当前位置:文档之家› 基本不等式导学案

基本不等式导学案

基本不等式导学案
基本不等式导学案

基本不等式及其应用

学习目标:1、理解基本不等式的推导过程

2、掌握基本不等式成立的条件,并会应用基本不等式求最值

一、新知探究

(一)基本不等式

如图,是在北京召开的第24届国际数学家大会的会标。会标是根据我国古代数

学家赵爽的弦图设计而成。

设小直角三角形的两条直角边为b a ,,

则正方形的边长为____________

正方形的面积为_____________

四个直角三角形的面积和为_______________

如图所示:三角形正方形S S ?>4?>

当直角三角形变成等腰直角三角形时,b a ___,正方形缩成一个点 三角形正方形S S ?=4?=

由此可知:一般的,对于任意的实数b a ,,我们有(重要不等式),当且仅当 时,等号成立.

特别的,如果0,0>>b a ,我们用b a ,分别代替b a ,,可得 。 我们通常把上式写成()0,02

>>+≤b a b a ab (基本不等式) 基本不等式的证明:

证明过程: 要证ab b a ≥+2

只需证 ≥①移项

只需证

≥② 同时平方 要证②只需证 0≥③ 右边的项移到左侧

要证③只需证 ()0______________2≥+④

显然④成立.当且仅当b a =时,等号成立.b a ,

概念扩展:若两个数b a ,, 且0,0>>b a 2

b a +是b a ,的算术平均数,ab 是叫做b a ,的的几何平均数。 练习:1、若0>a ,则_______1≥+a

a 2、2=+

b a 若,则_____≤ab 基本不等式的两个常用变形:

(1)≥+b a _______ (2)≤ab _______

(二)基本不等式的应用

例1:(1)用篱笆围一个面积为2100m 的矩形菜园,问这个矩形的长和宽各是多少所用篱笆最短?最短的篱笆是多少?

(2)一段长为m 36的篱笆围成一个矩形菜园,问这个矩形的长和宽各是多少时,菜园面积最大,最大面积是多少?

如果ab 有定值p ,那么b a +有最____值_____当且仅当_____时成立(积定和最___)

如果b a +有定值s ,那么ab 有最____值_____当且仅当_____时成立(和定积最___)

基本不等式求最值的条件:

例2:某工厂要建造一个长方体无盖贮水池,其容积为24800

m ,深为m 3,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少?

1、配凑法

例3:已知2>x ,求函数()2

1-+=x x x f 的最小值

变式训练1:若210<

2、常数代换法

例4:已知118,0,0=+>>y x y x ,求y x 2+的最小值。

变式训练2:已知2,0,0=+>>b a b a ,则b

a 41+的最小值是多少?

课堂检测

1、判断对错

(1)函数()x

x x f 1+=的最小值2 ( ) (2)函数())2

0(tan 4tan π<<+=x x x x f ( ) (3)函数())0(sin 4sin π<<+=x x

x x f 的最小值4 ( ) 2、已知0,0>>y x ,且082=-+xy y x ,求y x +的最小值.

3、设23

0<

4、设3,,=+∈b a R b a ,则b a 22+的最小值是_______

5、求函数()04

32>--=x x x y 的最大值

6、求函数()01

23

2>+-=x x x x y 的最大值

基本不等式(导学案)

基本不等式(导学案) ab,3.4 ab,2 1、学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等 号“?”取等号的条件是:当且仅当这两个数相等 a,b2、理解利用基本不等式ab 证明不等式的方法 ,2 ab,3、进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决ab,2 一些简单的实际问题 ab,应用数形结合的思想理解不等式并从不同角度探索不等式的证明过程;ab,2 理解“当且仅当a=b时取等号”的数学内涵 1、回顾:二元一次不等式(组)与简单的线形规划问题。 2、如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案 中找出一些相等关系或不等关系吗? 1、重要不等式: 22如果a,b,R,那么a,b,2ab(当且仅当a,b时取","号) 1

a,b2、基本不等式:如果a,b是正数,那么 ,ab(当且仅当a,b时取","号).2 a,b3、我们称ab为a,b的算术平均数,称的几何平均数为a,b2 a,b224、a,b,2ab和,ab成立的条件是不同的:前者只要求a,b都是实数,2 而后者要求a,b都是正数。 1、已知x、y都是正数,求证: 223333yx(1)?2; (2)(+)(+)(+)?8. xyxyxyxy,xy 92、求(x>5)的最小值. fxx()4,,x,5 283、若x>0,y>0,且,求xy的最小值. ,,1xy 11,4、设a、b?R且a+b=1,求+的最小值 1,a1,b 1、两正数a、b的算术平均数与几何平均数成立的条件。?理解“当且仅当a=b 时取等 号”的数学内涵。 2、当两个正数之积为定值时,其和有最小值 当两个正数之和为定值时,其积有最大值 3、利用基本不等式求最值时必须满足三个条件:一正二定三相等. 4、用均值不等式解决此类问题时,应按如下步骤进行: (1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 2

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

4-5含绝对值不等式导学案

选修4-5含绝对值不等式导学案 预习案 在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解。在此基础上,本节讨论含有绝对值的不等式。 关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。下面分别就这两类问题展开探讨。 1、解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式。主要的依据是绝对值的意义. 请同学们回忆一下绝对值的意义。 在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。即?? ? ??<-=>=0000x x x x x x ,如果,如果,如果 。 2、含有绝对值的不等式有两种基本的类型。 第一种类型。 设a 为正数。根据绝对值的意义,不等式a x <的解集是 }|{a x a x <<-,它的几何意义就是数轴上到原点的距离小于a 的点的集合是开区间(-a ,a ) ,如图所示。 图1-1 a - a 如果给定的不等式符合上述形式,就可以直接利用它的结果来解。 第二种类型。 设a 为正数。根据绝对值的意义,不等式a x >的解集是 {| x a x >或a x -<} 它的几何意义就是数轴上到原点的距离大于a 的点的集合是两个开区间),(),,(∞--∞a a 的并集。 如图1-2所示。 a - a 图1-2 同样,如果给定的不等式符合这种类型,就可以直接利用它的结果来解。 探究案 (一)绝对值的意义 (1)绝对值定义 (2)积、商的绝对值与绝对值积、商的关系: |ab|=|a||b|;

. (二)绝对值不等式的基本性质 定理1:|a|-|b|≤|a +b|≤|a|+|b| 推论1: 321321a a a a a a ++≤++ 此性质可推广为n n a a a a a a +++≤+++ (2121) 推论2:|a|-|b|≤|a -b|≤|a|+|b| 定理2:如果a ,b ,c 是实数,那么|a -c|≤|a -b|+|b -c|,当且仅当(a -b)(b -c)≥0时,等号成立. 二、典型例题: 例1、解不等式213+<-x x 。 例2、解不等式x x ->-213 例3、证明 b a b a b a +≤-≤-。 例4、证明 c b c a b a -+-≤-

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

不等式导学案

七年级数学)第九章不等式与不等式组(一)—不等式的性质 学习目标: 明确什么是不等式,不等式的解及解集,能列出简单的不等式; 理解不等式的性质,能用不等式的性质解简单的不等式。 学习过程: 环节(一)复习引入: 1、比较下列各数的大小,用“<”或“>”填空: ① 3______-6 ②-1______0 ③______ 2、用式子表示: ① x的3倍大于5:② y与2的差小于-1: ③ x不大于1:④a不等于0; 小结:像上面这样,用不等号(<、>、≤、≥、≠等)表示不相等关系的式子,叫做不等式。 3、不等式的解:使不等式成立的未知数的值,叫做不等式的解。 例如:下列数值中: -4,,0, 4.5,不等式的解有哪些? 解:当-4时,=,所以-4是不等式的解; 当0时,= ,所以0是不等式的解; 当 4.5时,= ,所以4是不等式的解; 所以,不等式的解有。 环节(二)探索不等式的性质: 1、试一试:(通过计算比较结果,在横线上用“<”、“>”填空) 第一部分 3 -2 4 7 两边同时加上一个数 3+1 -2+1 4+(-1) 7+(-1) 3+(-3) -2+(-3) 4+3 7+3 两边同时减去一个数 3-2 -2-2 4-(-2) 7-(-2) 3-(-4) -2-(-4) 4-3 7-3 观察以上各式,我们发现: 不等式两边都,不等号方向; 第二部分 9 6 -4 8 两边同时乘一个正数

两边同时除以一个正数 9÷3 6÷3 ÷÷ 9÷2 6÷2 ÷4 ÷4 观察以上各式,我们发现: 不等式两边都,不等号方向; 第三部分 9 6 -4 8 两边同时乘一个负数 两边同时除以一个负数 9÷(-3) 6÷(-3)÷(-)÷(-) 9÷(-2) 6÷(-2)÷(-4)÷(-4) 观察以上各式,我们发现: 不等式两边都,不等号方向;2、想一想:你能用式子表示不等式的三条性质吗? 不等式的性质1:如果,那么 不等式的性质2:如果,,那么(或) 不等式的性质3:如果,,那么(或) 3、思考: ①如果不等式两边同时乘以0,不等式会有什么变化? ②不等式两边能同时除以0吗,为什么? 环节(三)运用不等式的基本性质解不等式 例题:利用不等式的性质解下列不等式 ① 解:根据不等式的性质,不等式两边都,不等号方向 得: ② 解:根据不等式的性质,不等式两边都,不等号方向 得: 总结:解不等式就是将不等式化成或等形式。

2019届一轮复习全国通用版 第69讲绝对值不等式 学案

第十二章 不等式选讲 第69讲 绝对值不等式 1.绝对值三角不等式 定理1:如果a ,b 是实数,那么||a +b ≤||a +||b ,当且仅当__ab ≥0__时,等号成立. 定理2:如果a ,b ,c 是实数,那么||a -b ≤||a -c +||c -b ,当且仅当__(a -c )(c -b )≥0__时,等号成立. 2.含绝对值不等式的解法 (1)含绝对值的不等式||x <a ,||x >a 的解集 (2)≤c (c >0)和≥c (c >0)型不等式的解法 ①||ax +b ≤c ?-c ≤ax +b ≤c ; ②||ax +b ≥c ?ax +b ≥c 或ax +b ≤-c .

1.思维辨析(在括内打“√”或打“×”). (1)对||a +b ≥||a -||b 当且仅当a >b >0时等号成立.( × ) (2)对||a -||b ≤||a -b 当且仅当||a >||b 时等号成立.( × ) (3)对||a -b ≤||a +||b 当且仅当ab ≤0时等号成立.( √ ) (4)||ax +b ≤c 的解等价于-c ≤ax +b ≤c .( √ ) (5)不等式||x -1+||x +2<2的解集为?.( √ ) 2.设ab <0,a ,b ∈R ,那么正确的是( C ) A .||a +b >||a -b B .||a -b <||a +||b C .||a +b <||a -b D .||a -b <||||a -||b 解析 由ab <0,得a ,b 异号, 易知|a +b |<|a -b |,|a -b |=|a |+|b |,|a -b |>||a |-|b ||, ∴C 项成立,A ,B ,D 项均不成立. 3.不等式1<||x +1<3的解集为( D ) A .(0,2) B .(-2,0)∪(2,4) C .(-4,0) D .(-4,-2)∪(0,2) 解析 1<|x +1|<3?1<x +1<3或-3<x +1<-1?0<x <2或-4<x <-2. 4.不等式|2x -1|<2-3x 的解集是( C ) A .? ?? ? ??x |x <12 B .? ??? ??x |1 2≤x <35 C .? ?? ???x |x <35 D .? ?? ? ??x |x >35 解析 |2x -1|<2-3x ?3x -2<2x -1<2-3x ????? ? 3x -2<2x -1,2x -1<2-3x ?? ???? x <1,x < 3 5 ?x <3 5 . 5.若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为__(5,7)__. 解析 由|3x -b |<4得-4<3x -b <4,即-4+b 3<x <4+b 3, ∵不等式|3x -b |<4的解集中的整数有且仅有1,2,3, 则??? 0≤-4+b 3<1, 3<4+b 3≤4 ?? ???? 4≤b <7, 5<b ≤8,∴5<b <7. 一 绝对值不等式的解法

2021学年高中数学第一章预备知识3不等式1.3.2基本不等式导学案北师大版必修一.doc

第一章 预备知识 第三章 不等式 3.2 基本不等式 导学案 1.通过两个探究实例,引导学生基本不等式,了解基本不等式的几何背景,体会数形结合的思想; 2. 借助基本不等式解决简单的最值问题, 1. 两个非负实数的算术平均值________它们的几何平均值 2. 若a≥0,b≥0,取,x a y b ==,则:,2 a b ab +≥当且仅当a=b 时,等号成立 这个不等式称为__________ 3. 当x,y 均为正数时,下面的命题均成立: (1) 若x+y = s (s 为定值)则当且仅当x=y 时,xy 取得 最大值________ (2) 若xy=p(p 为定值)则当且仅当x=y 时,x+y 取得最小值_____ 1.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图所示的图形,在AB 上取一点C ,使得AC =a ,BC =b ,过点C 作CD ⊥AB 交圆周于D ,连接OD .作CE ⊥OD 交OD 于E .由CD ≥DE 可以证明的不等式为( ) A .≥(a >0,b >0) B .(a >0,b >0) C .≥(a >0,b >0) D .a 2+b 2 ≥2ab (a >0,b >0)

2.若a,b>0,ab+2a+b=4,则a+b的最小值为() A.2 B.﹣1 C.2﹣2 D.2﹣3 3.若矩形ABCD的周长1为定值,则该矩形的面积的最大值是() A.B.C.D. 4.已知m>0,xy>0,当x+y=2时,不等式≥4恒成立,则m的取值范围是()A.[,+∞)B.[2,+∞)C.(0,] D.(,2] 1.下列命题中正确的是() A.若a,b∈R,则 B.若x>0,则 C.若x<0,则 D.若x∈R,则 2.下列函数中,最小值是2的是() A.y=B.y= C.y=7x+7﹣x D.y=x2(x>0) 3.函数的最小值为() A.6 B.7 C.8 D.9 4.已知实数a,b∈R+,且a+b=2,则的最小值为() A.9 B.C.5 D.4 5.已知x>0,则y=x+的最小值为() A.4 B.16 C.8 D.10 6.若正数a,b满足=,则当ab取最小值时,b的值为()A.B.C.D.

高中基本不等式及其延伸不等式总结及其证明

1、22 2a b ab +≥。 证明:()2 22220 202a b a b ab a b ab -≥∴+-≥∴+≥ 基本变形: a b +≥ 2 a b +≤,用来去根号很好 2a ≤ 22222a b a b ++??≥ ??? )a b ≥ +,用来去根号很好。 2a b b a +≥ 2 2b a b a +≥ ()22 a b ab +≤ 推论1: 222a b c ab bc ac ++≥++ 证明: ()()()() 2222222220 22()a b a c b c a b c ab ac bc a b c ab bc ac -+-+-≥∴++≥++∴++≥++ 推论的变形: ()22223 a b c a b c ++++≥ 推论2:

a b c ++≥推论的变形: 3 a b c ++≥3 3a b c abc ++??≤ ??? ,当遇到三个因子相乘时用很好。比如 ()()()()3827 a b c a c b c a b +++++≤ 推论3: 123n a a a a +++≥ 柯西不等式: ()()()2 22222222123123112233n n n n a a a a b b b b a b a b a b a b ++++++++≥++++ 证明:构造函数 ()()()()()2222112233n n f x a x b a x b a x b a x b =-+-+-++- 即 ()()()()2222222221231122331232n n n n f x a a a a x a b a b a b a b x b b b b =++++-+++++++++ 易知0?≤ 所以()()()22212n a a + + 推论: ()()()2 222212121122a a b b a b a b ++≥+ 调和平均数和平方平均数: 0,22a b ze ab a b a b a b <≤+≤≤≤≤≤+

不等式导学案

湘教版八年级数学科导学案 设计:周浩雄时间:2014年10月内容§4.1不等式 学习目标【知识技能】 1. 根据具体问题中的不等关系了解不等式的意义.2.从实际问题中抽象出不等式. 【数学思考】 由具体实例建立不等式,体会不等式也是刻画现实世界的有效数学模型. 【解决问题】 分析具体问题中数量之间的大小关系,得到不等式数学模型. 【情感态度】 在运用不等式知识解决困难的过程中获得成功体验,树立学好数学自信心. 重点不等式的概念,能够从实际问题中抽象出不等式 难点从实际问题中抽象出不等式. 学习过程 学生活动学习笔记 一、引 小明的爸爸开车带着小明前往观看开幕式, 在18:00时距离开幕式 场地120km,预计20:00到达开幕式场地, 设平均车速是xkm/h, 则可列 方程或 . 若想在 20:00之前到达开幕式场地,则平均车速xkm/h,应满足什么条件? 解: 或 . 二、探 1、阅读教材,掌握下列知识 不等号: (1) “<”读作:“ .” (2) “>”读作:“ .” (3) “≤”读作:“.”,也可读作: “ .” (4) “≥”读作:“.”,也可读作: “ .” (5) “≠”读作:“ .” 不等式 定义:用连接而成的式子,叫做不等式.

2、典例精析 例1、用不等式表示下列数量关系: (1)x的5倍不大于-7; . (2)a与b的和的一半大于-1; . (3)x为非负数. . 例2、9月26日下午,在仁川亚运会女子十米移动靶的个人决赛上,中国选手李雪艳继广州亚运会之后,蝉联该项目冠军.已知十米移动靶每一枪满分为10.9环,李雪艳在前十枪中最低为9.2环,求李雪艳前十枪总环数x 的范围. 解: . 例3、小欢用81根火柴棍依下面的规律摆正方形,请用不等式表示小欢可摆出正方形的个数n与火柴根数81之间的关系. 解: . 三、结:写出这节课你的收获和体会. 四、用: 1、判断下列式子哪些是不等式? (1) 3> 2 (2) x< 2x+1 (3) 3x2+2x (4) x=2x-5 (5) a+b≠c (6)5≤ 2x+1 2、用不等式表示下列数量关系: (1)a是正数; (2)a的2倍与b的差大于或等于4; (3)长、宽分别为x cm, y cm的长方形的面积小于边长为a cm的正方形的 面积.

绝对值不等式的解法 教案 (1)

绝对值不等式的解法教案 教学目标 (1)掌握与()型的绝对值不等式的解法. (2)掌握与()型的绝对值不等式的解法. (3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力。 (4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力。 教学重点:型的不等式的解法; 教学难点:利用绝对值的意义分析、解决问题. 教学过程设计 教师活动 一、导入新课 【提问】正数的绝对值什么负数的绝对值是什么零的绝对值是什么举例说明【概括】 【不等式的代数意义及几何意义】 学生活动 口答:代数意义 几何意义 |a|的意义是a在数轴上的相应点到原点的距离。

设计意图 绝对值的概念是解与()型绝对值不等式的概念,为解这种类型的绝对值不等式做好铺垫. 【不等式的性质】: ①若a>b ;c∈R 则 a+c>b+c ②若a>b ;c>0 则 ac>bc ③若a>b ;c<0 则 ac

不等式的解集表示为 【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗这个绝对值不等式的解集怎样表示 【质疑】的解集有几部分为什么也是它的解集 【讲述】这个集合中的数都比-2小,从数轴上可以明显看出它们的绝对值都比2大,所以是解集的一部分.在解时容易出现只求出这部分解集,而丢掉这部解集的错误. 画出数轴思考答案 不等式的解集为或表示为,或 2、自主演练:解下列不等式 1) | x | < 4 | x | < -1 | x | ≤ 0 2) | x | > 4 | x | > -3 | x | >0 3、抽象概括绝对值不等式的解集答案:{ x | -4 < x < 4 } Ф 答案:{ x | x>4,或x<-4 } R

(浙江专用)2021版新高考数学一轮复习第七章不等式1第1讲不等关系与不等式教学案

第七章不等式 知识点 最新考纲 不等关系与不等式了解不等关系,掌握不等式的基本性质. 一元二次不等式及其解法了解一元二次函数、一元二次方程、一元二次不等式之间的联系,会解一元二次不等式. 二元一次不等式(组)与简单的线性 规划问题了解二元一次不等式的几何意义,掌握平面区域与二元一次不等式组之间的关系,并会求解简单的二元线性规划问题. 基本不等式 ab≤a+b 2 (a,b>0) 掌握基本不等式ab≤ a+b 2 (a,b>0)及其应用. 绝对值不等式 会解|x+b|≤c,|x+b|≥c,|x-a|+|x-b|≥c,|x-a|+|x-b|≤c型不等式. 了解不等式||a|-|b||≤|a+b|≤|a|+|b|. 1.实数大小顺序与运算性质之间的关系 a-b>0?a>b;a-b=0?a=b;a-b<0?ab,ab>0?1 a < 1 b .

②a <0b >0,0b d . ④0b >0,m >0,则 ①b a b -m a -m (b -m >0). ②a b > a +m b +m ;a b 0). [疑误辨析] 判断正误(正确的打“√”,错误的打“×”) (1)两个实数a ,b 之间,有且只有a >b ,a =b ,a 1,则a >b .( ) (3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( ) (4)一个非零实数越大,则其倒数就越小.( ) (5)同向不等式具有可加性和可乘性.( ) (6)两个数的比值大于1,则分子不一定大于分母.( ) 答案:(1)√ (2)× (3)× (4)× (5)× (6)√ [教材衍化] 1.(必修5P74练习T3改编)若a ,b 都是实数,则“a -b >0”是“a 2 -b 2 >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析:选A.a -b >0?a >b ?a >b ?a 2 >b 2 , 但由a 2 -b 2 >0?/ a -b >0. 2.(必修5P75A 组T2改编) 1 5-2______1 6-5(填“>”“<”或“=”). 解析:分母有理化有 1 5-2=5+2,1 6-5 =6+5,显然5+2<6+5,所以

证明基本不等式的方法

2.2 证明不等式的基本方法——分析法与综合法 ●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点. 2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤. ●教学重点:综合法与分析法证明不等式的方法与步骤 ●教学难点:综合法与分析法证明不等式基本原理的理 ●教学过程: 一、复习引入: 1、复习比较法证明不等式的依据和步骤? 2、今天学习证明不等式的基本方法——分析法与综合法 二、讲授新课: 1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法综合法又叫顺推证法或由因导果法。 用综合法证明不等式的逻辑关系是:例1、已知a,b,c是不全相等的正数,求证: . 分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明) 解:∵a>0,b2+c2≥2bc∴由不等式的性质定理4,得a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc,②c(a2+b2)≥2abc.③ 因为a,b,c为不全相等的正数,所以以上三式不能全取“=”号,从而①,②,③三式也不能全取“=”号. 由不等式的性质定理3的推论,①,②,③三式相加得:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc. 点评:(1)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。 (2)在利用综合法进行不等式证明时,要善于直接运用或创设条件运用基本不等式,其中拆项、并项、分解、组合是变形的重要技巧. 变式训练:已知a,b,c是不全相等的正数,求证:例2、已知且,求证:分析:观察要证明的结论,左边是个因式的乘积,右边是2的次方,再结合,发现如果能将左边转化为的乘积,问题就能得到解决。 2、分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法这是一种执果索因的思考和证明方法。 ①用分析法证明不等式的逻辑关系是:②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有……这只需要证明命题B2为真,从而又有……这只需要证明命题A为真,而已知A为真,故B必真。 例3.求证:分析:观察结构特点,可以利用分析法。 点评:①分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通! ②证明某些含有根式的不等式时,用综合法比较困难,常用分析法. ③在证明不等式时,分析法占有重要的位置.有时我们常用分析法探索证明的途径,然后用综

不等式学案

初一升二数学不等式学案 第一课时不等式及其解集 [教学目标] 1.了解不等式概念,理解不等式的解集,能正确表示不等式的解集 2.培养学生的数感,渗透数形结合的思想. [教学重点与难点] 重点:不等式的解集的表示. 难点:不等式解集的确定. [教学设计] 一.【自主预习】 某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式? 依题意得4x>6(x-10) 1.不等式:用“>”或“<”号表示大小关系的式子,叫不等式. 解析:(1)用≠表示不等关系的式子也叫不等式 (2)不等式中含有未知数,也可以不含有未知数; (3)注意不大于和不小于的说法 2.含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式. 例1 用不等式表示 (1)a与1的和是正数; (2)y的2倍与1的和大于3; (3)x的一半与x的2倍的和是非正数; (4)c与4的和的30%不大于-2; (5)x除以2的商加上2,至多为5; (6)a与b两数的和的平方不可能大于3. 二.【合作解疑】 1、不等式的解:能使不等式成立的未知数的值,叫不等式的解. 解析:不等式的解可能不止一个. 例2 下列各数中,哪些是不等式x+1<3的解?哪些不是? -3,-1,0,1,1.5,2.5,3,3.5 解:略. 练习:1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3<5 的解?再找出另外的小于0的解两个. 2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+5<7和2x+2>0的有哪几个数? 2、不等式的解集:一个含有未知数的不等式的所有解组成这个不等式的解集. 例3 下列说法中正确的是( ) A.x=3是不是不等式2x>1的解 B.x=3是不是不等式2x>1的唯一解;

2019-2020学年高中数学 1.2基本不等式导学案新人教版选修4-5.doc

2019-2020学年高中数学 1.2基本不等式导学案新人教版选修4-5 【学习目标】1.了解两个正数的算术平均数和几何平均数的定义; 2.使学生理解并掌握基本不等式; 3.利用基本不等式及其变形证明不等式或求最值. 【重点难点】均值不等式的应用,“等号”是否取到的问题. 一、自主学习 要点1:定理1:如果R b a ∈,,那么 ,当且仅当 时,等号成立.要点2:(基本不等式)如果0,>b a ,那么ab b a ≥+2 ,当且仅当 时,等号成立. 注:应用定理2的条件:一正、二定、三相等. 要点3:如果b a ,都是正数,我们就称 为b a ,的算术平均, 为b a ,的几何平均.于是,基本不等式可以表述为: 要点4.已知b a ab b a ++,,22中一个为定值,其他两个的最值的求法. 二、合作,探究,展示,点评 题型一.利用基本不等式证明不等式: 例1.2log log ≥+a b b a 成立的必要条件是( ) A.1,1>>b a , B.10,0<<>b a C.()()011>--b a , D.以上都不正确 思考题1:已知+∈R c b a ,,,且1=++c b a .求证:8111111≥??? ??-??? ??-??? ??-c b a . 题型二.利用基本不等式求函数最值: 例2.设0>x ,则函数x x y 133- -=的最大值是 . 思考题2:已知2lg lg =+y x ,则 y x 11+的最小值为 .

题型三.基本不等式的实际应用: 例3.某公司租地建仓库,每月土地占用费1y 与仓库到车站的距离成反比,而每月库存货物的运费2y 与仓库到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用1y 和2y 分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站多远处? 思考题3:在对角线有相同长度的所有矩形中,怎样的矩形周长最长,怎样的矩形面积最大? 【课堂小结与反思】:

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

2017不等关系与不等式导学案.

不等关系与不等式 导学案 命制学校:沙市五中命制教师:王旭俐 学习目标: 1了解不等式的实际应用及不等式的重要地位和作用; 2掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小. 学习重点:比较两实数大小. 学习难点:差值比较法:作差→变形→判断差值的符号 学法指导: 人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的研究不等关系,反映在数学上就是证明不等式与解不等式实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章容的基础,也是证明不等式与解不等式的主要依据因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系 知识: 在日常生活中,我们经常看到下列标志: 问题1:你知道各图中的标志有何作用?其含义是什么吗? 提示:①最低限速:限制行驶时速v不得低于50公里; ②限制质量:装载总质量G不得超过10 t; ③限制高度:装载高度h不得超过3.5米; ④限制宽度:装载宽度a不得超过3米; ⑤时间围:t∈. 问题2:你能用一个数学式子表示上述关系吗?如何表示? 提示:①v≥50;②G≤10;③h≤3.5;④a≤3;⑤7.5≤t≤10. 自主学习: 不等式的概念 我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式. 1.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等

式则是表示两者的不等关系,可用“a>b”“a<b”“a≠b”“a≥b”“a≤b”等式子表示,不等关系是可以通过不等式来体现的。 2.不等式中文字语言与符号语言之间的转换 文字语言大于,高于,超过小于,低于,少于大于等于,至少, 不低于 小于等于,至多, 不多于,不超过 符号语言><≥≤ 实数可以用数轴上的点表示,数轴上的每个点都表示一个实数,且右边的点表示的实数总比左边的点表示的实数大. 问题1:怎样判断两个实数a、b的大小? 提示:若a-b是正数,则a>b;若a-b是负数,则ab?a-b>0 ab,b>c,则a>c,对吗?为什么? 提示:正确.∵a>b,b>c,∴a-b>0,b-c>0. ∴(a-b)+(b-c)>0.即a-c>0.∴a>c. 问题2:若a>b,则a+c>b+c,对吗?为什么? 提示:正确.∵a>b,∴a-b>0,∴a+c-b-c>0 即a+c>b+c.

含绝对值的不等式-公开课教案

含绝对值的不等式 教学目标 1.认知目标 (1)掌握|x|a(a>0)型的绝对值不等式的解法; (2)理解掌握绝对值的意义和利用数轴表示含绝对值的不等式的解集 2.能力目标 (1)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力; (2)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力; (3)采用分析与综合的方法,培养学生逻辑思维能力; (4)通过学生练习和老师点拨,培养学生的运算能力 3.情感目标 培养学生的学习兴趣和端正的学习态度,让学生理解学习数学的重要性 4.德育教育 我们为什么而读书 教学重点:|x|a(a>0)型的不等式的解法; 教学难点:利用绝对值的意义分析、解决问题.

教学过程设计 教师活动学生活动设计意图 一、导入新课 【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明? 口答 a (a>0) |a|= 0 (a=0) -a (a<0) 绝对值的概念是解|x|>a与 |x|0)型绝对值不等 式的基础,为解这种类型的 绝对值不等式做好铺垫. 二、新课 【导入】2的绝对值等于几?-2的绝对值等于几?绝对值等于2的数有哪些?在数轴上表示出来. 【讲述】求绝对值等于2的数可以用方程|x|=2来表示,这样的方程叫做绝对值方程.显然,它有两个解一个是2,另一个是-2. 【绝对值的意义】在数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值. 【提问】如何解绝对值方程. 【设问】 1 解绝对值不等式|x|<2,并用数轴表示它的解集。 2 解绝对值不等式|x|>2,并用数轴表示它的解集。 【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式|x|<2的解集就是表示数轴上到原点的距离小于2的点的集合;不等式|x|>2的解集就是表示数轴上到原点的距离大于2的点的集合。【巩固旧知识】 1.数轴的含义和几何意义 学生口答 归纳:数轴是一条规定了 原点、方向和单位长度的直 线。原点、方向和单位长度称 为数轴的三要素。 【笔答并点拨】 注意观察数轴上所表示的 集合,理解和区分两种情况 根据绝对值的意义自然引出 绝对值方程|x|=a(a>0)的 解法. 由浅入深,循序渐进,在 |x|=a(a>0)型绝对值方程 的基础上引出|x|0)型 绝对值方程的解法. 针对解|x|>a(a>0)绝对值不 等式学生常出现的情况,运 用数轴质疑、解惑. 落实会正确解出|x|0) 与|x|>a(a>0)绝对值不等式 的教学目标.

文本预览