当前位置:文档之家› 镍及镍基合金的特性和焊接

镍及镍基合金的特性和焊接

镍及镍基合金的特性和焊接
镍及镍基合金的特性和焊接

镍及镍基合金的特性和焊接

【摘要】本文通过对镍及镍基合金的特点和焊接时注意的要点进行了介绍。

【关键词】镍及镍基合金特点焊接工艺焊接参数

镍及镍合金具有优异的耐腐蚀性能,在化工领域中的应用越来越广泛,下面就镍及镍基合金的特点和焊接工艺进行介绍。

1 材料慨述

工业纯镍在国内主要是N6,国外有Nickel 200、Nickel 201;镍基耐腐蚀合金分为因科耐尔(Inconel)、因科洛依(Incoloy)、蒙耐尔(Monel)、哈斯特洛依(Hastelloy)等。

1.1 工业纯镍Nickel 201

Nickel 201是工业纯镍,具有优良的塑性和韧性,高的化学稳定性。纯镍有耐大气、碱、淡水锈蚀。在热浓碱液中耐腐蚀性能极好,在中型和微酸性溶液及有机溶剂等介质中也有较好的耐蚀性。不耐氧化性酸和含有氧化剂的溶液以及多数熔融金属的腐蚀。在高温含硫气体中也会发生硫化变脆。1.2 因科耐尔Inconel 600

因科耐尔Inconel 600具有理想的强度、加工性、耐腐蚀和耐热性能。有良好的抗高温氧化、腐蚀、冷热加工性能及低温力学性能。

1.3 因科洛依Incoloy 825

Incoloy 825含铬量与不锈钢接近,因而在一般腐蚀性介质中的耐腐蚀性能也和不锈钢类似,对热碱液,碱性硫化物的耐蚀性比不锈钢好,抗高温腐蚀性能更好。

1.4 蒙耐尔Monel 400

Monel 400对卤素、中性水溶液、苛性碱溶液、稀硫酸、氢氟酸和磷酸等具有良好的耐蚀性能。对氯化物、浓硫酸、高温含硫气体等不够耐蚀。对非氧化性酸,特别是对氢氟酸的耐蚀性非常好。

1.5 哈斯特洛依HastelloyB-2

HastelloyB-2的碳、硅含碳量极低,改变了在敏化状态和焊后状态的抗晶间腐蚀性能。它可以在沸腾温度下任何浓度的盐酸介质中使用。

镍基高温合金性能

镍基高温合金 镍基高温合金是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金。 发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。镍基高温合金的发展趋势见图1。

镍基高温合金的发展趋势 成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B 型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。 镍基高温合金按强化方式有固溶强化型合金和沉淀强化型合金。 ·固溶强化型合金 具有一定的高温强度,良好的抗氧化,抗热腐蚀,抗冷、热疲劳性能,并有良好的塑性和焊接性等,可用于制造工作温度较高、承受应力不大(每平方毫米几公斤力,见表1)的部件,如燃气轮机的燃烧室。 ·沉淀强化型合金 通常综合采用固溶强化、沉淀强化和晶界强化三种强化方式,因而具有良好的高温蠕变强度、抗疲劳性能、抗氧化和抗热腐蚀性能,可用于制作高温下承受应力较高(每平方毫米十

镍基焊条

基焊条 目录 镍基焊条的分类与用途 镍基焊材的选用 镍基合金焊条成份对比 镍基焊条的分类与用途 镍及镍合金焊条可分为五大类,即工业纯Ni、Ni-Cu、Ni-Cr-Fe、Ni-Mo 和Ni-Cr-Mo。每一类可分为一种或多种型号的焊条。这类焊条主要用于焊接镍或高镍合金,有时也可用于异种金属的焊接或堆焊. 镍基焊材的选用 镍基焊丝 镍基焊条图片 [1] ERNiCr-3 用于600,601以及800合金自身的焊接,及不锈钢和碳钢之间的异种钢焊接ERNiCrFe-7 用于焊接ASTM B163,166,167和168标准内的镍铬铁合金 ERNiCrFe-6 用于钢和镍铬铁合金的焊接,钢及不锈钢和镍基合金的焊接 ERNiCrCoMo-1 用于焊接镍铬钴钼合金及各种高温合金的异种焊接 ERNiCrMo-3 用于镍合金,碳钢,不锈钢和低合金钢的一种焊接,最主要用于625,601,802合金的焊接及9%镍合金的焊接 ERNi-CI 工业纯镍,用于可锻铸铁及灰口铸铁的焊接 ERCuNi 用于70/30,80/20,90/10铜镍合金的焊接 ERNiCu-7

用于焊接镍铜合金B127,163,164和165等 ERNi-1 用于纯镍铸件和锻件的焊接,如:ASTM B160,161,162,163标准内的合金 ERNiFeMn-CI 用于结节铸铁,球墨铸铁,可锻铸铁和灰口铸铁自身的焊接或用于它们 与不锈钢,碳钢,低合金钢及各种镍合金的焊接 ERNiCrMo-4 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接 ERNiCrMo-11 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接,还可以用于镍铬钼合金和钢焊接焊缝的堆焊 ERNiCrMo-13 用于焊接低碳镍铬钼合金 镍基焊条 ENiCrMo-3 用于焊接镍铬钼合金,如625,800,801,825和600 ENiCrFe-3 用于镍铬铁合金自身的焊接及与碳钢的焊接 ENiCrFe-2 用于奥氏体钢,铁素体钢及高镍合金之间的异种焊接, 还可用于9%镍合金的焊接 ENiCu-7 主要用于镍铜合金自身及其与钢之间的异种焊接 ENiCrFe-7 用于690(UNS N06690)镍铬铁合金自身的焊接 ENiCrMo-4 用于焊接C-276合金及大多数其它镍基合金 ENiCrCoMo-1 用于焊接镍铬钴钼合金以及各种的高温合金间的异种焊接 ERCuNi 焊接锻造或铸造的70/30,80/20,90/10铜镍合金 ENiCrMo-13 用于焊接低碳镍铬钼合金 ENiCrMo-11 用于焊接低碳镍铬钼合金 纯镍焊条 A5.11 ENi-1 EL-NiTi3 ≥ 92 - - Ti2.5 - 焊接 200 、 201 镍合金以及镀镍钢板; - 钢与镍异种材料的焊接; - 钢的表面堆焊。

铜镍合金管焊接作业指导书

文件编号福建东南造船有限公司 质量/环境/职业健康安全/能源 综合管理体系 作业指导书第1/0版 FSES-WP-1810 共6页 铜镍合金管焊接 标记处 数 修改依据 修改人 日期 审批人 日期 生效 日期 修改记录栏 施王祥苏俊淼杨永彪林奇曾金柱2014.8.20 编写校对审核审定批准批准日期版本号:1修改号:0

甲居装课铜镍合金管焊接 FSES-WP-1810 版本号/修改号:1/0 共 6 页 修改纪录表 修改日期 版本/ 修改号 修改内容 修改 状态 修改人审批人 批准 日期

甲居装课铜镍合金管焊接 FSES-WP-1810 版本号/修改号:1/0 共 6 页 铜镍合金管焊接作业指导书 1.概述: 本作业指导书旨在对铜镍合金管焊接作业作出规定,使管子焊接质量达到规范要求。 2.适用范围: 本作业指导书适用于修、造船铜镍合金管子的焊接(t=1~3mm),采用手工钨极氩弧焊。 3.职责: 3.1 质量保证部负责检验管子焊接质量。 3.2 焊工负责管子施焊,并对其质量负责。 4.实施: 4.1总则: 4.1.1 焊条、保护气应符合有关标准的规定,焊条还应经船级社认可,所有材料均应有制造厂家的合格证。4.1.2 焊工应根据自己的考核资格级别进行合理的焊接工作。 4.2焊前准备: 4.2.1 焊接前应检查相关设备电、气、水等管线的完整性,有破损的要及时更换。 4.2.2 焊接场地应有足够的通风设备,以确保焊接时产生的废气烟尘能及时排放。

4.2.3 焊前应穿戴好劳动保护用品,如:防护服,口罩,面罩(护目镜),手套,绝缘鞋等。 4.2.5 清除焊接区域的油污、氧化物等对焊接有影响的附着物,废弃物等应分类集中处理。 4.2.6 焊前必须了解施焊管子的级别,厚度和施工工艺要求,以选用规定的焊材和选择适当的参数。 4.2.6 焊前应检查上道工序的装配质量是否符合图纸技术要求和焊接工艺要求。(管厚1.5~3mm,对接焊装配间隙<0.5mm)。 4.2.7 检查焊条是否受潮、受污等。若是,则应消除后方可施焊。 4.2.8 清除焊接区域的油污、氧化物等对焊接质量有影响的附着物。 4.2.9 用铝铂封住管口,装好向管内充气,按工艺要求的气流量和时间充气。 4.2.10 检查焊接设备的完好性,开通冷却水,调节气流量,按工艺要求调好焊接电流。 4.3焊接过程: 4.3.1采用高频引弧法在对接处引弧。每次引弧前都要检查喷嘴有否被氧化物堵塞及钨极端部的锥形是否完好。4.3.2采用短弧焊接,钨极尖端距溶池的距离与钨极直径相当,焊枪与管子切线方向的夹角约75o,焊条与钨

超弹性钛镍形状记忆合金棒材和丝材-编制说明

《超弹性钛镍形状记忆合金棒材和丝材》 编制说明(征求意见稿) 一、 工作简况 1.1本标准项目涉及的产品简况: 本标准针对适用于眼镜架、矫形丝、导引丝、通信天 线等用途的超弹性钛镍形状记忆合金棒材和丝材产品的化学成分、 尺寸、弯曲度、超弹性性 能、力学性能、高低倍组织、表面质量等技术要求、试验方法、检验规则、标志、包装、运 输、贮存等进行了规定。 目前国内钛镍合金生产已具有一定的规模,但与国际相关生产技术相比仍存在差距。在 钛镍合金的熔炼技术方面,美国、日本已走在了世界的前列,例如美国 WahCha ng 公司可以 生产单锭重量达3吨的钛镍合金铸锭。国内一般采用25kg 或50kg 真空中频感应炉生产铸锭, 存在的问题是铸锭规格小、效率低、杂质含量高,产品的成品率仅为 50%左右,不适合规模 化生产。 国外钛镍合金生产广泛采用将大规格铸锭通过挤压方法生产棒坯料, 然后再轧制拉拔成 棒丝材的工艺,其先进的生产线主要是采用了连续式高速轧机, 精轧采用三辊、四辊定径轧 机等,生产线产能较大,但设备复杂,投资较大。 我国钛镍合金棒丝材普遍采用与普通钛合 金相似的加工工艺,即铸锭锻造开坯后轧制、旋锻、拉拔的工艺,生产规模普遍较小,经济 效益低,产品质量和精度与国际先进水平有较大差距,缺乏竞争力。 产品生产工艺路线如下图所示: 图1超弹性钛镍形状记忆合金棒材和丝材生产工艺流程图 1.2任务来源:根据国标委发[2018]60号20192049-T-610,由西安思维金属材料有限公 司、有研亿金新材料股份有限公司、有研医疗器械(北京)有限公司承担国家标准《超弹性 钛镍形状记忆合金棒材和丝材》的编制工作,计划完成年限为 2019年。 1.3标准项目申报单位简况: 西安思维金属材料有限公司于 2012年注册成立,主营业务 为钛镍材料和钛及钛合金丝材及深加工产品的研发、 生产和销售,主导产品为钛镍合金棒材、 丝材、板材及航空航天和工程用钛合金棒丝材两大类产品。公司 2013年经认证成为“陕西 省和西安市民营科技企业”、“西安市高新技术企业”, 2014年经认定为“陕西省中小企 业创新研发中心”; 2015年被认定为国家“高新技术企业”; 2018年被认定为西安市 TOP100企业及“陕西省科技型中小企业” ;并已通过 ISO 9001-2008、ISO14001-2004 及 GB/T28001-2011管理体系认证。公司目前在研科研项目 15余项,其中获得国家、省、市政 府支持的项目 10 余项,获得 2017 年陕西省科技进步三等奖, 西安市科技进步一等奖。 公司 2012 年至今起草制定国家标准、有色金属行业标准 10 余项。公司依托西北有色金属研究院 电热张力矫直 [表面磨削 —? 「表面氧化处理 ----------- ? 拉 丝 成品矫直 扒皮,切冒口 棒、丝坯旋锻 性能检测 入库

材料论文Inconel718镍基高温合金分析与研究-午虎特种合金技术部

1.4 Inconel 718 化学成分 该合金的化学成分分为 3 类:标准成分、优质成分、高纯成分, 材料论文】 Inconel 718 镍基高温合金分析与研究 -午虎特种合金技术部 Inconel 718 概述 Inconel 718 合金是以体心四方的 γ " 和面心立方的 γ′相沉淀强化的镍基高温合金,在 -253 ~ 700 ℃温度范围内具有良好的综合性能 ,650 ℃以下的屈服强度居变形高温合金的首 位, 并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能 ,以及良好的加工性能、焊接性能和 长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温 度范围内获得了极为广泛的应用。 该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及 组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程, 就能 获得可满足不同强度级别和使用要求的各种零件。 供应的品种有锻件、 锻棒、轧棒、 冷轧棒、 圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构 件、机匣等零部件在航空上长期使用。 相近牌号 Inconel 718( 美国 ),NC19FeNb ( 法 国) 材料的技术标准 《焊接用高温合金冷拉丝材规范》 HB 6702-1993 《WZ8 系列用 Inconel 718 合金棒材》 GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》 GJB 1952 《航空用高温合金冷轧薄板规范》 GJB 1953 《 航空发动机转动件用高温合金热轧棒材规范》 GJB 2612 《焊接用高温合金冷拉丝材规范》 GJB 3317 《 航空用高温合金热轧板材规范》 GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》 GJB 3020 《航空用高温合金环坯规范》 GJB 3167 《冷镦用高温合金冷拉丝材规范》 GJB 3318 《航空用高温合金冷轧带材规范》 GJB 2611 《 航空用高温合金冷拉棒材规范》 YB/T5247 《焊接用高温合金冷拉丝》 YB/T5249 《冷镦用高温合金冷拉丝》 YB/T5245 《普通承力件用高温合金热轧和锻制棒材》 GB/T14993 《 转动部件用高温合金热轧棒材》 GB/T14994 《高温合金冷拉棒材》 GB/T14995 《高温合金热轧板》 GB/T14996 《高温合金冷轧薄板》 GB/T14997 《高温合金锻制圆饼》 GB/T14998 《高温合金坯件毛坏》 GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》 HB 5199《 航空用高温合金冷轧薄板》 HB 5198 《航空叶片用变形高温合金棒材》 HB 5189 《航空叶片用变形高温合金棒材》 HB 6072 《WZ8 系列用 Inconel 718 合金棒材》 见表 1-1 。优质成分的在标准成分的基础上降碳增 铌,从而减少碳化铌的数量,减少疲劳源 和增 1.1 Inconel 718 材料牌号 Inconel 718 1.2 Inconel 718 1.3 Inconel 718 GJB 2612-1996

镍基焊条选用

镍基焊材的选用 镍基焊丝 镍基焊条图片 [1] ERNiCr-3 用于600,601以及800合金自身的焊接,及不锈钢和碳钢之间的异种钢焊接 ERNiCrFe-7 用于焊接ASTM B163,166,167和168标准内的镍铬铁合金 ERNiCrFe-6 用于钢和镍铬铁合金的焊接,钢及不锈钢和镍基合金的焊接 ERNiCrCoMo-1 用于焊接镍铬钴钼合金及各种高温合金的异种焊接 ERNiCrMo-3 用于镍合金,碳钢,不锈钢和低合金钢的一种焊接,最主要用于625,601,802合金的焊接及9%镍合金的焊接 ERNi-CI 工业纯镍,用于可锻铸铁及灰口铸铁的焊接 ERCuNi 用于70/30,80/20,90/10铜镍合金的焊接 ERNiCu-7 用于焊接镍铜合金B127,163,164和165等 ERNi-1 用于纯镍铸件和锻件的焊接,如:ASTM B160,161,162,163标准内的合金 ERNiFeMn-CI 用于结节铸铁,球墨铸铁,可锻铸铁和灰口铸铁自身的焊接或用于它们与不锈钢,碳钢,低合金钢及各种镍合金的焊接 ERNiCrMo-4 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接 ERNiCrMo-11 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接,还可以用于镍铬钼合金和钢焊接焊缝的堆焊 ERNiCrMo-13 用于焊接低碳镍铬钼合金 镍基焊条 ENiCrMo-3 用于焊接镍铬钼合金,如625,800,801,825和600 ENiCrFe-3 用于镍铬铁合金自身的焊接及与碳钢的焊接 ENiCrFe-2 用于奥氏体钢,铁素体钢及高镍合金之间的异种焊接, 还可用于9%镍合金的焊接 ENiCu-7 主要用于镍铜合金自身及其与钢之间的异种焊接 ENiCrFe-7 用于690(UNS N06690)镍铬铁合金自身的焊接 ENiCrMo-4 用于焊接C-276合金及大多数其它镍基合金 ENiCrCoMo-1 用于焊接镍铬钴钼合金以及各种的高温合金间的异种焊接 ERCuNi 焊接锻造或铸造的70/30,80/20,90/10铜镍合金 ENiCrMo-13 用于焊接低碳镍铬钼合金 ENiCrMo-11 用于焊接低碳镍铬钼合金纯镍焊条A5.11 ENi-1 EL-NiTi3 ≥ 92 - - Ti2.5 - 焊接200 、201 镍合金以及镀镍钢板;- 钢与镍异种材料的焊接;- 钢的表面堆焊。

Inconel600镍基合金焊接方案

1.1Inconel600镍基合金焊接方案 本工程中有Inconel600镍基合金管道36.8m,数量不多,但焊接要求严格。 由于气化装置是把煤转化水煤气等过程,整个系统是在较高温度和压力下操作,工艺介质中含有CO、CO2、H2S、H2、COS、NH2等可燃性、有毒介质,所以对管道材质要求较高。因此,我们特编写了镍合金管道的焊接方案,具体施工时将根据设计说明及技术要求再对本方案进一步的修改和补充。 1.1.1编制依据: 1) 《青海中浩60万吨/年甲醇项目建筑安装工程施工招标文件》; 2)《石油化工鉻镍奥氏体钢、铁镍合金和镍合金管道焊接规程》SH/T3525-199; 3)《现场设备、工业管道焊接工程施工验收规范》GB50236-1998; 4)《石油化工剧毒、可然介质管道工程施工及验收规范》SH3501。 1.1.2材料验收 焊接材料应有出厂质量证明书,其中焊条应符合《镍及镍合金焊条》GB/T13814的规定,焊丝应符合《镍及镍合金焊丝》GB/T15620的规定。 焊接材料应进行验收。验收合格后,应作好标示,入库储存。 焊接材料的储存、保管应符合下列规定: 焊材库必须干燥通风,库房内不得有有害气体和腐蚀介质。 焊接材料应存放在架子上,架子离地面的高度和墙壁的距离均不得小于300mm。 焊接材料应按种类、牌号、批号、规格和入库时间分类放置,并应有标示。 焊材库内应设置温度计和湿度计,保持库内温度不抵于5℃,相对湿度不大于60%。 焊接用的氩气纯度不应低于99.6%。 1.1.3焊前准备 管子切割及坡口加工宜采用机械方法,若采用等离子切割,应清理其加工面。 坡口加工后应进行外观检查,坡口表面不得有裂纹、分层等缺陷。

铜铜合金焊接工艺(2)

铜铜合金焊接工艺(2) 铜及铜合金的焊接工艺(2) 铜具有优良的导电性、导热性、耐腐蚀性、延展性及一定的强度等特性。在电气、电子、化工、食品、动力、交通及航空航天工业中得到广泛应用。在纯铜(紫铜)中添加10余种合金元素,形成固溶体的各类铜合金,如加锌为黄铜;加镍为白铜;加硅为硅青铜;加铝为铝青铜等等。 铜及铜合金可用钎焊、电阻焊等工艺方法实现连接,在工业发达的今天、熔焊已占据主导地位。用焊条电弧焊、TIG焊、MIG焊等工艺方法容易实现铜及铜合金的焊接。 影响铜及铜合金焊接性的工艺难点主要有四项元素:一是高导热率的影响。铜的热导热率比碳钢大7~11倍,当采用的工艺参数与焊接同厚度碳钢差不多时,则铜材很难熔化,填充金属和母材也不能很好地熔合。二是焊接接头的热裂倾向大。焊接时,熔池内铜与其中的杂质形成低熔点共晶物,使铜及铜合金具有明显的热脆性,产生热裂纹。三是产生气孔的缺陷比碳钢严重得多,与要是氢气孔。四是焊接接头性能的变化。晶粒粗化,塑性下降,耐蚀性下降等。 1、紫铜的焊接 焊接紫铜的方法有气焊、手工碳弧焊、手工电弧焊和手工氩弧焊等方法,大型结构也可采用自动焊。 (1)紫铜的气焊 焊接紫铜最常用的是对接接头,搭接接头和丁字接头尽量少采用。气焊可采用两种焊丝,一种是含有脱氧元素的焊丝,如丝201、202;另一种是一般的紫铜丝和母材的切条,采用气剂301作助熔剂。气焊紫铜时应采用中性焰。 (2)紫铜的手工电弧焊 在手工电弧焊时采用紫铜焊条铜107,焊芯为紫铜(T2、T3)。焊前应清理焊接处边缘。焊件厚度大于4mm时,焊前必须预热,预热温度一般在400~500℃左右。用铜107焊条焊接,电源应采用直流反接。 焊接时应当用短弧,焊条不宜作横向摆动。焊条作往复的直线运动,可以改善焊缝的成形。长焊缝应采用逐步退焊法。焊接速度应尽量快些。多层焊时,必须彻底清除层间的熔渣。 焊接应在通风良好的场所进行,以防止铜中毒现象。焊后应用平头锤敲击焊缝,消除应力和改善焊缝质量。 (3)紫铜的手工氩弧焊 在紫铜手工氩弧焊时,采用的焊丝有丝201(特制紫铜焊丝)和丝202,也采用紫铜丝,如T2。 焊前应对工件焊接边缘和焊丝表面的氧化膜、油等脏物都必须清理干净,避免产生气孔、夹渣等缺陷。清理的方法有机械清理法和化学清理法。 对接接头板厚小于3mm时,不开坡口;板厚为3~10mm时,开V型坡口,坡口角度为60o~70o;板厚大于10mm时,开X型坡口,坡口角度为60o~70o;为避免未焊透,一般不留钝边。根据板厚和坡口尺寸,对接接头的装配间隙在0.5~1.5mm范围内选取。 紫铜手工氩弧焊,通常是采用直流正接,即钨极接负极。为了消除气孔,保证焊缝根部可靠的熔合和焊透,必须提高焊接速度,减少氩气消耗量,并预热焊件。板厚小于3mm时,预热温度为150~300℃;板厚大于3mm时,预热温度为350~500℃。预热温度不宜过高,否则使焊接接头的机械性能降低。 还有紫铜的碳弧焊,碳弧焊使用的电极有碳精电极和石墨电极。紫铜碳弧焊所用的焊丝和气焊时一样,也可用母材剪条,可用气焊紫铜的助熔剂,如气剂301等。

镍基合金复合管道焊接工艺的推广和应用

镍基合金复合管道焊接工艺的推广和应用 摘要: 镍基合金复合钢管具有良好的韧性、强度,以及耐各种形式腐蚀的性能,目前广泛应用于高压高含硫气田施工中。在普光气田安全隐患排查工程中,原料气管线全部更换为镍基合金复合管道,为提高功效保证焊接质量,该工程采用了新的焊接工艺(GTAW+P+MIG),依托本工程进行推广和应用。 关键字:镍基复合管;GTAW+P+MIG;背部充氩保护装置;焊接工艺 1、简介 镍基合金复合材料作为一种新型材料[1],其同时兼具低合金钢的韧性和强度,及镍基合金全面的耐腐蚀性能,因而在高压高含硫气田施工中得到广泛的应用。普光气田作为高含硫气田,受条件限制,在建设初期并未采用镍基合金材料进行施工。 在2016年,普光净化厂原料气管线安全隐患治理工程中,设计将原料气管线进行材质升级,将原有管道更换成镍基合金复合钢管(Q245R+N08825),规格为φ711×(32+3)mm、φ610×(28+3)mm、φ508×(24+3)mm。 目前,镍基合金复合管道的焊接方法主要有GTAW(打底)+SMAW(填充、盖面);TIP TIG焊打底、填充、盖面。该工程使用的镍基合金复合管材,因管径和基层厚度较大,采用GTAW(打底)+MIG(填充、盖面)的焊接方法。相比以上两种方法,该方法具有更高的焊接效率和焊接可靠性。经中石化第十建设公司进行焊接工艺评定,焊缝各项性能均满足设计要求。因此,本工程最终确定采用GTAW(打底)+MIG(填充、盖面)的焊接方法进行施工焊接。 2、施工机具准备 (1)焊接设备 氩弧焊:低频脉冲钨极氩弧焊(GTAW+P),设备型号山大奥太WSM-400。该设备能够实现焊接电流在恒流与脉冲之间的自由调节,在选用脉冲电流焊接时,通过调节基值、

镍基高温合金

镍基高温合金 浏览: 文章来源:中国刀具信息网 添加人:阿刀 添加时间:2007-06-28 以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗 氧化、抗燃气腐蚀能力的高温合金。 发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60 年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内, 镍基高温合金的发展趋势

镍基合金的工作温度从 700℃提高到1100℃,平均每年提高10℃左右。镍基高温合 金的发展趋势见图1。 成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的 A 3B 型金属间化合物 '[Ni 3(Al ,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中 Cr

镍基合金INCONEL 625的焊接

镍基合金INCONEL 625的焊接 引言:在石油化工建设工程中,常会遇到镍基合金这种材料,因这种材料具有耐活泼性气体、耐苛性介质、耐还原性酸介质腐蚀的良好性能,又具有强度高、塑性好、可冷热变形和可加 工成型及可焊接的特点,广泛应用于石油化工中。例如:在安徽铜陵六国化工合成氨装置 气化工段中,就有这种材料,它的具体名称为INCONEL 625,用于输送氧气介质。 关键词:镍基合金焊接热裂纹 1 镍基合金INCONEL 625的化学成分及对焊接性能的影响 为了研究INCONEL 625的焊接,我们有必要对这种材料的化学成分进行了解。镍基合金INCONEL 625的化学成分见表1: 在Ni中添加Al、Cr、Fe、Mo、Ti能引起较强的固溶强化,Mo可改善镍基合金的高温强度,Nb 则可以稳定组织,细化晶粒,改善材料性能,Cr在Ni中的固溶范围约为35%~40%,而Mo在Ni中的固溶范围大约为20%。Cr、Mo等合金材料的添加不但增加其耐蚀性,而且对材料的焊接性能没有不利影响。添加Ti、Mn、Nb则可提高材料的抗热裂纹和减少气孔。Si在钢中是脱氧剂和抗氧化剂。而C的含量很小,因Ti和Nb的存在一般不会产生晶间腐蚀。 镍基合金的焊接性对S则较为敏感,S不溶于Ni,在焊接凝固时可形成低熔点的共晶体,易产生热裂纹。P在镍基合金中也会增加裂纹的敏感性。 2 镍基合金INCONEL 625的焊接特点 2.1 焊接热裂纹镍基合金INCONEL 625在焊接时具有较高的热裂纹敏感性。热裂纹分为结晶裂纹、液化裂纹和高温失塑裂纹。结晶裂纹最容易发生在焊道弧坑,形成火口裂纹。结晶裂纹多半沿焊缝中心线纵向开裂。液化裂纹则易出现在紧靠融合线的热影响区中,有的还出现在多层焊的前层焊缝中。高温失塑裂纹既可能出现在热影响区中,也可能发生在焊缝中。各种热裂纹有时是宏观裂纹,或宏观裂纹伴随微观裂纹,也有时仅仅是微观裂纹。热裂纹发生在高温状态,常温下不再扩展。2.2 污染物的影响焊件表面的清洁性是保证镍基合金INCONEL 625焊接质量的一个关键。焊件表面的污染物主要是表面氧化皮和引起脆化的元素。镍基合金INCONEL 625表面氧化皮的熔点比母材高得多,常常可能形成夹渣或细小的不连续的氧化物,S、P、Pb、Sn、Zn、Bi、Sb及As等凡是能和Ni形成低熔点共晶体的元素都是有害元素。这些有害元素大大增加了镍基合金焊接时的热裂纹倾向。这些元素常常存在于预制过程中使用的材料中,例如:油脂、油漆、测温笔和记号笔的墨水常含有这些元素。因此,在焊接前,必须彻底清除,包括坡口外50mm范围内均属于清除范围。 清除方法取决于污染物的种类,对于油脂类物质,可采用蒸汽脱脂,或用丙酮清洗。对于油漆类物质,可采用氯甲烷、碱液、甲醇清洗,也可采用打磨的方法清除。 2.3 焊接热输入的影响采用高热输入会使焊缝接头产生一定程度的退火,并伴随晶粒长大,而使组织发生相变,降低材料的机械性能。此外,高热的输入,还可能使晶相组织产生过度的偏析,碳化物沉淀并析出,从而引起热裂纹,并降低耐蚀性。 在选择焊接方法和焊接工艺时,必须考虑到这一点,因此,在实际操作时采用小电流,窄焊道,多层焊较为合理。 需要指出的是,有些镍基合金焊接加热后对靠近热影响区的焊缝组织会产生不良影响。例如Ni-Mo合金焊接后需通过退火处理来消除这种影响,恢复其耐蚀性。但对于INCONEL 625这种合金来说属于Ni-Cr-Mo合金, 象奥氏体不锈钢一样,镍基合金的显微组织也是奥氏体,固态情况下不发生相变,母材和焊缝金属的晶粒不能通过热处理细化,因此,镍基合金INCONEL 625不需要进行热

镍基合金焊接材料

镍基合金焊接材料 镍及镍合金焊条

产品名称:镍及镍基合金焊材 产品说明: Ni102镍及镍合金焊条型号GB/T:ENi-0 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≤0.03 Mn 0.6-1.1 Si≤1Ni≥92Fe≤0.5 Ti 0.7-1.2 Nb 1.8-2.3 S≤0.015P≤0.015 Ni112镍及镍合金焊条型号GB/T:ENi-0 相当于AWS:ENi-1 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≈0.04Mn≈1.5Ni≥92Fe≈3Ti≈0.5Nb≈1S≤0.015P≤0.015 Ni202镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:钛钙型药皮的Ni70Cu30蒙乃尔合金焊条,含适量的锰、铌,具有较好的抗裂性,焊接时电弧燃烧稳定,飞溅小,脱渣容易,焊接成形美观,采用交流或直流反接,采用直流反接。用途:用于镍铜合金与异种钢的焊接,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15 Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5 S≤0.015 P≤0.02Al≤0.75 Cu余量 Ni207镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:低氢型蒙乃尔合金焊条,具有良好的抗裂性和焊接工艺性能。 用途:用于焊接蒙乃尔合金焊条或异种钢,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5S≤0.015 P≤0.02 Cu余量 Ni307镍及镍合金焊条型号GB/T:ENiCrMo-0

铜及铜合金的焊接性分析

铜及铜合金的焊接性分析 高导电用普通纯铜是铜的质量分数不低于99.7%,杂质含量极少。工业最常用的牌号是T1、T2和T3,外观呈紫红色,故又称为紫铜。其再结晶温度为200~280℃。 T1和T2是阴极重熔铜,含微量氧和杂质,具有高的导电、导热性,良好的耐腐蚀性和加工性能,可以熔焊和钎焊。主要用作导电、导热和耐腐蚀元器件,如电线、电缆、导电螺钉、壳体和各种导管等,航空工业多使用T2。 T3是火法精炼铜,含氧和杂质较多,具有较好的导电、导热、耐腐蚀性和加工性能,可以熔焊和钎焊。主要作为结构材料使用,如制作电器开关、垫圈、铆钉、管嘴和各种导管等;也用于不太重要的导电元件。 (1)焊接缺陷 1)未熔合与未焊透 铜导热性良好,焊接时易产生未熔合和未焊透。因此,焊接铜时应采用能量集中,相对功率较大的热源。 2)焊接变形 铜及铜合金的线膨胀系数(确定铜的线膨胀系数)大,液态凝固时的收缩率比铁大一倍以上,再加上铜的导热性能良好,使得焊接热影响区加宽,在工件厚度较薄或结构刚度较小,又无防止变形的措施时,工件焊后很容易产生较大的变形。(激光焊接时变形量的测量)当焊接接头受到较大的刚性约束时易产生焊接应力。 3)热裂纹 铜在液态时很容易被氧化生成氧化亚铜Cu 2O。Cu 2 O与Cu可生成熔点为

1060℃的共晶,与Pb生成熔点为326℃的Cu+Pb共晶,与Bi生成熔点为270℃的共晶,与CuS生成熔点为1067℃共晶,这些共晶的熔点均低于紫铜1083℃的熔点。在结晶过程中,由于低熔点共晶体分布在枝晶间或晶界处,使铜和铜合金具有明显的热脆性,加上焊接应力的作用,极易产生热裂纹。 工业纯铜中常见的杂质元素有氧、硫、铅、铋、砷、磷等,其中氧的危害性最大。他们主要来自原材料及轧制和焊接的加工过程。其中铅和铋基本上不溶于铜,其含量应分别控制在0.03%和0.005%以内,Cu2O可溶于液态铜,但不溶于固态铜,故重要的结构含氧量应小于0.01%,焊接结构用紫铜含氧量应小 于0.03%,S小于0.0015%。 4)气孔 气孔是铜及铜合金焊接时常见的缺陷,紫铜焊缝中的气孔主要是氢气孔。氢气孔的形成与氢在铜中的溶解度随温度下降突变有关。另一种气孔是由冶金反应生成的水蒸气和二氧化碳等,在焊接凝固时来不及逸出形成的。 5)焊接接头的塑性、导电性、耐蚀性 焊缝及热影响区受热循环后晶粒变粗,各种脆性的低熔点共晶出现在晶界,使塑性和韧性显著下降。为脱氧加入的锰、硅等元素,以及焊接过程中溶入的杂质和合金元素,都会不同程度的降低铜接头的导电性能。耐蚀性能的下降主要是有益元素如锌、镍、铝等的蒸发和烧损造成的。 焊接铜及铜合金时,尽量采用加热面积小、能量密度大、功率大的焊接方法。对于薄板来讲,最好采用钨极氩弧焊(原因),与激光焊接相比的可行性分析。

镍钛合金弓丝机械性能的研究进展

牙科设备镍钛合金弓丝机械性能 1 镍钛合金弓丝及其机械性能 牙科设备镍钛合金弓丝自20 世纪70 年代由Andreasen等[1- 2]引入正畸临床以来,以其能释放出较为持续、柔和的矫治力受到临床正畸医生的推崇。镍钛合金弓丝在正畸临床应用大致经历了以下3 个主要的发展阶段。 第1 代,普通镍钛合金弓丝时代,由Andreasen引入正畸临床。其相变温度(austenite finaltemperature,Af)高于口腔正常温度(37 ℃),在临床使用过程中不会发生相变,不表现出超弹性与形状记忆功能。因其形变释放的力偏大,力值衰减较快且不易弯曲成形,其临床使用受到限制。 第2 代,超弹性镍钛合金弓丝时代,诞生于20 世纪80 年。超弹性镍钛合金弓丝在应力作用下会发生相变且具有超弹性(又称拟弹性),其释放的力值较第1 代更柔和,也更持久。因其相变温度Af 远低于人体温度,故在口腔正常温度下此类镍钛弓丝不会发生相变,不能在临床应用中表达形状记忆功能。第2 代超弹性镍钛合金弓丝目前仍在临床广泛使用。 第3 代,诞生于20 世纪90 年代,是具有真正形状记忆功能的镍钛弓丝,又称作第3 代温控型镍钛合金弓丝和热激活型镍钛合金。该类弓丝刚性低、回弹性好,其相变温度Af 在35 ℃左右,可在正常口腔温度内发生相变,从而表现出超弹性和临床所需要的形状记忆功能。 2 温度对牙科设备镍钛合金弓丝机械性能的影响 人的口腔温度受体温、外界温度、口腔呼吸、摄入食物、吸烟、开闭口等因素的影响[3],并非恒定不变。有学者发现,口腔温度的波动对正畸弓丝,尤其是具有温度敏感性的镍钛丝的机械性能会产生影响。Iijima等[4]在23、37、60 ℃的恒定温度条件下检测超弹性镍钛合金方丝与温控型镍钛合金方丝的机械性能后发现,根据克劳修斯- 克拉佩隆(Clausius- Clapayron)模式,随温度的升高,镍钛合金弓丝诱导马氏体相变所需的临界应力增大;在温度由37 ℃上升至60 ℃再降回至37 ℃状态下时,以上镍钛合金弓丝在最后37 ℃的力值较最初37 ℃的力值大0.530~1.039 N。他们认为,这与加热或降温时镍钛合金相变过程中发生位错现象所导致的弓丝相变温度改变有关。Mullins等[5]在研究温度变化状态下温控型镍钛合金方丝机械性能时发现:在5 ℃加载、37 ℃卸载复合检测时,弓丝表现出在5 ℃单独加、卸载时的加载行为和在37 ℃单独加、卸载时的卸载行为,但所有测得的力值均小于5 ℃和37 ℃单独检测所获的试验结果。 镍钛合金弓丝能够表现出超弹性,是因为相变过程中产生了应力诱导的马氏体。这种马氏体相变与温度和加载应力密切相关,只有在弓丝相变温度与马氏体能存在的最高温度这一温度区间内,加载应力与弓丝才能产生应力诱导的马氏体,弓丝才能表现出超弹性。因此,镍钛合金弓丝的工作温度与其Af 之间的差值会影响此类弓丝力学性能。Meling等[6]的研究证实,相对于Af 为27 ℃和40 ℃的Cu- Ni- Ti 合金而言,Af 为35 ℃的Cu- Ni- Ti 合金弓丝具有更好的温度敏感性。 ——地狗齿科材料设备网

镍基高温合金

镍基高温合金 飞行器工程学院110622班 11062228 袁同豪 摘要:定义了高温镍合金,诉说了其发展过程、成份和性能和生产工艺,以及阐述了镍基高温合金的研究、制造与应用 关键字:镍基高温合金抗氧化塑性组织稳定性固溶 镍基高温合金是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金。具有良好的耐高温腐蚀和抗氧化性能、优良的冷热加工和焊接工艺性能,在700℃以下具有满意的热强性和高的塑性。合金可以通过冷加工得到强化,也可以用电阻焊、溶焊或钎焊连接,可供应冷轧薄板、热轧厚板、带材、丝材、棒材、圆饼、环坯、环形锻件等,适宜制作在1100℃以下承受低载荷的抗氧化零件。 镍基高温合金是30年代后期开始研制的。英国于1941年首先生产出镍基合金Ni-20Cr-0.4Ti;为了提高蠕变强度又添加铝,研制出Ni-20Cr-2.5Ti-1.3Al。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基高温合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。 镍基高温合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。镍基高温合金按强化方式有固溶强化型合金和沉淀强化型合金。固溶强化型合金:具有一定的高温强度,良好的抗氧化,抗热腐蚀,抗冷、热疲劳性能,并有良好的塑性和焊接性等,可用于制造工作温度较高、承受应力不大的部件,如燃气轮机的燃烧室;沉淀强化型合金:通常综合采用固溶强化、沉淀强化和晶界强化三种强化方式,因而具有良好的高温蠕变强度、抗疲劳性能、抗氧化和抗热腐

铁镍基高温合金的焊接性及焊接工艺

铁镍基高温合金的焊接性及焊接工艺 一、焊接性 对于固熔强化的高温合金,主要问题是焊缝结晶裂纹和过热区的晶粒长大,焊接接头的“等强度”等。对于沉淀强化的高温合金,除了焊缝的结晶裂纹外,还有液化裂纹和再热裂纹;焊接接头的“等强度”问题也很突出,焊缝和热影响区的强度、塑性往往达不到母材金属的水平。 1、焊缝的热裂纹 铁镍基合金都具有较大的焊接热裂纹倾向,特别是沉淀强化的合金,溶解度有限的元素Ni和Fe,易在晶界处形成低熔点物质,如Ni—Si,Fe—Nb,Ni—B等;同时对某些杂质非常敏感,如:S、P、Pb、Bi、Sn、Ca等;这些高温合金易形成方向性强的单项奥氏体柱状晶,促使杂质偏析;这些高温合金的线膨胀系数很大,易形成较大的焊接应力。 实践证明,沉淀强化的合金比固熔强化合金具有更大的热裂倾向。 影响焊缝产生热裂纹的因素有: ①合金系统特性的影响。 凝固温度区间越大,且固相线低的合金,结晶裂纹倾向越大。如:N—155(30Cr17Ni15Co12Mo3Nb),而S—590(40Cr20Ni20Co20Mo4W4Nb4)裂纹倾向就较小。 ②焊缝中合金元素的影响。 采用不同的焊材,焊缝的热裂倾向有很大的差别。如铁基合金Cr15Ni40W5Mo2Al2Ti3在TIG焊时,选用与母材合金同质的焊丝,即焊缝含有γ/形成元素,结果焊缝产生结晶裂纹;而选用固熔强化型HGH113,Ni—Cr—Mo系焊丝,含有较多的Mo,Mo在高Ni合金中具有很高的溶解度,不会形成易熔物质,故也不会引起热裂纹。含Mo量越高,焊缝的热裂倾向越小;同时Mo还能提高固熔体的扩散激活能,而阻止形成正亚晶界裂纹(多元化裂纹)。 B、Si、Mn含量降低,Ni、Ti成分增加,裂纹减少。 ③变质剂的影响。 用变质剂细化焊缝一次结晶组织,能明显减少热裂倾向。 ④杂质元素的影响。 有害杂质元素,S、P、B等,常常是焊缝产生热裂纹的原因。 ⑤焊接工艺的影响。 焊接接头具有较大的拘束应力,促使焊缝热裂倾向大。采用脉冲氩弧焊或适当减少焊缝电流,以减少熔池的过热,对于提高焊缝的抗热裂性是有益的。 2、热影响区的液化裂纹 低熔点共晶物形成的晶间液膜引起液化裂纹。 A—286的晶界处有Ti、Si、Ni、Mo等元素的偏析,形成低熔点共晶物。 液膜还可以在碳化物相(MC或M6C)的周围形成,如Inconel718,铸造镍基合金B—1900和Inconel713C。 高温合金的晶粒粗细,对裂纹的产生也有很大的影响。焊接时常常在粗晶部位产生液化裂纹。因此,在焊接工艺上,应尽可能采用小焊接线能量,来避免热影响区晶粒的粗化。 对焊接热影响区液化裂纹的控制,关键在于合金本身的材质,去除合金中的杂质,则有利于防止液化裂纹。 3、再热裂纹 γ/形成元素Al、Ti的含量越高,再热裂纹倾向越大。 对于γ/强化合金消除应力退火,加热必须是快速而且均匀,加热曲线要避开等温时效的温度、时间曲线的影响区。 对于固熔态或退火态的母材合金进行焊接时,有利于减少再热裂纹的产生。 焊接工艺上应尽可能选用小焊接线能量,小焊道的多层焊,合理设计接头,以降低焊接结构的拘束度。

相关主题
文本预览
相关文档 最新文档