25m/ h。浇注时间选择在下午5时开始,墩身大致施工时间控制在5、6、7、8、9月间,浇注混凝土入模温度取T=25℃,则V/T=2.25÷25=0.09>0.035,h=1.53+3.8×V/T=1.872m,K=1.2(掺外加剂),r=25KN/m3,Pm=1.2×25×1.872=56.16Kpa,考虑振捣荷载4KN/㎡,总侧压力P= Pm+4=60.16 Kpa。

大模板最大侧压力取P=61 Kpa进行计算。

超高层液压爬模施工方案施工特点及节点图

超高层液压爬模施工方案施工特点及节点图 2.1工程技术节点 本工程特点主要包括:核心筒结构变化较多;连梁较多且梁高较低;与核心筒连接的钢梁位置变化频繁;局部楼层存在钢骨;电梯井内的梁需要滞后施工;第6、15层和28层存在局部电梯井封顶,30层存在一次较大的结构变化。具体变化情况见“结构变化节点图”: 其中,爬模位置的墙体变化如下: 外墙南、北墙:1—5层,800;6、7层,700;8、9层,600;10—14层,500;15—42层,450。 外墙西墙:1—9层,800;10—19层,700;20—29层,600;30层拆,30—42层,400。 外墙东墙:1—9层,800;10—19层,700;20—29层,600;30—34层,500;35—42层,450。 筒内1/3轴墙体:1—5层,700;6—9层,600;10—14层,500;

本工程标准层和非标准层的楼层标高如下表所示:

2.2液压爬模架布置情况 本工程在核芯筒外墙和电梯井内布置液压爬模机位,核芯筒水平结构随主体结构同步施工。共布置115个爬模机位,26组架体;其中外墙爬模45个机位,电梯井及物料平台爬模70个机位。核心筒(外墙)爬模机位预埋位置在楼层结构标高下返800mm处,核心筒(内部)电梯井及物料平台爬模机位预埋位置在楼层结构标高下返400mm处。2-16层平面布置图如下图所示: 爬模架平面布置图(2-16层) 施工至16层时,拆除15-18组架体,即62-77号机位;并将第3组架体拆分为3组架体,分别为第3-1组、第3-2组、第3-3组;将第7组架体拆分为3组架体,分别为第7-1组、第7-2组、第7-3组。18至43层,第3-2组和第7-2组架体的机位预埋位置由原来的下返800mm变为下返400mm,其余架体的机位预埋位置不变。工作平台之间存在400mm的落差,需要作好防护。17-29层平面布置图如下:

桥梁高墩爬模施工技术

桥梁高墩爬模施工技术 发表时间:2010-05-24T15:05:37.623Z 来源:《赤子》2009年第24期供稿作者:梁启朝 [导读] 通过工程实践,介绍高墩大跨桥所采用的爬模施工的模板设计、提升配置、性能、施工工艺、施工质量控制要点 梁启朝(隆德县公路管理段,宁夏隆德 756300) 摘要:通过工程实践,介绍高墩大跨桥所采用的爬模施工的模板设计、提升配置、性能、施工工艺、施工质量控制要点。施工结果表明,该技术具有良好的应用前景和推广价值。 关键词:高墩爬模;结构;施工 引言 宁夏南部山区的大桥,桥位地形比较复杂,,自然坡在10°~40°之间,墩高相差悬殊。位于西吉县三须路K13+800的徐家沟大桥,主跨在70m以上,随着墩身的加高,施工难度越来越大,对高墩施工方法的研究。已成为桥梁施工的主要技术问题之一采用爬模施工。 1 施工方案确定 爬模施工是当前高耸结构物施工中较先进的施工方法,它集模板支架、施工脚手架平台于一体,利用已完成的主体结构为依托随着结构的升高而升高,省去了大量的脚手架,具有快捷、轻巧、操作简单,中线易控制,外观质量光滑,施工费用低等。 2 爬模结构 爬模施工以浇筑成型的钢筋混凝土为重要支承主体,模板与混凝土实现密贴,上层模板由下层模板上混凝土的粘结力与摩擦力支撑,垂度、平整度、曲率易于调整及控制,可避免施工误差积累,设计合理,模板不占用施工场地,可循环倒用,无需配置太多的数量。 构造组成: (1)爬升架。主要由竖向连接杆、斜撑杆、上横梁、爬架斜拉杆和一些连接杆件组成,具有承重和滑升作用,是特殊设计的稳定构架。每组爬架有6对钢夹头,每对钢夹头都带有安全钢销(安全装置),在提升过程中采用人工限位,装在钢夹头上可垂直滑动,卡在滑道工字钢腹板上可起限位导向作用。爬升架提升采用YCD23P200型提升千斤顶,带安全装置。(2)滑道。采用I320工字钢与大块模板焊接为整体,不须预埋螺栓。爬升架与滑道之间销接,配有特殊钢夹头在爬升架支点处与钢滑道连接,有足够稳定支点和长度。钢滑道上下不垂直度1m内为0~15mm。(3)提升桁架。由N型万能杆件拼装成“井”字形组成,爬升架的斜爬升可通过调整其下楔形块来实现。(4)模板。模板在竖向分为两层,外模采用大块钢模板,每节按卷扬机的起重能力设计为8、12、16块三种类型的钢模板。模板为框构结构,具有足够强度、刚度和稳定性,并且满足桥墩外形尺寸的要求,单块宜进行整体组合或装配组合。相邻模板间、上下节钢模间均用栓接并配有定位销,定位销探伤检验应全部合格。内模采用翻模,每节高2m,每墩设3组,随墩身的逐节上升按照4m级数向上翻动。内模的安装与拆除通过墩内设置的可调式工作盘实现,工作盘悬挂在爬架上,可随爬架上升,亦可自行调节位置,方便墩内及墩上作业。内模系统的模板及支撑件均经过结构检算,对结构薄弱部位均进行加强加固处理。(5)扒杆。为解决墩身中各种施工材料和小型机具的提升问题,每个爬升桁架上设2副吊重为25kN的起重扒杆。扒杆不垂直度1m内允许±1mm。提升扒杆的摆向由人工配合来实现。扒杆上选用不旋转钢丝绳,以免在起吊长大杆件时,由于钢丝绳的旋转而碰坏墩身或模板,造成安全事故。 3 施工工艺及技术要求 爬架、滑道、大块模板及滑升桁架的非标杆件加工全部在工厂互拼,待检查合格后再解体成节段大块模板运往现场组装。制作的关键是拼装位置要准确和拼装部件的互换性。 灌筑第一节墩身混凝土(4m)清理杂物、检查模板与提升设备、安装与调整爬架位置、固定爬架钢夹头螺栓、安装与调整提升桁架、安装与调整提升机具、检查验收、投入使用,测量定位-提升爬模-安装与检查内模-绑扎与检查钢筋及预埋件-提升、就位外模-测量校正-检查验收外模-浇筑混凝土。 4 爬模的施工 4.1施工组织。根据具体情况排出每一组大模板的循环路线,要严格按照循环线路进行模板调度,并随时根据现场实际情况进行调整,保证模板循环流畅。模板的周转及调配由专人负责,并成立模板运输组,配备专人及专用机械设备,保证模板调配的正常进行。 施工前根据工序分析计算出完成一个单循环作业所需要的时间,并排出单循环的网络图。施工中指定专人进行现场写真,不断优化循环网络,使单循环的时间从开始时的10d提高到3d一个循环。 4.2施工测量。每组模板安装前后,均需用激光准直仪测出墩中心点至墩施工顶面,施工人员据此进行模板安装和检查调整。每施工两组后要用全站仪对激光准直仪的测点进行复核,以确保墩身结构尺寸准确无误。 4.3钢筋施工。为加快施工进度,针对空心高墩设计中钢筋数量大、接头多的具体情况,施工前对钢筋接头施工进行专门研究,初步选择了两种接头施工方式,即电渣焊和CBR剥肋滚轧直螺纹连接技术。通过现场对比,虽然两种方式都能达到设计及使用要求,但电渣焊速度慢、工作面污染严重,而CBR连接技术大部分工作在地面加工完成,高空连接工作量小、操作简单、工作速度快,可满足现场快速施工的要求。 4.4混凝土施工。混凝土浇筑采用泵送混凝土施工技术。混凝土输送泵主要技术参数:选用内径为125mm的配套泵管,泵管沿墩身通风孔固定爬高。混凝土泵技术指标技术参数和技术指标:电机发动机功率75PkW;理论混凝土输送压力7.8~13MPa,理论混凝土输送量35~60(m3/h);主油泵额定工作压力32PMPa;最大骨料尺寸Pmm40;输送缸直径×最大行程Φ195×1400mm。 4.5爬模的拆除:爬模到墩顶后,可按爬模上爬相同的工艺进行下爬至墩,先拆除模型段,再拆除承力架段,各部进行检修后保存或再次作业;模型架、承重架也可用吊机分块拆除落地。 5 施工中的几个问题 为克服温度变化引起墩身开裂,施工中需采用早强、高效减水剂等外加剂,随不同气候条件调整水泥用量和混凝土配合比,并加强混凝土养护、降温、保湿工作;墩身混凝土采用泵送方式入模,对粗、细骨料的质量及混凝土坍落度的控制是施工中应特别注意的问题。混凝土中粒径0~15mm以下的颗粒含量

液压爬模方案

液压爬模方案 第一节模板施工方案 一、核心筒竖向模板工程方案总体设计原则 主楼结构类型为斜交钢管网格柱外筒+内钢框架+钢筋混凝土剪力墙结构体系,四个电梯间核心筒剪力墙分布在主楼四面,1层~7层层高均为12.6m,8层层高为10.50m,结构屋面标高98.90m,考虑爬模施工工艺和工期进度的要求,核心筒墙体施工中采用全钢大模板配合液压爬模架施工工艺。从结构特点出发,充分考虑结构施工要求,在满足混凝土施工质量要求,并保证施工安全的前提下,做到模板最大限度通用,尽可能的减少模板数量和规格,充分发挥我公司设计、制造一体化的技术优势,与用户紧密配合,使模板设计制造更符合施工实际要求,达到适用、经济、合理、安全。 二、核心筒模板配置方案 根据本工程结构特点,核心筒外墙均布置了钢模板,跨度2m以下门窗洞口位置,连梁侧模配置定型钢模板,连梁底模及洞口堵板采用几种模数的钢模板定型板条组合墙厚宽度应用。 1.墙体模板 本工程对于12.6m标准层,可做到60mm的下压边和20mm的上留边。对于标准层对于其他非标层采用现场另行木模接高浇筑的方法施工。

阳角处墙厚过大,且截面变化频繁,设置大阳角模成本更高,不宜拆模,必须借助塔吊拆模,且不能随架体一同爬升;因此,将阳角处设置成柱模的加固方法,可大大节约成本,施工更为方便。

阳角处理方法 阴角编号为S 、角模采用搭接式角模,阴角模与模板之间留2mm 缝隙,便于拆模。拆模后墙体表面均较平滑,不需进行特别处理。 3.剪力墙门窗洞口及连梁处钢模板 出于施工方便考虑,对于跨度大于1.5m ,小于2m 洞口,门窗洞口位置,连梁侧模配置定型钢模板,连梁底模及洞口堵板采用几种模数的钢模板定型板条组合墙厚宽度应用,且需考虑板条尺寸方便人员周转。

爬模安全专项施工方案

安全专项施工方案 1 爬模安全专项施工方案 1.1 爬升机构的安全保护系统及防护措施 1)爬升机构的安全保护 液压爬模的爬升机构,主要由带有爬升梯档和导轨与附着其上的上下换向盒和液压油缸等组成,并通过上换向盒上端的连接轴与爬架的竖向主承力架连成为整体。上下换向盒均设有能够自动导向的棘爪,改变换向盒的棘爪方向,实现提升爬架或导轨的功能转换。换向盒的上下轭能够自动导向,在实际升降过程中始终有一个爬升箱内的承力块交替地支撑在导轨梯档块上,实质上它既是升降机构也是防坠机构。 2)爬升机构的防倾装置 型导轨始终穿过两个附墙装置,附墙装置既有防倾覆功能,同时在主承力点的附墙装置内有一个导向锁定板,它控制了导轨的倾斜间距;架体通过上下换向盒抱住导轨,在架体爬升和固定状态下,换向盒都对架体有防倾作用。 3)架体与墙体的防护及架体间的防护 在爬模水平梁架上绑小横杆,在小横杆上铺设脚手板,通过附墙撑控制脚手板离墙的防护距离,要求脚手板离混凝土墙面的距离均应小于100mm。 各单独独立的架体在搭设的过程中留有100mm的空隙,以保证单独架体的爬升。为安全防护,在相邻架体的空隙处、架体平台与墙体间隙处铺设翻板,当架体爬升时将翻板翻开,架体爬升到位后,应立即将翻板铺好,并用安全网将各独立架体连接好。(翻板制作说明:翻板连接处可使用胶皮或折页等制作,其一段钉在靠近空隙的脚手板上,另一段钉在翻板上) 4)爬模各操作平台的连接 在铺设架体各平台时,在每个独立的架体中部的水平位置中间留700×1000mm的洞,用钢管向下层平台搭设梯子,将各平台连接,使架体上下有一个通道,在各平台洞口处用翻板将洞口封好,制作如下图。

桥梁高墩施工技术

桥梁高墩施工技术分析 一、目前桥梁高墩施工的现状 在桥梁施工过程中,桥梁高墩施工时一种非常常见的施工方式,它在桥梁稳定方面起着非常重要的作用。随着世界范围内重大交通基础设施的不断开工,桥梁的桥墩高度越来越高,施工的难度越来越大,为适应工程需要,在上世纪70年代初,一种新型的模板体系——爬升模板应运而生。 爬模施工技术的出现极大的降低了高墩施工的难度,简化了施工的步骤,在日本、欧美等国家使用以后迅速在世界范围内推广,我国在上世纪70年代末期也开始使用爬模施工技术。一开始传入我国以后,主要应用于房地产行业,随着技术的逐渐成熟,在我国的桥梁修建过程中逐渐被采用,并且普及度越来越高。随着爬模技术在我国桥梁修建中的应用,我国的桥梁高墩施工技术进入了一个新的阶段,极大的提高了我国桥梁修建的效率。 二、桥梁高墩施工中最为关键的技术—爬模施工 1、爬模设计的工艺原理 在爬模结构中受力的主题是空心的桥墩已经凝固的混凝土墩壁,整个爬升设备的主体由液压千斤顶顶升油缸以及内爬支脚机构的上下爬架组成,其上下爬架分别与油

缸体与油缸的活塞运动杆相铰接,上爬架与外套架相连接,这样就连同外套架相连接网架工作平台共同形成了整个的爬模结构。缸体作为固定的部分,活塞杆则作为运动的上升部分,同上下爬架一样一个固定一个上升的相对运动。从而形成了一个上爬架与内套架,下爬架与外套架相互交替上升的爬模系统,达到爬模结构爬升、就位、校正的目的。 整个爬模系统的爬模上升都要由内外套架运动来实现。随着内外套架产生相对运动,爬模也随之产生相应方向的改变。内套架之间的导向轮能够保证整个系统升的平稳度。当内外套架产生相对运动时,模也不断的上升,这时塔吊双臂随着爬模的上升而抬升,物料被吊起,当内外套架生相向运动时,爬模下降,塔吊双臂也随之下降,物料被放回地面,整个过程都依赖着内外套架的运动。 2、爬模的结构 爬模的结构相对来说比较简单,概括的说就是分为承重结构以及爬行结构,具体的包括:爬行网架的主工作平台、内外套架、双悬臂双吊钩塔吊、内爬的支脚系统、液压顶等起重设备、模板、支撑系统、控制系统、配套电力系统等。 网架的主工作平台是整个爬模结构的基础的部分,承载着主要的爬升系统的运行,为爬升系统提供了一个工作的平台。在这个平台上安装塔吊,同时需要用L支脚进行固定,塔吊的下方是用来进行爬升的液压千斤顶升降系统的爬架,用来完成整个爬架的爬行。在其中间还要安装配电设备以及控制系统。这个结构的链接过程中,从运输方便、安装以及拆卸便捷的角度考虑在链接时同架结构的构建一律采用万能角铁杆件和连班用螺栓进行连接,这样就会极大的提升整个工程的工作效率。 中心塔吊安装在整个平台的中心,是整个爬升系统的工作手,也是整个工作构建中最为核心的工作部分,同时还要承受爬升过程中产生的重力,这就需要在考虑其承

液压爬升模板施工组织设计及报价

. 苏通大桥液压爬升模板系统设计方案及报价 山东博瑞路桥技术有限公司 二〇〇四年八月二十六日

液压爬升模板施工简介 液压爬升模板系统在本工程中主要用于苏通长江大桥75m引桥桥墩施工。 一、特点 爬模系统架体与模板同步爬升,与翻模相比模板用量少近40%,施工周期短,机械化程度高,施工安全,抗风能力强。显著提高混凝土外观质量,施工现场文明、整洁。 本爬模系统根据需要在架体与模板上共设5层工作平台,满足钢筋、模板、混凝土等高空施工作业。 二、性能参数 1、每套液压爬模配置四面模板,单面模板面积最大尺寸6.5×4.55m。 2、每套液压爬模配置一套液压泵站(配一个双联齿轮泵)。能够使每侧模板同时爬升或单独爬升,液压泵站配有完善的电气控制系统。 3、每套液压爬模配置八个顶升油缸,液压缸的顶升可实现四组模板同步爬升,也可每组模板单独爬升。 4、每个施工阶段爬升高度为4m或4.5m。 5、模板内外模之间用对拉杆对拉。 6、施工荷载每组架体集中力按20KN计算。平台按1.5KN/m2计算,并同时计算2层平台。 7、混凝土侧压力按60KN/m2计算。 三、施工过程简介 1、概述:苏通长江大桥引桥桥墩最高约为60米,墩柱施工采用自动液压爬模体系,本体系由液压爬升体系、模板体系和工作平台体系组成。如(图1)所示。该体系每节混凝土浇筑高度为4m,并附加一节0.5m可拆卸模板,以适

应不同的墩高,减少施工节段。 2、体系组成 2.1 液压爬升体系:包括: 预埋固定件、附墙悬挂件、 爬升导轨、自锁提升件、液 压缸、液压泵站。 2.2模板体系:分外模和内模。 外模由6mm钢面板、100*63*6不等边角钢、[16 槽钢背带、对拉丝杆组成。 内模由4mm钢面板、100*63*6 不等边角钢、[10槽钢背带、 对拉丝杆组成。 2.3 工作平台体系:工作平 台共分5层,两个上部工作 平台、一个主工作平台、两 个下部工作平台。主工作平 台用于调节和支立外侧模, 2#、1#平台用于绑扎钢筋和 浇筑混凝土,-1#平台主要用 于爬升操作,-2#平台用于拆

高墩翻模施工专项方案

第一章、工程概况 一、主要工程数量 XX大桥主桥上部采用40米预应力砼先简支后连续刚构T梁结构,主桥跨径组合左幅5X40+4X 40、右幅4X40+4X 40,桥位所在地属于低缓丘陵及山间洼地,地形起伏较大,山间洼地分布农田。桥平面位于A=748的缓和曲线上,左右线分离。主桥下部主墩为 6.0 x 2.8m钢筋砼薄壁空心墩, 钢筋砼薄壁空心墩参数见下表: 桩基础为6条? 1.6m双排钢筋砼群桩,承台10.6 X 6.6 x 2.4m。6.6 X 2.8米

箱型墩主要工程量:混凝土:C30混凝土:4346方;钢筋:H级钢筋795.861 吨。 二、设备、人员投入 1、人员投入 主墩施工计划投入劳动力221人,其中管理人员2人,技术人员3人, 安全员1人,测量工3人,工长4人,各工种工人208人,合计221人。 人员投入数量表 2、机械设备投入 xxx桥梁6X2.8米箱型墩机械设备使用计划表

根据现场施工情况和工程进度情况,适当增加机械设备和人员,确保按期完成施工任务。 三、高墩桥梁施工方案设计研究 墩模板就提升方法而言,有翻板模、滑板模和爬模;从面板材质又可分为木模、竹胶板模和钢模;从使用功能上还可分为曲面可调模板和一墩到顶模板。对于高桥墩,一般情况下优先考虑翻板钢模,无支架翻模可节省大量的支架材料及搭设支架所花费的时间,降低成本,直接加快工程进度。内外模刚度差异不宜太大,一般外模重量在 100kg/m2?110kg/m2,内模75kg/m ~ 85kg/m。模板可以考虑“一托二”和“一托三”两种情况。每层模板制作高度可以按1.5m,2.0m,3.0m3 种。模板总制作高度可以

滑模、爬模和翻模

2主要施工工艺和流程 2.1模板设计与制作 空心薄壁高墩施工重点是解决模板模型、模板安装及拆除方法、混凝土运输等。空心薄壁高墩施工一般采用的施工方法有落地支架提升模板、滑升模板及翻转模板施工方案。落地支架提升模板方案支架材料用量较大,施工速度较慢;滑升模板方案施工速度快,但滑模工艺要求严格,质量难以控制,管理难度较大;翻转模板施工方案工艺较简单,施工过于连续,速度较快。一般均需配备塔吊、电梯等设备。经过详细比较,决定采用优化传统翻转模板施工方案。采用此种施工方案,能够充分利用常备构件,材料用量少,施工速度较快,且工艺相对较简单。 2.1.1前期设计与制作为保证墩身混凝土的外观质量,加快施工进度,根据本标段墩身设计特点(空心、多室、内外截面尺寸较大、墩身较高)等,进行方案设计。 2.1.1.1 正面模板空心薄壁墩正面外模按照每块高1.5m、宽6m进行制作(即将6块1×1.5m的模板立起拼装而成),高度方向分3块进行拼装。 2.1.1.2 侧面模板空心薄壁墩侧面外模按照每块高1.5m,宽2.5m进行制作(即将2块1×1.5m的模板和1块0.5×1.5m的模板立起拼装而成),高度方向分3块进行拼装。 2.1.1.3模板连接及加固模板在同一平面连接处采用螺杆连接牢靠。为保证混凝土浇注时不漏浆,成型美观,在模板连接处贴双面密封胶带。为加强模板刚度和稳定性,保证空心薄壁墩浇注时不跑模,并为操作人员

提供方便,在第一排模板沿1.5m高度方向,上、中、下部位水平向各设置一根(共3根)加强槽钢,每两根槽钢的间距为50cm。上一排模板沿1.5m高度方向,上、下部位水平向各设置一根(共2根)加强槽钢,设置时以1.5m高度对称进行,间距为50cm。再上一排设置3根槽钢,最上面一排设置2根槽钢。则所有槽钢的间距均为50cm,槽钢采用10号槽钢。拉杆均设置在槽钢上,在槽钢上打孔穿设拉杆。拉杆水平方向的间距为60cm,两端第一根拉杆应设置在距边30cm的位置。拉杆采用穿PVC管的直径14mm的圆钢制作,拉杆螺母采用双螺母及所配套的垫圈。正面和侧面模板连接处采用5cm的厚角钢打孔,用螺杆进行连接牢固。 2.1.2 模板架设方案模型提升架采用万能杆件组拼内爬升架,辅以钢板组焊的伸缩式箱型梁形成,手动葫芦提升,其顶设置操作平台,安放提升材料卷扬机,设摇头扒杆吊运钢筋及机具;墩身外围挂钢筋梯,铺木板供人员上下立拆模,内架上左右设三层平台存放内模;模型外围立面用安全网全封闭防护;混凝土用泵机一次输送,泵管利用预埋在墩身上的固定架由下而上安装;施工人员用升降机载运。同套模板之间全部采用高强螺栓连接。模板之间通过对拉拉杆进行加固,拉杆密度则根据每次混凝土浇注高度经计算确定。 2.1.3 安装质量标准①在墩身施工前对施工人员进行技术交底,使施工人员熟悉和掌握钢模板的施工与操作技术。②钢模板的布置与施工操作程序均应按照模板的施工设计及技术措施的规定进行。③在浇注空心段时,组合钢模应尽量避免开孔,如必须开孔时,应用机具钻孔,不得使

液压爬升模板施工方案及报价

-- 苏通大桥液压爬升模板系统设计方案及报价 山东博瑞路桥技术有限公司 二〇〇四年八月二十六日

液压爬升模板施工简介 液压爬升模板系统在本工程中主要用于苏通长江大桥75m引桥桥墩施工。 一、特点 爬模系统架体与模板同步爬升,与翻模相比模板用量少近40%,施工周期短,机械化程度高,施工安全,抗风能力强。显著提高混凝土外观质量,施工现场文明、整洁。 本爬模系统根据需要在架体与模板上共设5层工作平台,满足钢筋、模板、混凝土等高空施工作业。 二、性能参数 1、每套液压爬模配置四面模板,单面模板面积最大尺寸6.5×4.55m。 2、每套液压爬模配置一套液压泵站(配一个双联齿轮泵)。能够使每侧模板同时爬升或单独爬升,液压泵站配有完善的电气控制系统。 3、每套液压爬模配置八个顶升油缸,液压缸的顶升可实现四组模板同步爬升,也可每组模板单独爬升。 4、每个施工阶段爬升高度为4m或4.5m。 5、模板内外模之间用对拉杆对拉。 6、施工荷载每组架体集中力按20KN计算。平台按1.5KN/m2计算,并同时计算2层平台。 7、混凝土侧压力按60KN/m2计算。 三、施工过程简介 1、概述:苏通长江大桥引桥桥墩最高约为60米,墩柱施工采用自动液压爬模体系,本体系由液压爬升体系、模板体系和工作平台体系组成。如(图1)所示。该体系每节混凝土浇筑高度为4m,并附加一节0.5m可拆卸模板,以适

应不同的墩高,减少施工节段。 2、体系组成 2.1 液压爬升体系:包括: 预埋固定件、附墙悬挂件、 爬升导轨、自锁提升件、液 压缸、液压泵站。 2.2模板体系:分外模和内模。 外模由6mm钢面板、100*63*6不等边角钢、[16 槽钢背带、对拉丝杆组成。 内模由4mm钢面板、100*63*6 不等边角钢、[10槽钢背带、 对拉丝杆组成。 2.3 工作平台体系:工作平 台共分5层,两个上部工作 平台、一个主工作平台、两 个下部工作平台。主工作平 台用于调节和支立外侧模, 2#、1#平台用于绑扎钢筋和 浇筑混凝土,-1#平台主要用 于爬升操作,-2#平台用于拆

QC小组成果高墩翻模施工提高砼质量

一、工程简介 (一)工程概况 云阳至万州高速公路M合同段起点里程K181+765,终点K187+500,全长5.735km,项目采用全封闭、全立交、控制出入的四车道高速公路标准,设计速度采用80km/h,整体式路基宽度24.5m,分离式路基宽度12.25m;主要构筑物有巴阳1、2号特大桥、张家山隧道、吞梁子隧道工程,其中巴阳1、2号特大桥为全线重点工程,也是控制工期项目。巴阳1#桥总长482m,主跨为68+120+68m预应力混凝土连续刚构,两岸引桥分别为4×30、3×30m预应力混凝土T梁,先简支后结构连续。主桥平面处于R=1200m的圆曲线上。5、6#主墩高70余米,设计采用7×7m矩形空心墩,4、7#交界墩采用单薄壁实体墩,墩身厚 2.5m。巴阳2#特大桥总长577m,主跨为100+180+100m预应力混凝土连续刚构,左右线引桥均为4×30、2×30m预应力混凝土T梁,先简支后结构连续。5、6#主墩采用双薄壁及箱形截面墩身,上部双薄壁墩身厚2.2m,两薄壁间净距6.1m,下部采用箱形截面,最高墩身79.03m。4、7#交界墩采用整体式实心墩,墩身厚2.5m。墩身均为C40砼。 (二)施工方案概述 两桥的所有墩身根据截面形式均采用爬模进行施工,墩底节5m采用内、外脚手架、大块钢模,可抽拔拉筋施工,并预穿墙螺栓及套筒,然后安装爬模。 每个墩身设一套模板,每套二节,每节高 2.5m,模板为框架结构,具有足够的强度、刚度和稳定性,单块宜整体组合或装配组合,相邻模板间、上下节钢模间均用栓接,配有定位销,内、外模板、抽拔拉筋,在每一节段顶面的四周配设工作平台。施工材料的提升利用塔吊完成,砼的垂直运输采用泵送砼。

高墩翻模施工方案

目录 1、编制依据 0 2、工程概况 0 2.1工程概况 0 2.2.工程地质 (1) 2.3水文地质 (2) 2.4不良地质和特殊地质 (2) 3、施工组织 (2) 3.1施工组织机构 (2) 3.2人员配置 (4) 3.3机械物资配置 (6) 4.主要管理目标 (6) 4.1 质量目标 (6) 4.2 安全目标 (7) 4.3 环境保护目标 (7) 4.4 技术创新目标 (7) 4.5 职业健康目标 (7) 5施工方案 (8) 5.1模板方案选择 (8) 5.2塔吊方案及施工 (9) 6施工方法 (12) 6.1翻模施工工艺流程图 (12) 6.2墩身模板施工 (13)

6.2.2翻模模板制作、安装及翻升 (14) 6.3墩身钢筋施工 (18) 6.3.1钢筋采购存放 (18) 6.3.2钢筋加工 (18) 6.3.3钢筋连接 (19) 6.3.3钢筋加工与安装安全措施 (20) 6.4混凝土施工 (21) 6.4.1供应计划 (21) 6.4.2墩身混凝土浇筑及养生 (21) 6.5施工措施 (22) 7、质量保证措施 (25) 8、安全保证措施 (26) 8.1安全制度 (26) 8.2机械安全保证措施 (26) 8.3塔吊安装和拆除安全保证措施 (27) 8.4高空作业安全保证措施 (27) 9、安全应急预案 (27) 9.1应急组织机构 (27) 9.1.1 应急领导小组 (27) 9.1.2、应急领导小组岗位职责 (28) 9.2应急物资 (28)

9.4.1 高处坠落事故应急预案措施 (29) 9.4.2 用电、防火 (30) 9.4.3机械事故应急救援措施 (30) 9.4.4 食物中毒应急救援措施 (30) 9.4.5 突发传染病应急救援措施 (30) 9.4.6 防洪安全保障措施 (31) 9.4.7 不可抗力自然灾害应急措施 (31) 10、安全风险评估及主要控制措施 (31) 10.1安全风险评估 (31) 10.2主要安全控制措施 (32) 附件一:模板设计说明 (33) 附件二:空心薄壁墩翻模施工受力计算 (36) 附件三:脚手架搭设计算书 (41) 附件四:塔吊基础配筋图 (49)

桥梁空心高墩爬模施工工艺

本标段施工空心高墩采用液压爬模施工。 ⑴爬模构造 爬模的基本构造,主要由网架工作平台,双悬臂双吊钩塔吊、内外套架、内爬支脚机构、外挂L 形支架、液压顶升及控制系统,模板及支撑系统,以及配电设备组成。 空心墩爬模施工构造具体见“空心墩爬模构造示意图”。 组合钢模板 预埋穿墙螺栓 内吊脚手架上爬架内套架 附墙爬梯外套架塔吊吊臂 塔吊井架工作平台 网架主 L形支腿

空心墩爬模构造示意图 网架工作平台:是整个爬模设备的工作平台,采用空间网架式结构,其上安装中心塔吊,其下安装顶升爬架,四周安装L形支架,整个网架采用万能杆件和联结板栓接。 中心塔吊:联结在网架平台中心处,随爬模一起上升,中心塔吊采用双悬臂吊钩形式,以减少配重,该塔吊可双向上料并旋转。 L形支架:联结在网架平台四周,下部与已凝固的墩壁联接,以增加爬 模的稳定性,并作为墩身施工养护,表面整修的脚手架,其结构采用型钢杆件和联接板栓接。 内外套架:是爬模系统的顶升传力机构,采用型钢杆件拼装,爬模是靠内外套架间的相对运动而不断爬升,为保证升降平稳,在内外套架间设有导向轮。 内爬支脚:是爬升模爬升机构,依靠上下爬架的交替上升,达到爬模的升高。 液压爬升结构:是爬模爬升的动力设备,采用单泵双油缸,体积小、重量轻、结构紧凑、起降平稳,既可实现提升作业,又可将整个内外套架、内爬腿沿内壁逐级爬下在墩底解体。 ⑵爬模组装 待下部桥墩完成高度4m左右,正式安装爬模设备,组装流程见“爬模组装流程图”。 组装时严格按组装顺序组装,确保精度要求,保证各连接件的紧固及各运动部件的润滑与防尘等,并设立安全保护装置,确保组装安全。 施工方法及工艺: 根据爬模的结构特点,模板配置为两层1.5m高的组合钢模,按一循环一节钢模施工,当上一节模板混凝土灌注完毕并经过10h左右

高墩施工方案

三明长深高速公路连接线A2合同段高墩施工安全方案 中铁十六局一公司项目经理部 二○一○年十二月

高墩施工安全方案 1 目的 明确高墩翻模施工作业的工艺流程、操作要点和相应的工艺标准,指导、规范高墩施工。 2 编制依据 1、福建省三明长深高速公路连接线(城市快速通道)一期工程(沙县至梅列段)两 阶段施工图设计; 2、交通部标准《公路工程技术标准》(JTG B01-2003); 3、交通部标准《公路桥涵施工技术规范》(JTJ041-2000); 4、建设部标准《钢筋机械连接通用技术规程》(JGJ107-2003); 5、交通部标准《公路工程施工安全技术规程》(JTJ076-95); 6、《公路桥涵施工手册》; 7、安全管理体系标准; 8、福建省高速公路施工标准化管理指南 9、《三明长深高速公路连接线项目管理手册》 3 适用范围 适用于中铁十六局集团三明长深高速公路连接线A2合同段项目部梅列红大桥桥梁墩身高度大于15米空心墩施工。详见后附表。 4 施工方法 翻模施工的模板提升方式采用吊机提升法和液压穿心千斤顶提升法。本方案采用吊机提升法。 4.1 吊机提升翻模施工方法 4.1.1 施工特点 翻模是由上、下二组同样规格的模板组成,随着混凝土的连续灌筑,下层混凝土达到拆模强度后,用吊机配合自下而上将模板拆除,接续支立,上层模板支承在下层模板上,循环交替上升。如此循环往复,完成桥墩的灌注施工。

4.1.2 高墩翻模的施工工艺 施工工艺流程图如下。 (1)墩身下实体段施工 外模的支立好坏直接关系到以后的施工,要求尺寸正确,外模顶水平,否则在空心段施工时,造成模板不平整。 在炎热夏季施工下实体段时,要采取大体积混凝土温控措施。由于混凝土方量较大,为确保混凝土浇筑过程中芯部温度不致过高,需采取有效措施控制混凝土的芯部温度,本方案拟采用循环冷却水法。

两河口大桥高墩爬模施工方案

重庆G3项目两河口大桥高墩爬模施工方案 随着多年山区、跨河、跨海桥梁的建设,我国桥梁高墩施工技术已基本成熟,主要工艺 有落地脚手架施工技术、滑升模板技术、爬升模板技术和翻转模板技术。根据具体工程特点、 施工条件以及自身情况的不同,选择经济合理和满足特定工程需要的工艺手段,以达到确保工程质量、加快工程进度、节约工程成本的目的。两河口大桥高墩确定采用无支架爬模施工并编制技术方案及质量控制措施如下: 1、工程概况 两河口大桥全长892米,桥位区位于酉阳县龙潭镇江丰乡井岗和桐岭附近,桥位地处四川盆地东南部盆缘山区南侧的青华山山脉一带,地貌类型属构造剥蚀一溶蚀丘陵低山地貌。桥位区主要发育井岗河,沟内常年流水,枯期流量347L/S,两岸地形坡度较陡,山脊以鸡爪 型分布均显单薄,切沟较深。场区高程442.29?538.32 m,地形相对高差约96 m。 上构为31 X 40米T梁结构,左右分幅,桥墩为实心圆柱墩、矩形实心墩和薄壁矩形空 心墩,双柱结构。5#、6#、7#、8#、9#、10#、11#、12#、14#、16#墩最高,为50 ?85 米,为矩形高墩;横桥向为等截面,宽度为2.5m,顺桥向为变截面,按100: 1收坡,宽度由3.7m 渐变到2m。

2、两河口矩形高墩爬模法施工 模板采用北京卓良CB240桁架式模板。 2.1 桁架式模板组成:由桁架主背楞、模板、斜撑、后移装置、承重三角架、埋件系统、吊平台及加高节等七部分组成。 2.1.1 桁架主背楞:分标准节和加高节,通过连接板连接,并安装平台立杆,背楞调节座可微调主背楞的高度和位置,背楞扣件就是固定和连接主背楞和模板横肋。 2.1.2 模板组成:吊钩采用钢吊钩,每块模板设置2 个,吊钩安装时左右对称,螺栓采 用双螺母安装;竖肋,采用木工字梁,高20cm,宽8cm, l=4500cm4,允许弯矩5KN.M允许 剪力11KN横肋采用两根14槽钢背靠背用14螺栓连接而成;连接抓,连接木工字梁和钢横肋,带吊钩的木梁两侧均装连接爪,不带吊钩的木梁只装一个连接爪,并且连接爪安装要相互错开,拼装好后做好标记;芯带,就是连接两块已拚装好的模板,即将两块模板的钢横肋连接成整体;芯带插销,就是使用芯带时用,起锁固作用;模板面板采用21mm厚胶合板,面板允许偏差为1mm板面平整度小于1/1000,面板拼装时要平齐、不错台,地板钉布置间距 300 mm每块面板四个角及边沿中点用纤维板钉钉紧,防止翘起。 2.1.3 后移装置:拉杆、拉杆圆垫、后移拉杆、带轨道后移装置。 2.1.4 承重三角架: 由三角架横梁、三脚架短斜撑杆、三脚架立杆、三脚架长斜撑杆组 成。 2.1.5 斜撑:由带丝扣可调节长度的杆件组成。 2.1.6埋件系统:由埋件板D20受力螺栓M36高强螺杆D20、爬锥M36/D20组成,配件有碟形螺母、齿轮销、安全销①20、插销①20等。 2.2 、施工工艺介绍:充分利用模板自身锚固作用(按设计要求设置预埋件),采用塔吊配合提升模板,逐段爬升完成墩身混凝土浇注施工。厂家提供模板设计图。 墩身模板采用定型模板,由厂家定做。墩身模板高 4.65 米,共8 套,一次可浇注 4.5 米高。根据各墩断面尺寸和考虑模板周转,横桥向为等宽 2.5 米,顺桥向取最大宽度,共加 工八个墩身的模板,周转三次即可。现场进行组拼,通过竖向大肋和横向大肋(柱箍)等进行加固。模板面板厚21 mm,采用80 mmX 200 mm木工字梁做竖肋,两根14槽钢背靠背做横肋,竖肋间距26.5、26.8、27.5 c血,横肋间距26、71、120切,对拉螺杆采用M2Q对拉螺杆设置PVC套管在与混凝土和模板接触内侧面设置锥型橡胶止浆垫块,可重复使用。

液压爬模施工方案

XX公路大桥主桥基础工程XX 边主墩墩身 施工方案 XX集团XX工程局 年月日

XX 大桥XX 边主墩墩身施工方案 1. 概述 1.1工程概况 XX 大桥XX 边主墩包括远塔辅助墩1#、2#墩、近塔辅助墩3#墩 。各墩墩身外部尺寸均为8.5m ×5.0m 。1#墩墩身高56.778m ,2#墩墩身高58.517m ,3#墩墩身高59.952m ,均系薄壁空心柔性墩结构,混凝土标号为C40。 XX 边主墩墩身施工均采用全自动液压爬模施工。共拟投入两套爬模,即一1091112400 400

1.2气象条件 桥址位于XX下游,临近XX入海口,地处中纬度地带,属北亚热带南部湿润季风气候。气候温和,四季分明,雨水充沛。主要灾害天气有暴雨、旱涝、连续阴雨、雷暴、台风、龙卷风、飙线、寒潮、霜冻、大雪和雾,因各墩间依次按顺序施工,总体施工时间较长,因此各种自然气象因素均有可能对墩身施工带来一定的影响,而其中尤其以风及雾的自然因素影响最大。 桥位地区年平均气温为15.40C,年极端最高气温为42.20C,年极端最低气温为-12.70C,最高月平均气温为30.10C,最低月平均气温为-0.20C. 桥位地区年平均下雨日为120天左右,最多150天;年平均下雾日和雷暴日均为30天左右,最多可达60天。 因受热带风暴和台风影响,从5月下旬至11月下旬桥区位置均有可能遭受台风袭击,年均出现台风2.3~2.7次,7月上旬至9月中旬为台风多发期,8月份是台风影响最多的月份,约占40%。对1#、2#墩身施工具有一定的影响。受季风气候影响,桥位地区盛行西北风,下半年以东南风为主,全年以偏东风出现频率最高。 桥位处江面不同重现期基本风速见表1.2.1。 桥位处江面不同重现期基本风速(m/s)表1.2.1重现期10年30年50年100年120年150年200年 2.1 总体施工工艺及流程 2.1.1总体施工工艺 主1#、2#、3#墩身施工主要采用液压自爬模,按每4m高分节段进行施工。钢筋主筋采用墩粗直螺纹连接,每次接长为8m。钢筋及其它小型材料、工索具采用一台80t.m塔吊进行垂直方向运输。混凝土搅拌采用水上拌和船,混凝土垂直运输采用泵送。施工人员经过在墩身安装附壁电梯上下墩身。 2.1.2总体施工流程 根据总体施工进度计划,墩身施工按1#→2#→3#墩依次进行施工。

液压爬模拆除施工方案_secret

液压爬模拆除方案 一、工程概况 北主塔外模采用ZPY100型液压爬模,内侧面模板由项目部自行加工,主要采用组合钢模与自制组合模板。 二、液压爬模构造 ZPY100型自动液压爬升模板体系由爬升系统和平面模板组成。其中爬升系统主要由预埋件部分、导轨部分、液压系统和操作平台系统组成。自动液压爬升模板构造图见下图。 液压爬模总体构造图 三、液压爬模拆除工艺流程

液压爬模板施工流程图 四、液压爬模拆除施工 北塔完成砼施工后,将进行液压爬模的拆除工作,液压爬模拆除施工步骤如下: 1、拆除平台上所有不再使用的设备及物品,如电焊机,空压机,液压控制台及油管等。 2、将上架体向后退开,使架体状态处于退模状态。如下图所示

3、将模板从爬模架中取出,并放置于栈桥平台。如下图示 取出模板

4、抽出导轨,将抽出的导轨放置于地面 5、整体拆除上平台架体,并吊至地面。 6、拆除最下层附墙

7 8 所有吊至地面的应及时拆除,拆除时不能进行塔顶拆除作业,以防交叉作业。产生不安全因素。 五、 因此,要求所有参加拆除的工作人员必须(1) (2) (3)、参加高塔爬模拆除施工的人员,必须熟知本工种的安全技术操作规程。特种作业人员必须持证上岗,并备注相应的技术素质和安全应变技能,经鉴定合格后方可登高塔施工作业。

(4)、正确规范使用个人劳动用品。进入施工现场,必须戴安全帽,扣好帽带;高空悬空作业时必须系好安全带,扣好保险扣并穿防滑鞋;水上作业必须穿救生衣。并要认真做到“十不准”:一不准违章作业;二不准工作前和工作时间内喝酒;三不准在不安全的位置上休息;四不准随意往低处扔东西;五严重睡眠不足不准进行高空作业;六不准打赌斗气;七不准乱动机械、消防及危险用品用具;八不准违反规定要求使用安全用品、用具;九不准在高处作业区域追逐打闹;十不准随意拆卸、损坏安全用品、用具及设施。 (5)、塔吊上部装设风力、风向装置。当塔身处风力大于(等于)6级或遇霜雪、浓雾、 雷雨等能见度受限的恶劣气候时应暂时停工。同时必须根据地方气象预报,在恶劣天气来临之前,作好现场施工人员及有关设备、设施的撤离、转移及加固工作,确保人、机、设施的安全。 (6)、为防止高空坠落与物体打击,在主塔中心15米半径处设置安全警戒线,并挂警示牌。 (7)、施工人员应保持有效的通讯联络,配置符合施工条件的对讲机。 (8)、起重工要严格执行起吊“十不吊”的规则。吊点选择合理、信号统一、哨音明亮、手势清晰。 (9)、高空作业所需的工索具及材料等,应放在工具包内或临时固定,严禁上下抛掷工具及物件。 (10)、高空作业所需的氧气、乙炔瓶应装入铁框中提升和吊运,作业台面处的氧气、乙炔瓶应用绳索绑扎牢固,防止滚动和坠落。 (11)、夜间施工必须保证足够的照明设施。 (12)、爬模拆除时,指挥拆除和挂钩等作业人员应站在安全可靠的地方,严格作业人员随爬模起吊。

高墩翻模施工专项方案计算

第七章、石头屋大桥翻模设计计算书 一、计算依据 1.翻模支撑体系尺寸 模板纵肋间距: 400(mm) 后横梁间距: 1000 (mm) 对拉螺栓间距: 1200 (mm) 2.混凝土参数 混凝土浇筑高度: 4 (m) 每模混凝土数量:33.6m3(实心段)、15.6m3(空心段)混凝土浇筑速度: 1m/小时 混凝土浇筑温度: 20 (℃) 混凝土坍落度: 140~160 (mm) 3.材料参数 ①模板:δ=6mm钢模板。 ②模板纵肋:[12.6组合件: ③后横梁:2[16a槽钢: ④对拉螺栓:M22螺栓 二、钢面板计算 1.浇筑混凝土时的侧压力 新浇混凝土初凝时间:t0=200/(T+15)=200/(20+15)=5.7142 (h) 新浇混凝土作用在模板上的最大侧压力按下列二式计算: =0.22×25×5.7142×1.2×1.15×1^(1/2)=43.4 (kN/㎡)

取其中的较小值:F=43.4(kN/m^2) 新浇混凝土对模板产生的侧压力荷载设计值:F设=1.2×0.85×43.4=44.3(kN/㎡) 混凝土振捣对模板产生的侧压力荷载设计值:F2=1.4×0.85×4=4.76(kN/㎡) 故最终新浇混凝土对模板产生的侧压力荷载设计值F=49.06(kN/㎡) 有效压头高度为: h=49.06/25=1.96m 2.面板计算 取1m宽面板受力模型如下图所示 上图中,q=49.06(kN/m) ⑴强度检算 经计算M=0.79KN.m ⑵挠度检算(挠度检算按四边固定板进行检算) 挠度:

挠度允许值:,故挠度满足要求。 三、模板纵肋计算 1. 强度计算 模板纵肋受力按均布力考虑,如下图所示,纵肋间距400mm,q=49.06×0.4=19.6KN,受力模型如下: 检算结果如下: 跨号侧向稳定抗弯强度抗剪强度安全状态 1 100.000 100.000 92.31 2 安全 2 12.491 14.097 11.871 安全 3 13.333 14.097 11.871 安全 满足受力要求。 较大的支座反力为:12.8KN 2.挠度计算 ⑴悬臂部分挠度 按悬臂端0.4m为最不利位置进行检算 ⑵跨中部分挠度

弘农涧特大桥高墩爬模施工方案[优秀工程方案]

国道310三门峡至豫陕界段南移新建工程 弘农涧特大桥高墩爬模专项施工方案 编制:河南清修建筑劳务有限公司 日期: 2018年1月22日

国道310三门峡西至弘农涧特大桥高墩爬模施工方案 根据本工程具体工程特点、施工条件以及自身情况的不同,选择经济合理和满足特定工程需要的工艺手段,以达到确保工程质量、加快工程进度、节约工程成本的目的 .弘农涧大桥高墩确定采用无支架爬模施工并编制技术方案及质量控制措施如下: 一、工程概况 弘农涧大桥左幅总长3177米,右幅总长3175.336米,桥位区属于黄土丘陵-黄土梁地貌,地形起伏不平,冲沟、沟谷发育,地形条件复杂.桥址区跨弘农涧河.桥区地面高程350~526 米左右,地形相对高差约176 米. 下部结构设计构造尺寸: 主桥共有6号-12号七个主墩,采用变截面空心墩形式,空心墎上部65米橫向采用双肢形式,单肢宽度为6.5米,空心墩壁厚80厘米,竖向每20米设置一道橫隔板,壁厚80厘米,空心墎下部采用整体式单箱三室结构,壁厚80厘米,纵桥向采用变截面形式,顶宽为7.5米,坡率为1:80. 6号墎分离式等截面空心墎形式,左右两个桥墎尺寸形式相同,桥墎橫桥向宽度为 6.5米,顺桥向宽度为 7.5米,桥墎高度左幅17米,右幅20米.7-12号墎高度分别为122米、125米、120.5米、116米、116.5米、108米. 二、弘农涧矩形高墩爬模法施工 (一)、施工工艺 施工系统由提升机构、模板系统、工作平台和安全设施组成 1、提升系统:附着塔吊,安装在左右幅墩承台中心位置.作业半径56米,在墎身施工至40米高度时,每个主桥墎安装一台施工电梯,供人员、辅材、小型机具使用. 2、模板系统:采用桁架式模板,由桁架主背楞、模板(胶合板)、斜撑、后移装置、承重三角架、埋件系统、吊平台及加高节等七部分组成. 3、工作平台:在模板外侧设置角钢支腿,其上铺设3米米厚钢板,形成工作平台,工作平台主要是提供人员工作和小型机具的操作平台,为模板安装、钢筋安装提供作业空间. 墎身施工时,在墩身外侧采用安装爬梯(主墩为施工电梯),步道“Z”型上升,休息平台尺寸1.2米×0.6米,供人员中途休息,保证施工和检查人员上下行走安全便捷. 4、安全设施由上部平台1.5米高围栏、四周密目围挡等组成.

相关主题
文本预览
相关文档 最新文档