当前位置:文档之家› 磁化率的测量实验步骤

磁化率的测量实验步骤

磁化率的测量实验步骤
磁化率的测量实验步骤

磁化率的测量实验步骤

1.将标样莫尔盐及其他固体样品在相应研钵中研细,各样品粉末粗细尽量均匀,装在小广

口瓶中备用,注意盖上瓶盖以防样品风化。(注:步骤1不必每组同学都做,可使用上周同学回收的样品。只有当发现样品严重风化时,经实验教员允许,方可取用新样品重新研磨。)

2.在打开磁天平电源前确定已将励磁电流调回0 A。称量天平悬丝空重后,将擦拭干净的

空样品管挂在磁天平悬钩上,调节极缝使样品管与两磁极距离相等,并调节样品管上吊线(铜丝或牙线)长度,使样品管的底部恰好处在极缝中心高度处,若中心高度不好判断,则可使样品底部略高于极缝中心高度。注意样品底部不可低于极缝中心高度,否则将影响称量值的精度。先在励磁电流为0 A时称重,然后调节变压器,分别在励磁电流为3 A和4 A的磁场下称重。将励磁电流调至4.5 A并停留一定时间(至少1分钟),将励磁电流调小,再依次在4 A,3 A和0 A下称重,注意回到0 A后天平示数是否随时间有所变化。

3.将莫尔盐粉末小心装入样品管中至5cm高,将样品管挂在磁天平的悬钩上,在励磁电流

分别为0 A,3 A和4 A下测定其质量,并记录此时的室温。将励磁电流调至4.5 A并停留一定时间,再将电流调小,依次在4 A,3 A和0 A下称重,注意回到0 A后天平示数是否随时间有所变化。将样品管倒空,按同样方法装样至6 cm,重新测量。

4.倒出样品管中的莫尔盐,将样品管里外用脱脂棉擦净,依次小心装入CuSO4?5H2O及

K4Fe(CN)6?3H2O粉末,注意保持样品与莫尔盐标样在粉末粗细程度、装填高度及填充密实度的一致,按步骤3中的程序进行称量。

5.同法测量未知样品,建议在每个高度平行测定2次(倒出并重新装样,可同时测定装填

重复性,估计装填误差),结果取平均值以增加可信性。处理未知样品数据,将计算出的未知样品的比磁化率(5cm平均值、6cm平均值)报给实验教员,若结果不在应处范围内,则依据具体情况,或者重新称量,或者重新处理数据。

6.确定励磁电流回0,再关闭磁天平电源。将样品倒回广口瓶内,器材清理干净,依据复

原照片摆放整齐,清理实验台面。

Measurement of the Dipole Moment of A Polar Molecule

Discussion Questions

1)Is the dipole moment of a substance constant?

2)What is the main reason that the measured dipole moment in this experiment deviate

from the reference value?

3)Why it is related to the overall molar polarization when measuring the dielectric constant,

while it is related to the electron molar polarization when measuring the molar refractivity?

4)What are the assumptions made in this experiment? Analyze the rationality of those

assumptions.

Measurement of the Magnetic Susceptibility

Discussion Questions --- Part I

1)How does the weights of empty sample tube change with excitation current? What is the

reason for this change?

2)Are the two weights at the same excitation current equal? If not, what is the difference

coming from? Will this difference disappear with time?

3)Are the weight immediately after turning the excitation current back to 0 A equal to the

stable weight after a while? If not, why the weights will change with time at 0 A?

4)During the measurement if you have overadjusted the excitation current beyond what it

suppose to be, can you record the weight by simply turning the current back? Why or why not? If not, what is the correct way to measure the weight in this case?

Discussion Questions --- Part II

1)What is the physical origin for a substance to have magnetic properties?

2)Why the bottom of the sample tube should not be lower than the center of magnetic

poles?

3)In this experiment, we choose the sample filling heights to be 5 and 6 cm. Do you think

those heights are good for measurements? What will be the disadvantages when the filling heights are too low or too high?

4)How do you keep the repeatability of sample filling during the experiment?

5)What is the reason that the calculated number of unpaired electrons are larger than it

suppose to be?

测液体折射率实验报告

实验题目:表面等离激元共振法测液体折射率实验 预习报告与原始数据见纸质报告。 实验步骤: 1.调整分光计,实验部件安装和线路连接已经完成; 2.传感器中心调整 粗调:将微调座放到载物台上,固定好调节架后,在调节架中心放上准星,调节载物台锁紧螺钉使激光光斑至粗调对准处,不断调节平行光管光轴水平调节螺钉与微调座的两颗微调螺钉,使当游标盘转动一圈时,激光光斑一直照在该处; 细调:调节平行光管光轴高低调节螺钉,使激光光斑射在细调对准处,不断调节平行光管与微调座使当转动游标盘一圈时,激光光斑一直射在该处; 中心调节:继续调节平行光管光轴高低调节螺钉,使激光光斑射在准星顶尖处,再次调节使转动游标盘一圈时,激光光斑一直射在顶尖处。 3.测量前准备调节 中心调节完毕后,移去准星,放入敏感元件,将游标盘和刻度盘调节到合适位置;调整敏感元件使光垂直入射至半圆柱棱镜中的镀金属膜上,拧紧游标盘止动螺钉;转动刻度盘使刻度盘0o对准游标盘0o;拧紧转座与刻度盘止动螺钉,松开游标盘止动螺钉,从此刻开始刻度盘始终保持不动,将游标盘转回至刻度盘所示65o位置处锁定,测量前准备调节完毕。

4.测量读数 保持刻度盘和游标盘不动,转动望远镜支臂,观察功率计读数,记录其中的最大读数;保持刻度盘不动,移动游标盘从66o到88o,入射角没增加1o,记录功率计最大读数。 5.数据表格与数据处理 (1)数据表格自拟; (2)画出相对光强与入射角的关系曲线图; (3)比较不同溶液的共振角有何差异。 实验样本: 本实验采用样本为:纯净水;无水乙醇;水:乙醇=1:1的乙醇溶液。 实验数据: 1.纯净水 角度(°)666768697071 角度(°)72737475767778相对光强243273376480554581641653角度(°)7980818283848586相对光强700705713733741741758765角度(°)8788

大学物理实验报告范例(验证牛顿第二定律)

大学物理实验报告范例(验证牛顿第二定律)

怀化学院

1 、 速度测量 挡光片宽度Δs 已知,用计时测速仪测出挡光片通过光电门时的挡光时间Δt,即可测出平均速度,因Δs 很小,该平均速度近似为挡光片通过光电门时的瞬时速度,即: 瞬时速度:t s dt ds t s v t ??≈=??=→?lim MUJ-5B 计时仪能直接计算并显示速度。 2、 加速度测量

(1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/0.0058=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。 2、由数据记录表4,可得a 与M 的关系如下:

磁化率的测定实验报告

磁化率的测定 1.实验目的 1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。 1.2掌握古埃(Gouy)磁天平测定磁化率的原理和方法。 2.实验原理 2.1摩尔磁化率和分子磁矩 物质在外磁场H作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。物质0被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关: χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。化学上常用摩尔磁化率χ表示磁化程度,它与χ的关系为m 。·mol -13 M、ρ分别为物质的摩尔质量与密度。χ的单位为m式中m物质在外磁场作用下的磁化现象有三种:。当它受到=0第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,μm,相应产生一种与外磁场方向相反的感应磁矩。如同线”外磁场作用时,内部会产生感应的“分子电流圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。这种物质称为反磁性物质,如表示,且χ<0。χCuHg,,Bi等。它的χ称为反磁磁化率,用m反反第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分。这些杂乱取向的分子磁矩μ≠0子磁矩m Cr,其方向总是趋向于与外磁场同方向,在受到外磁场作用时,这种物质称为顺磁性物质,如Mn, 表示。Pt等,表现出的顺磁磁化率用χ顺χχ但它在外磁场作用下也会产生反向的感应磁矩,因此它的是顺磁磁化率χ。与反磁磁化率m顺之和。因|χ|?|χ|,所以对于顺磁性物质,可以认为χ=χ,其值大于零,即χ>0。mm顺顺反反第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。这种物质称为铁磁性物质。 对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩μ关系可由居里-郎之万公式表示:m 为真空,J·Kμ×10)mol10),、k为玻尔兹曼常数(1.3806×式中L为阿伏加德罗常数(6.022 --1231-23 0--27可作为由实验测定磁化率来研究物质内部结构,T为热力学温度。式磁导率(4π× 10((2-136)N·A 的依据。分子磁矩由分子内未配对电子数n决定,其关系如下:

熔点的测定、折光率的测定

广东工业大学 学院专业班组、学号 姓名协作者教师评定 熔点的测定、折光率的测定 (一)熔点的测定 一、实验目的 1.了解熔点测定的意义。 2.掌握测定熔点的方法。 二、实验原理 固体物质在大气压下加热熔化时的温度,称为熔点(melting point,简记为m.p.)。严格来说,熔点就是固体物质在大气压下达到固液两态平衡时的温度。 纯净的固体有机物一般都有固定的熔点,固液两相之间的变化非常敏锐,从初熔到全熔的温度范围称熔矩或熔程,一般不超过0.5~1℃。当混有杂质后,熔点就会有显著的变化,熔点降低,熔矩变宽。因此通过测定熔点,可以鉴别未知的固态有机化合物和判断有机化合物的纯度。 如果两种固体有机物具有相同或相近熔点,可以采用混合熔点来鉴别它们是否为同一化合物。若是两种不同化合物,通常会使熔点下降(也有例外),如果是相同化合物则熔点不变。 三、实验仪器与药品 申光牌WRS-1A数字熔点仪,上海精密科学仪器有限公司物理光学仪器厂 桂皮酸:又称肉桂酸;β-苯丙烯酸;3-苯基-2-丙烯酸。不溶于冷水,溶于热水、乙醇、乙醚、丙酮和冰醋酸。 五、实验装置图

六、实验步骤 1、样品的装填将熔点管开口向下插入粉末中,装取少量药品。然后将熔点管竖立起来,在桌面上礅几下,使样品落入管底,重复几次。最后取一支长约30~40cm的玻璃管,垂直于一干净的表面皿上,将熔点管(开口端向上)从玻璃上端自由落下3~5次,使管内装入高约3mm紧密结实的样品。 2、开启电源开关,稳定20分钟。 3、通过拨盘设定起始温度(拨盘只能向下拨动),再按下起始温度按钮,输入此温度,预制灯亮,稍等,到达所需温度时,预制灯熄灭。 4、选择升温速率(一般3℃/min),把波段开关旋至所需温度。 5、插入装有样品的毛细管(直立、慢慢插入。切不可勉强插入,否则要换毛细管!),此时初熔灯熄灭。 6、调零。使电表完全指零。 7、按下升温钮,升温指标灯亮。 8、数分钟后,初熔灯先闪亮,然后出现终熔读数显示,欲知初熔读数按初熔钮即得。 注:测桂皮酸的起始温度设定为125℃,混合物的起始温度设定为90℃。 八、本实验应掌握的实验技能 九、思考题 1 可通过鉴别新化合物为已知的化合物。 2 熔点测定是对有机物的测定。 十、实验结果分析与讨论

大学物理重力加速度的测定实验报告范文.doc

大学物理重力加速度的测定实验报告范 文 一、实验任务 精确测定银川地区的重力加速度 二、实验要求 测量结果的相对不确定度不超过5% 三、物理模型的建立及比较 初步确定有以下六种模型方案: 方法一、用打点计时器测量 所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n 取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃

杯的形状为旋转抛物面 重力加速度的计算公式推导如下: 取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知: ncosα-mg=0 (1) nsinα=mω2x (2) 两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g, ∴y/x=ω2x/2g. ∴ g=ω2x2/2y. .将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g. 方法四、光电控制计时法 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n 取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法五、用圆锥摆测量 所用仪器为:米尺、秒表、单摆. 使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t 摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得: g=4π2n2h/t2. 将所测的n、t、h代入即可求得g值.

加速度的测量实验完整版报告

本科生课程论文报告 课程名称:中学物理实验研究 课程论文题目:加速度的测量 姓名:黄珊 学号: 2014000135 所在学院:教师教育学院 专业:物理行知班 任课教师:王凤兰

实验五加速度的测量 实验目的通过测量轨道小车的加速度,加深对加速度的理解。 实验器材朗威DISLab数据采集器、计算机、郎威DISLab力学轨道及配套小车、挡光片等附件。 实验原理由定义:加速度a=(Vt-V0)/t。 实验步骤 1、使用DISLab力学轨道附件中的“I”型支架将两只光电门传 感器固定在力学轨道一侧,将光电门分别接入数据采集器的 第一、二通道; 2、将轨道的一端调高,在小车上安装宽度为0.020m的“I”型 挡光板,调整光电门的位置,使小车及当光板能够顺利通过 并挡光; 3、打开“计算表格”,点击“变量”,启用“挡光片经过两个光 电门的时间”功能,软件默认变量为t12,定义挡光片的宽 度为“d”,输入固定值0.030; 4、点击“开始”,令小车从轨道高端下滑,使挡光片依次通过 两光电门,则挡光片通过两光电门传感器的时间t1、t2和经 过两光电门的时间t12会记录在表格中; 5、使小车自轨道高端下滑,并注意每次起点均不相同,重复测 量多次(注意操作中不要发生误挡光); 实验图像 实验装置图 加速度测量结果 实验分析在实验的六次过程中,加速度的值几乎相等。 误差分析存在一定的人为因素和偶然因素对实验的影响 实验总结小车经过光电门1和光电门2的六次实验过程中,加速度的值相等。 加速度是速度变化量与发生这一段变化所用时间的比值。只要速度 变化量与时间的比值相等,那么加速度就相等。

砂的检验方法

砂的检验方法 砂的筛分析实验 砂的筛分析试验应采用下列仪器设备: 1 试验筛:公称直径分别为10.0mm、5.00mm、2.50mm、1.25mm、630um、315um、160um 的方孔筛各一只,筛的底盘和盖各一只; 2 天平──称量1000g,感量1g; 3 摇筛机; 4 烘箱──温度控制范围为(105±5)℃; 5 浅盘、硬、软毛刷等。 筛分析试验应按下列步骤进行: 1 准确称取烘干试样500g(特细砂可称250g),置于按筛孔大小顺序排列(大孔在上,小孔在下)的套筛的最上一只筛(公称直径为5.00mm的方孔筛)上;将套筛装入摇筛机内固定按紧,筛分10min;然后取出套筛,再按筛孔由大到小的顺序,在清洁的浅盘上逐一进行手筛,直至每分钟的晒出量不超过试样总量的0.1%时为止;通过的颗粒并入下一只筛子,并和下一只筛子中的试样一起进行手筛。按顺序依次进行,直至全部晒完为止。注:当试样含泥量超过5%时,应先将试样水洗,然后烘干至恒重再进行筛分试验。 筛分析试验结果按下列步骤计算: 1 计算分计筛余量(各筛上的晒于量除以试样总量的百分率),精确至0.1%; 2 计算累计筛余量(该筛的分计筛余量与筛孔大于该筛的各筛分计筛余量之和),精确至0.1%; 3 根据各筛两次试验累计筛余的平均值,评定该试样的颗粒级配分布情况,精确至1%; 4 砂的细度模数应按下式计算,精确至0.01%: uf={(β2+β3+β4+β5+β6)-5β1}÷(100-β1) 式中:uf——砂的细度模数 β1、β2、β3、β4、β5、β6——分别为公称直径5.00mm、2.50mm、1.25mm、630um、315um、160um方孔筛的累计筛余量; 以两次试验结果的算数平均值作为测定值,精确0.1。当两次试验所得的细度模数之差大于0.20时,应重新取样进行试验。 砂的表观密度试验 砂的表观密度试验应采用下列仪器设备: 1 天平——称量1000g,感量1g; 2 李氏瓶——容量250ml; 3 烘箱——温度控制范围为(105±5)℃; 砂的表观密度应按下列步骤进行: 1 向李氏瓶中注入冷开水至一定刻度处,擦干瓶颈内部附着水,计录水的体积(V1); 2 称取烘干试样300g(Mo)徐徐加入盛水的李氏瓶中; 3 试样全部倒入瓶中后,用瓶内的水将粘附在瓶颈和瓶壁的试样洗入水中,摇转李氏瓶以排除气泡,静置约24h后,记录瓶中水面升高后的体积(V2)。 表观密度应按下式计算,精确至10kg/m3: ρ={【Mo÷(V2-V1)】-at}×1000 式中р——表观密度(kg/m3); Mo——试样的烘干质量(g); V1——水的原有体积(ml);

磁化率的测定

华南师范大学实验报告学生姓名学号 专业化学(师范)年级班级 课程名称结构化学实验实验项目磁化率的测定 实验类型□验证□设计√综合实验时间2013年10月29日 实验指导老师彭彬实验评分 【实验目的】 1.掌握古埃(Gouy)磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d电子的排布情况和配位体场的强弱。 【实验原理】 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A·m-1)的作用下,产生附加磁场。这时该物质内部的磁感应强度B为: B=H+4πI= H+4πκH(1) 式中,I称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H称为物质的体积磁化率。I和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=ΚM/ρ称为摩尔磁化率(M是物质的摩尔质量)。这些数据可以从实验中测得。在顺磁、反磁性研究中常用到χ和χm,铁磁性研究中常用到I、σ。 不少文献中按宏观磁性质,把物质分成反磁性物质、顺磁性物质和铁磁性物质以及亚铁磁性物质、反铁磁性物质几类。其中,χm<o,这类物质称为反磁性物质。χm>o,这类物质称为顺磁性物质。 (2)古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则

在磁场为零处。 样品在磁场中受到一个作用力。 df=κHAdH 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称重,必须考虑空气修正,即 dF=(κ-κ0)HAdH κ 0表示空气的体积磁化率,整个样品的受力是积分问题: F= )()(2 1d )(202000 H H A H HA H H --= -? κκκκ (2) 因H 0<<H,且可忽略κ0,则 F= 22 1 AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F=g )m -m (空样? (4) 式中,样m ?为样品管加样品在有磁场和无磁场时的质量差;空m ?为空样品管在有磁场和无磁场时的质量差;g 为重力加速度。 则有,2 2AH F = κ 而 ρκχM = m ,h m A 样品 =ρ,h 为样品高度,A 为样品管截面积,m 样品为样品质量。 ()2 2m m gh m -m 2m 2H M M AH F M 样品空 样样品??= ==ρκχ (5) 只要测量样品重量的变化。磁场强度H 以及样品高度h ,即可根据式(5)计算样品的摩尔磁化率。 其中,莫氏盐的磁化率符合公式: 4-10*1 T 1938 .1m ∧+=χ (6) (3)简单络合物的磁性与未成对电子

掠入射法测量棱镜的折射率实验报告

一、实验名称:掠入射法测量棱镜的折射率 二、实验目的: 掠入射法测定棱镜的折射率。 三、实验器材: 分关计、钠光灯(波长0=589.3nm λ)、棱镜、毛玻璃。 四、实验原理: 如图所示为掠入射法。用单色扩展光源照射到棱镜AB 面上,使扩展光源以约90角掠入射到棱镜上。当扩展光源从各个方向射向AB 面时,以90入射的光线的内折射角最 大,为2max i ,其余入射角小于90的,折射角必小于2max i ,出射角必大于1min i ',而大于90的入射光不能进入棱镜。这样,在AC 侧面观察时,将出现半明半暗的视场。明暗视场的交线就是入射角190i =的光线的出射方向。可以证明: n =掠入射法 五、实验步骤: 1、由于扩展光源辐射进棱镜的入射角度具有一定的范围,因此在AC 出射面观察出射光时,可看到入射角满足1min 190i i <<的入射光线产生的各种方向的出射光形成一个亮区,存在两条明暗交界线。合理摆放钠光灯光源与棱镜入射面的位置,在望远镜中找出这个亮区。 2、旋转载物台,使入射到棱镜入射面的光线越来越少,当光源只有入射角约90的入射光线射入棱镜,望远镜中观察到的视场将由亮区慢慢收窄成为一条清晰的细亮线,此时的亮线就是入射角190i =的光线的出射方向。记录此时亮线的角度1min i 。 3、测量棱镜的顶角α,计算棱镜折射率。 六、实验数据记录:

棱镜顶角的测量数据 最小出射角测量数据 七、 数 据 处 理: 1、由棱镜顶角的测量数据可得: 平均值59.51559.537601659.502= =59.5384 α'''' +++' 2、测量不确定度 所以59.53804'ααα'=±?=± 3、由最小出射角测量数据可得: 平均值1min 39.518'3902'3906'39.508' 3928'4 i +++'== 所以1min 1min 1min 3928'04'i i i '''=±?=± 4、由 n =可得: 所以 1.590.07n n n =±?=±

迈克尔逊干涉仪测量空气折射率实验报告

测量空气折射率实验报告 一、 实验目的: 1.进一步了解光的干涉现象及其形成条件,掌握迈克耳孙干涉光路的原理和调节方法。 2.利用迈克耳孙干涉光路测量常温下空气的折射率。 二、 实验仪器: 迈克耳孙干涉仪、气室组件、激光器、光阑。 三、 实验原理: 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M1、M2为互相垂直的平面反射镜,M1、M2镜面与分束镜G 均成450角; M1可以移动,M2固定。2 M '表示M2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M1镜,反射回来再穿过G ;光束2投向M2镜,经M2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M1、M2镜时,两束光的光程差δ为 )(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 M 2M 图1 迈克尔逊干涉仪光路示意图

设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相 干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的 变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得 0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路 中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为 nm 0.633的光的折射率00027652.1=n ,它与真空折射率之差为 410765.2)1(-?=-n 。用一般方法不易测出这个折射率差,而用干涉法能很方便地测量,且准确度高。 四、 实验装置: 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为 nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M1、M2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 图2 测量空气折射率实验装置示意图 气压表

(完整版)重力加速度的测定实验报告

重力加速度的测定 一,实验目的 1,学习秒表、米尺的正确使用 2,理解单摆法和落球法测量重力加速度的原理。 3,研究单摆振动的周期与摆长、摆角的关系。 4,学习系统误差的修正及在实验中减小不确定度的方法。 二,实验器材 单摆装置,停表(精度为0.01s),钢卷尺(精度为1mm),游标卡尺(精度为0.02mm) 三,实验原理 单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,如图2-1所示。 f =F sinθf θ T=F cosθ F= mg L 单摆原理图

摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。设摆长为L ,小球位移为x ,质量为m ,则 L x = θsin f=θsin F =-L x mg - =-m L g x 由f=ma ,可知a=- L g x 式中负号表示f 与位移x 方向相反。 单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a = m f =-ω2 x 可得ω=l g ,即02 22=+x dt x d ω,解得)cos(0?ω+=t A x ,0A 为振幅,?为初相。 应有[])2cos())((cos )cos(000?πω?ω?ω++=++=+=t A T t A t A x 于是得单摆运动周期为:T =ωπ 2=2πg L 即 T 2=g 2 4πL 或 g=4π22 T L 又由于细线不是完全没有质量,他在外力作用下也不可能完成伸长,所以,单摆的重力加速度公式修正为 22 21 4T d L g +=π 四,实验步骤 1,数据采集 (1)测量摆长L 用米尺测量摆球支点和摆球顶点或最低点的间距l ,用游标卡尺测量小球的直径d,则摆长 d l L 2 1+= (2)测量摆动周期 用手把摆球拉至偏离平衡位置约? 5放开,让其在一个铅直面内自由摆动,当小球通过平衡位置的瞬间,开始计时,连续默数100次全振动时间为t ,再除以100,得到周期T 。 (3)将所测数据列于下表中,并计算出摆长、周期及重力加速度。

实验报告测量玻璃折射率

实验报告:测量玻璃折射率 高二( )班 姓名: 座号: 【实验目的】 1、明确测定玻璃砖的折射原理 2、知道测定玻璃砖的折射率的操作步骤 3、会进行实验数据的处理和误差分析 【实验原理】 如图所示,要确定通过玻璃砖的折射光线,通过插针法找出跟入射光线AO 对应的出射光线O 1B ,就能求出折射光线OO 1和折射角θ2, 再根据折射定律就可算出玻璃的折射率n=2 1 sin sin θθ。 【实验器材】 平木板、 白纸、 玻璃砖1块、 大头针4枚、 图钉4个、 量角器(或三角板或直尺)、 铅笔 【实验步骤】 1、把白纸用图钉钉在木板上。 2、在白纸上画一条直线ad 作为玻璃砖的上界面,画一条线段AO 作为入射光线,并过O 点 画出界面ad 的法线NN 1。 3、把长方形的玻璃砖放在白纸上,使他的一个长边ad 跟严格对齐,并画出玻璃砖的另一个 长边bc.。 4、在AO 线段上竖直插上两枚大头针P 1P 2. 5、在玻璃砖的ad 一侧再插上大头针P 3,调整眼睛观察的视线,要使P 3 恰好能挡住P 1P 2在 玻璃中的虚像。 6、用同样的方法在玻璃砖的bc 一侧再插上大头针P 4,使P 4能同时挡住P 3本身和P 1P 2的虚 像。 7、记下P 3、P 4的位置,移去玻璃砖和大头针。过P 3、P 4引直线O 1B 与bc 交于O 1点,连接 OO 1,OO 1就是入射光线AO 在玻璃砖内的折射光线的方向。入射角θ1=∠AON ,折射角θ2=∠O 1ON 1 8、用量角器量出入射角θ1和折射角θ2。查出入射角和折射角的正弦值,记录在表格里。

9、改变入射角θ1,重复上述步骤。记录5组数据,求出几次实验中测得的 2 1 sin sin θθ的平均值,就是玻璃的折射率。 【注意事项】 1、用手拿玻璃砖时,手只能接触玻璃砖的毛面或棱,不能触摸光洁的光学面,严禁把玻璃砖 当尺子画玻璃砖的另一边bc 。 2、实验过程中,玻璃砖在纸上的位置不可移动. 3、玻璃砖要选用宽度较大的,宜在5厘米以上,若宽度过小,则测量折射角度值的相对误差 增大;用手拿玻璃砖时,只能接触玻璃毛面或棱,严禁用玻璃砖当尺子画界面; 4、入射角i 应在15°~75°范围内取值,若入射角α过大。则由大头针P 1、P 2射入玻璃中的光 线量减少,即反射光增强,折射光减弱,且色散较严重,由玻璃砖对面看大头针的虚像将暗淡,模糊并且变粗,不利于瞄准插大头针P 3、P 4。若入射角α过小,折射角将更小,测量误差更大,因此画入射光线AO 时要使入射角α适中。 5、上面所说大头针挡住大头针的像是指“沉浸”在玻璃砖里的那一截,不是看超过玻璃砖上方 的大头针针头部分,即顺P 3、P 4的方向看眼前的直线P 3、P 4和玻璃砖后的直线P 1、P 2的虚像是否成一直线,若看不出歪斜或侧移光路即可确定。 6、大头针P 2、P 3的位置应靠近玻璃砖,而P 1和P 2、P 3和P 4应尽可能远些,针要垂直纸面, 这样可以使确定的光路准确,减小入射角和折射角的测量误差。 【实验数据】 实验数据处理的其他方法:

用打点计时器测量加速度速度-实验报告

测定匀变速直线运动的加速度-实验报告 班级________ 姓名________时间_________ 一、实验目的 1、掌握判断物体是否做匀变速直线运动的方法 2、测定匀变速直线运动的加速度和计算打下某点时的瞬时速度。 二、实验原理 1、由纸带判断物体做匀变速直线运动的方法:若x1、x 2、x 3、x4……为相邻计数点间的距离,若△x=x2-x1=x3 -x2=……=c(常数),即连续相等的时间间隔内的位移差是恒量,则与纸带相连的物体的运动是匀变速直线运动。 2、利用某段时间里的平均速度等于该段时间中点的瞬时速度来计算打下某点时的瞬时速度. 3、由纸带求物体加速度的方法: (1)根据Xm-Xn=(m-n)aT2(T为相邻两计数点间的时间间隔),选取不同的m和n,求出几个a,再计算出其平均值即为物体运动的加速度。 (2)用V-t图像求物体的加速度:先根据时间中点的瞬时速度等于该段时间的平均速度求几个点的瞬时速度,然后做出V-t图像,图线的斜率就是物体运动的加速度。 ***逐差法:物体做匀变速直线运动,加速度是a,在各个连续相等的时间T里的位移分别是X1、X2、X3……则有:△X=X2-X1=X3-X2=X4-X3=……=aT2 . 由上式还可得到 : X4-X1=(X4-X3)+(X3-X2)+(X2-X1)=3aT2同理有 X5-X2=X6-X3=……=3aT2 可见,测出各段位移X1、X2……即可求出a1、a2、a3……,再算出a1、a2、a3……的平均值,就是我们所要测定的匀变速直线运动的加速度。 三、实验器材 四、实验步骤

五、分析与处理实验数据 1、.纸带采集 2、实验数据记录 3、计算加速度(用计算和V-T图像两种方法)和某点的瞬时速度 六、实验误差分析

磁化率实验报告1

磁化率的测定 08材化2 叶辉青200830750230 1 实验目的 1.1 掌握古埃(Gouy)法测定磁化率的原理和方法。 1.2 测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。 1.3 了解磁天平的原理与测定方法。 1.4 熟悉特斯拉计的使用。 2 实验原理 2.1 磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度H′与外磁场强度H 之和称为该物质的磁感应强度B,即 B=H+H′(1) H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。物质的磁化可用磁化强度I来描述,H′=4πI。对于非铁磁性物质,I与外磁场强度H成正比 I=KH (2) 式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物质的磁性质,它的定义是 χm=K/ρ(3) χM=MK/ρ(4) 式中,ρ和M分别是物质的密度和摩尔质量。由于K是无量纲的量,所以χm 和χM的单位分别是cm3/g和cm3/mol,磁感应强度SI单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G。 2.2 分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其χM就等于反磁化率χ反,且χM<0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。顺磁性物质的摩尔磁化率χM是摩尔顺磁化率与摩尔反磁化率之和,即 χM=χ顺+χ反(5) 通常χ顺比χ反大约1~3个数量级,所以这类物质总表现出顺磁性,其χM>0。顺磁化率与分子 永久磁矩的关系服从居里定律

实验四 旋光度和折光率的测定

实验四旋光度和折光率的测定 一、实验目的 1、了解旋光仪的构造、使用方法,掌握旋光度的测定原理与方法。 2、了解阿贝折光仪的构造,使用方法,掌握有机物折光率的测定原理和方法。 二、实验原理 1、旋光度:某些有机物因具有手性分子,能使偏光振动平面旋转,这种性质称为物质的旋光性。具有旋光性的物质称为旋光性物质或光学活性物质。旋光性物质使偏光振动平面旋转的角度称为旋光角,旋光角附上旋转方向叫旋光度,常以α表示;使偏光振动平面向左旋转的为左旋,用(一)或ι表示;使偏光振动平面向右旋转的为右旋,用(+)或d表示。 2、旋光仪构造 旋光度可用旋光仪来测定,其构造一般包括: a.单色光源:产生单色光,一般用钠光灯 b.起偏镜:产生偏振光 c.半波片:将偏振光束分成三分视场 d.样品管:盛放样品溶液 e.检偏镜 f.目镜 g.刻度盘 3、旋光度的大小除决定于物质的本性外,还与测定时的条件有关。旋光度随溶液的浓度或液体的密度d、测定时的温度t,所用光的波长λ,盛液管的长度ι及溶剂的性质等因素而改变。为比较物质的旋光性,需以一定条件下的旋光度作为基准。通常规定:1cm3含1g旋 t表光性物质的溶液放在1dm长的盛液管中测得的旋光度叫做该物质的比旋光度,并用[α] λ示,对某一物质来说,比旋光度是一个定值,它与旋光度的关系如下: α 纯液体的比旋光度[α]λt= d l. α 溶液的比旋光度[α]λt= c l. 比旋光度是物质特性常数之一。因此可以通过测定旋光度,来鉴定旋光性物质的纯度和含量;也可与其它方法结合起来确定未知物是何种物质。

4、折光率:光在空气中的速率和在另一物质中的速率之比称为折光率。 一种介质的折光率(n)就是光线从真空进入这种介质时入射角(α)和折射角(β)的正旋光度 折光率是有机化合物重要的特性常数。固体、液体和气体都有折光率,它不仅作为物质纯度的标准,也可用来鉴定未知物。 物质的折光率随入射光的波长与测定时的温度不同而变化。通常温度升高1℃,折光率降低3.5—5.5×10-14,光源一般采用钠光源。 5、阿贝折射仪的构造 结合仪器具体讲解,主要有放大镜、刻度尺、望远镜、消色镜、直角棱镜、反射镜等。 三、仪器与试剂 1、仪器 WZX-1光学度盘旋光仪、阿贝折光仪 2、试剂蒸馏水、10%葡萄糖、未知浓度的葡萄糖溶液、重蒸馏水、丙酮、待测液 四、实验步骤 1、旋光度的测定 (1)预热开始测量前,须将电源开关推到“开”的位置,预热5—10min,直至钠光灯已充分受热。 (2)旋光仪零点的校正在测定样品前,必须先校正旋光仪零点。先将旋光管洗净,装上蒸馏水,使液面凸出管口,将玻璃盖沿管口边缘轻轻平推盖好,不能带入气泡。然后旋上螺丝帽盖,使之不漏水。但注意不可旋得过紧,以免玻璃盖产生扭力而影响读数正确性。将已装好蒸馏水的样品管擦干,放入旋光仪内,罩上盖子。将标尺盘调到零点左右,调节手轮使视场亮度达到一致,此时读数应为零,由于使用者对其感觉不一,此读数可能为某一数值(即为初读数)记下读数。重复操作至少5次,取其平均值即为零点。若零点相差太大,应重新校正。 (3)旋光度的测定取已准确配制的10%葡萄糖液,按上述方法装入已洗净的旋光管中(先用蒸馏水洗干净,再用所测溶液洗涤几次)。把旋光管放入旋光仪里,转动手轮,使三部分亮度不同的视场重新调至亮度一致为止,记下读数。这时所得的读数与零点(初读数)之间的差值,即为该溶液的旋光度。再记下旋光管的长度及溶液的浓度,然后按公式计算其比旋光度。 取未知浓度的葡萄糖溶液,按同样的方法测定旋光度,然后利用上边求出的比旋光度计

磁化率的测定实验报告

华 南 师 范 大 学 实 验 报 告 课程名称 结构化学实验 实验项目 磁化率的测定 一、【目的要求】 1.掌握古埃(Gouy )磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d 电子的排布情况和配位体场的强弱。 二、【实验原理】 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A ·m-1)的作用下,产生附加磁场。这时该物质内部的磁感应强度B 为: B =H +4πI = H +4πκH (1) 式中,I 称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H 称为物质的体积磁化率。I 和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=Κm/ρ称为摩尔磁化率。这些数据是宏观磁化率。在顺磁、反磁性研究中常用到χ和χm ,帖磁性研究中常用到I 、σ。 物质在外磁场作用下的磁化有三种情况 1.χm <o ,这类物质称为逆磁性物质。 2.χm >o ,这类物质称为顺磁性物质。 (2)古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场为零处。 样品在磁场中受到一个作用力。 df=κHAdH 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称重,必须考虑空气修正,即 dF=(κ-κ0)HAdH κ0表示空气的体积磁化率,整个样品的受力是积分问题: F= )()(2 1d )(202000 H H A H HA H H --= -? κκκκ (2) 因H 0<<H,且可忽略κ0,则 F= 22 1 AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F= g )m -m (空样?

[实用参考]大学物理实验报告册-测三棱镜的折射率

用分光计测棱镜折射率 实验日期-----实验组号----实验地点----报告成绩 [实验目的] 1.———— 2.———— [实验仪器] 1.分光计的结构,主要由------------、------------、-------------和------------组成。 2.平行光管由------和----------组成。 3.望远镜主要由-----,-------和-------组成。 4.读数装置由-------与---------组成.刻度盘分为360°,最小刻度为-------。在刻度盘内同一直径的两端各装一个游标为了消除刻度盘与分光计中心轴线之间的--------- [实验原理摘要] 最小偏向角,用δmin 表示,棱镜玻璃的折射率n 与棱镜顶角A 、最小偏向角δmin 有如下关系. n [实验内容及步骤] 1. 分光计的调整:为了测准入射光与出射光传播方 向之间的角度,分光计的调整必须做到----------------------------------------------------------------;-----------------------------------------------;-----------------------------------------------。 调整顺序 (1)目测粗调 (2)调节望远镜: a.调整--------看清目镜中十字叉丝; b.开小灯泡电源开关; c 按图2放置平面镜,当需要改变平面镜的倾斜度时,只要调节螺丝B 1或螺丝B 3. d.旋转------,使平面镜偏离望远镜一小角度,从望远镜外侧在平面镜内寻找绿光斑 图1 三棱镜的折射 图2 B 1 B 2 B 3

测量重力加速度实验报告

一、复摆法测重力加速度 一.实验目的 1. 了解复摆的物理特性,用复摆测定重力加速度, 2. 学会用作图法研究问题及处理数据。 二.实验原理 复摆实验通常用于研究周期与摆轴位置的关系,并测定重力加速度。复摆是一刚体绕固定水平轴在重力作用下作微小摆动的动力运动体系。如图1,刚体绕固定轴O在竖直平面内作左右摆动,G是该物体的质心,与轴O的距离为h,θ为其摆动角度。若规定右转角为正,此时刚体所受力矩与角位移方向相反,则有 θ =, (1) M- sin mgh 又据转动定律,该复摆又有

θ I M = , (2) (I 为该物体转动惯量) 由(1)和(2)可得θωθ sin 2-= , (3) 其中I mgh = 2 ω。若θ很小时(θ在5°以内)近似有 θωθ 2-= , (4) 此方程说明该复摆在小角度下作简谐振动,该复摆振动周期为 mgh I T π =2 , (5)

设G I 为转轴过质心且与O 轴平行时的转动惯量,那么根据平行轴定律可知 2mh I I G += , (6) 代入上式得 mgh mh I T G 2 2+=π , (7) 设(6)式中的2mk I G =,代入(7)式,得 gh h k mgh mh mk T 2 22222+=+=π π, (11) k 为复摆对G (质心)轴的回转半径,h 为质心到转轴的距离。对(11)式平方则有 2 2222 44h g k g h T ππ+=, (12) 设22,h x h T y ==,则(12)式改写成 x g k g y 2 2244ππ+=, (13) (13)式为直线方程,实验中(实验前摆锤A 和B 已经取下) 测出n 组 (x,y)值,用作图法求直线的截距A 和斜率B ,由于g B k g A 2 224,4ππ==,所以

磁化率-实验报告

一、实验目的与要求 1、测定物质的摩尔磁化率,估计待测金属配合物中心离子的未成对电子数,判断分子配键的类型。 2、掌握磁天平测定磁化率的原理和方法。 二、实验原理 1、摩尔磁化率和分子磁化率 在外磁场作用下,由于电子等带电粒子的运动,物质会被磁化而感应出一个附加磁场。这个附加磁场H’的强度由物质的磁化率χ决定:H’=4χχ为物质的体积磁化率,反映物质被磁化的难易程度,化学上常用摩尔磁化率χ m 表示磁化程度:,单位为。 对于顺磁性物质,摩尔顺磁磁化率与分子磁矩关系有: 顺 (为真 空磁导率,由于反磁化率较小,所以χ 反 忽略作近似处理) 顺磁性物质与为成对电子数n的关系:(为玻尔磁子,=9.273×10-21erg·G-1 =9.273×10-28J·G-1 =9.273×10-24 J·T-1) 2、摩尔磁化率的测定 样品在非均匀磁场中受到的作用力F可近似为: 在非均匀磁场中,顺磁性物质受力向下所以增重;而反磁性物质受力向上所以减重。测定时在天平右臂加减砝码使之平衡。设△m为施加磁场前后的称量,则: 所以: Δy样品管加样品后在施加磁场前后的称量差(g);Δ 为空样品管在施加磁场前后的称量差(g);g为重力加速度(9.8m·s-2);h为样品高度(cm);y样品的摩尔质量(g·mol-1);y样品的质量(g);y磁极中心磁场强度(G)。 磁场强度H可由特斯拉计或CT5高斯计测量。应该注意,高斯计测量的实际 上是磁感应强度B,单位为T(特斯拉),1T=104高斯。磁场强度H可由 B =μ H 关系式计算得到,H的单位为A·m-1。也可用已知磁化率的硫酸亚铁铵标定。 在精确的测量中,通常用莫尔氏盐来标定磁场强度,它的摩尔磁化率与温度的关系为 三、实验用品 1、仪器 分析天平、高斯计、玻璃样品管、研钵、角匙、玻璃棒 2、试剂 莫氏盐(NH 4) 2 SO 4 ·FeSO 4 ·6H 2 O、亚铁氰化钾 K 4 [Fe(CN) 6 ]·3H 2 O、硫酸亚铁FeSO 4 ·7H 2 O。 四、实验步骤

相关主题
文本预览
相关文档 最新文档