当前位置:文档之家› 卧式重力沉降装置设计1

卧式重力沉降装置设计1

卧式重力沉降装置设计1
卧式重力沉降装置设计1

卧式重力沉降装置设计

装备11011班邹宝应 201106080530

摘要

在现代工业生产过程中,需要将不同种类的物质分开,根据属性的不同,可以用物理的方法分离,也可以用化学的方法分离.我们主要用的分离方法有沉降,过滤,吸收,蒸馏等方法。在化工生产行业,吸收和蒸馏应用及其广泛,而在其他行业沉降和过滤则相对应用广泛。例如在水泥的制造过程中必须要对气体中的颗粒进行沉降处理,不然会造成周边环境的污染,不符合可持续性发展,不利于生产生活,还有在石油的开采过程中肯定伴随着气体和水等杂质参合,必须将其除去,考虑到实用性和经济性的原则,采用沉降是最好的一种除去方式,所以在油田上多采用重力沉降装置将其油气和杂质分离,这种方法不仅简单,更重要的是有效降低含水量,很好的控制了在运输过程中由于水造成的腐蚀问题和运输成本,所以在油田使用的沉降装置的开发是很有必要的。今天大量的沉降设备应用于各个行业当中,也起到了相当重要的作用,为我们的生活和生产带来了方便和利益。因此,我将对沉降的原理,设备以及效果,通过本文进行简单的介绍和分析。其按原理可分为离心式和重力式沉降机构,本文主要对重力式沉降机

构的设计和原理的一个简单介绍。

第一章沉降的条件

1.1非均相物系的分离

沉降是对非均相的一种分离手段,所以分离的物质必须是非均相,例

如气体中的尘粒,悬浮液中的颗粒以及乳浊液中的液滴。分离的目的有以下3点。

⑴回收分散物质,例如从结晶器中结晶出的晶粒。

⑵净制分散介质,例如除去气体中的尘粒。

⑶劳动保护和环境的保护等。因此,非均相物系的分离意义重大。非均相物质的分离方式有过滤和沉降两种,沉降主要应用于气体中小颗粒的分离以及部分液体中小颗粒的分离,而过滤则是根据颗粒的大小只能部分除掉气体中或液体中一定尺寸的颗粒,因此不是太彻底,而且操作费用比较高。

我们在本片文章中主要介绍沉降的原理以及设备的运行过程。

1.2颗粒与流体的相对运动和所受阻力

颗粒在流体运动中的运动,可以看做是流体相对于颗粒的运动。为了方便起见先假象为球型的。若流体如图1-1的理想流所示,所谓理想流体就是流体的粘度为零,对颗粒不产生力。若为不可压缩流体,则在球体所有各点的动压头和静压头之和为一个常数,在前后、上下两点完全对称。如果流体沿着球面的速度方向和大小都是变化的。球型颗粒的前点和后点的流体属于静止状态,其速度为零,而在上下两点的速度最大。

图1-1理想流体绕球的流动

当流体为粘性流体流过球体表面时,情况就不同了。此时流体在近球面处逐渐形成边界层,因此边界层的厚度随着离前边缘的增加而增加。如果流体的速度较低,此边界层为层流边界层,则上下的流线完全对称。此时,与理想流体的不同点进在于有流体对球体的力,且阻力系数与流体的粘度有关,这个阻力系称为表面摩擦阻力。当流体绕颗粒高速运动运动超过某一值,在前半球,压力沿流动方向逐渐下降,顾不发生边界参分离现象,因而前半球的流动和低速流动一样,而在球体的后半部分,压力沿流体的方向增加,结果有可能使边界脱离层面,如图1-2所示就是这种情况。这种脱离现象的发生,是由于在边界层内较缓慢地流动着的质点因压力的增加而逐渐缓慢下来,最后当他们的能动被消耗完后,他们就反流回来。于是,虽然外层流体由于能量完全消耗而继续向前流动,但在壁面流体发生滞留现象,甚至回流都是很有可能的,球面上发生停止的哪一点,称为脱离点。

图1-2粘性流体的绕流

当发生停滞甚至回流,因为新来的流体沿着整个边界层到达上述的两种状态,愈来愈多的发生停滞现象,并且在短时间内在边界和外层之间堆积起来,回流将会迅速的发生扩散,而外流就会愈来愈的被脱离边界的层面。这种现象就是边界分层现象,边界发生分层时,在紧靠球体的背侧就会形成漩涡,因而消耗了大量的能量。故形成了流体流动过程的阻力。由此可

见,流体流过球体,作用于球体总力有流体的粘性力和球体型一体的阻力组成。低速下,边界层不会发生脱离,全部为粘性力,随着速度的增加,就会出现边界层的脱离现象,粘性力的比重就会减小,当流体的流速极大时,就会边界层就会发生脱离想象,此时的层流就会变成湍流,在此时发生的脱离现象反而会减小。无限连续流体以低速流过球形颗粒所产生的力

符合斯托克斯定律:

卧式重力式分离器的主体为一卧式圆筒体,气流从一端进入,自另一端流出,其作用原理与立式分离器大致相同

卧式重力沉降气液分离器原理卧式重力式分离器的主体为一卧式圆筒体,气流从一端进入,自另一端流出,其作用原理与立式分离器大致相同.

入口初级分离段——可具有不同的入口形式,其目的也在于对气体进行初级分离。除了入口挡板外,有的在入口内增设一个小内旋器,即在入口对气-液进行一次旋风分离。沉降二级分离段——此段也是气体与液滴实现重力分离的主体。在立式重力分离器的沉降段内,气流一般向上流动,而液滴向下运动,两者方向完全相反,因而气流对液滴下降的阻力较大,而卧式重力分离器的沉降段内,气流水平流动与液滴下降成90°夹角,因而对液滴下降阻力小于立式重力分离器,通过计算可知卧式重力分离器的气体处理能力比同直径立式重力分离器的气体处理能力大。除雾段——此段可设置在简体内,也可设置在简体上部紧接气流出口处,除雾段除设置纤维或金属网丝外,也可采用专门的除雾芯子。

第一章

转炉氧枪装置设计

转炉氧枪装置设计 摘要:通过对转炉氧枪装置设计过程介绍,分析了氧枪横移车、升降小车以及氧枪刮渣器设计中的要点,提出了针对氧枪装置在保证转炉炼钢生产过程的连续性、可靠性以及安全性和维护便利性等方面的一套全新的设计方案,使氧枪装置使用维护性能得到较大提高,所提到的新型结构氧枪已在多个转炉炼钢生产现场得到验证。 关键词:事故提升系统;防坠枪装置;快速换枪;可控力矩刮渣器 氧枪装置用于向转炉内吹氧,使钢水脱碳;并加大冶炼强度,实现快速炼钢。 氧枪装置是转炉炼钢系统连续生产的重要在线设备,设置于转炉上方。氧枪工作时需插入转炉内吹氧,处于高温、液态渣包裹之中,因此,其对设备的运行安全性、可靠性、连续性设计提出了很高要求,因而设计中需要对这些需求提出切实可行的解决办法,以满足其复杂控制需求和适应其所处的恶劣工况。 氧枪装置设计依据来自于工艺专业的任务书,设备设计首先需要明确的是运行负荷,接下来进行方案设计、结构设计、施工图设计。 运行负荷:卷扬升降负荷应考虑升降小车、氧枪、金属软管、管内积水、枪体挂渣、刮渣器的刮渣力以及氮封塞、钢绳重量;横移车运行阻力按横移运行设备重量的0.025%计算[1];横移锁紧装置的锁紧能力按运行阻力的4倍考虑;刮渣力按2~3t考虑。 横移车为一钢结构小车,分为上下两层,上层设置有升降卷扬装置及钢绳平衡器,下层设置横移传动装置,上下层之间由活动导轨和钢结构相连。升降卷扬机设有主传动和事故传动两套传动系统,通过离合器实现转换;卷扬控制设有两台绝对型编码器(一用一备、互相比照)控制升降行程、主传动电动机尾部装有增量型编码器控制升降速度;另装有钢绳张力传感器、位置行程开关等电控元件。钢绳平衡器吊挂在上层平台下部,既可调钢绳安装误差,又可在小车升降过程中平衡两根钢绳变形差,使两根钢绳受力始终一样。 事故传动是独立于主传动之外的事故提升系统,当出现车间停电、主电机故障、制动器电液推杆失效等事故时,可利用事故提升系统安全地将氧枪提出炉外,避免更大的事故发生。我们设计的事故提升系统形式为:在卷扬减速机的高速轴上设置气动离合器,增加一级减速,事故电机传动,EPS电源供电,制动器设置开闸气缸,采用气、电结合方式控制。事故提升时,控制室操作人员按下事故提升按钮,离合器电磁阀由UPS电源给电,离合器合上,舌簧开关给出信号后,事故电机给电启动,电机力矩建立起来后,制动器气缸用电磁阀由UPS电源给电,气缸将制动器打开,开始提枪。将氧枪提出炉口一定高度(由2台事故提枪位接近开关判断)后,制动器电磁阀断电(制动器抱闸),然后事故电机停电。最后离合器电磁阀断电复位。整个过程一键自动完成。

重力式桥墩和U型桥台设计

重力式桥墩和U型桥台设计 一、桥梁概述 一跨线桥梁上部结构跨径为36m简支装配式钢筋混凝土空心板,跨数为三跨,横断面内共有20块空心板,每块板宽度为99cm,准跨径中跨为L b1=14m;两边跨为L b2=11m;预制板长为L=13.6m和10.6m;桥梁下部结构为桥墩采用重力式圆端形实体桥墩,桥台采用U型桥台。 二、地质资料 中等密实中砂,地基土的容许承载力:[σ0]=350kpa 容重γ0=27k N/m3 三、设计技术标准 1、桥面净宽:净—15+2×2.5人行道 2、设计荷载:公路—Ⅰ级、人群:4KN/m2 3、支座为板式橡胶支座,平面尺寸为200mm x 200mm,支座厚度为60mm; 四、使用材料 简支装配式钢筋混凝土空心板和桥面铺装混凝土采用C40,墩身、墩帽、台身和台帽采用C30混凝土,其他均采用C25混凝土。 五、拟定上部结构尺寸 参见教材(P60~61页),每块空心板宽度为99cm,厚度为60cm,桥面宽度由20块空心板连接而成,板间1cm厚的缝隙用于灌注砂浆,桥面净宽为净—15+2×2.5人行道,桥面铺装上层采用0.04m厚沥青混凝土,下层采用0.1m厚C40防水混凝土,桥面横坡度为双向1.5%,由铺装层结构控制,具体构造措施

见图。 六、拟定下部结构尺寸 (一)拟定桥墩尺寸 1、墩帽尺寸 (1)顺桥向尺寸按照上部结构布置,相邻两支座中心距离f=e0+e1+e1=0.04+0.18+0.18=0.4m,支座顺桥向宽度为0.2m,支座边缘离墩身的最小距离为0.2m(参见P341表5—1—1),墩帽顺桥向宽度为b≥f+a+2c1+2c2=0.4+0.2+2×0.1+2×0.2=1.2m 从抗震物构造措施的角度,梁端至墩台帽边缘的最小距离a(cm)还应满足a≥50+0.01l(l为计算跨径)=50cm+0.01*1360cm=63.6cm,墩帽宽度2*0.636m+0.04m=1.312m,取满足上述要求的墩帽宽度为 1.4m;墩帽厚度取0.4m。 (2)横桥向尺寸上部构造为20块空心板,每块板宽为0.99m,整个桥面板宽为20m,两边各加0.05m,墩帽矩形部分长度为20.1m。两端各加直径为1.40m 的圆端头,高出墩帽顶面0.3m作为防震挡块,墩帽全长21.5m。 2、墩身顶部尺寸 因墩帽宽度为1.40m,两边挑檐宽度各采用0.10m,则墩身顶部宽度为1.20m,墩身顶部矩形部分长度采用20.1m,两端各加直径1.4m的半圆形端部,则墩身顶部全长为21.30m。 3、墩身底部尺寸 为满足行车要求,墩帽顶部到基础顶面距离为5.50m,基础顶面到路面的高度为0.6m,墩身侧面均按25:1向下放坡,则墩身底部宽度为1.2+5.1*2/25=1.61m,

重力式桥台桥墩设计

攀枝花学院重力式桥台、桥墩设计 1.1设计资料 1.1.1 桥梁跨径及桥宽 标准跨径:30m ; 主梁全长:29.96m ; 计算跨径:29.16m ; 桥面净空:净—7+2×1m (人行道); 桥面坡度:不设纵坡,车行道双向横坡为2%,人行道单向坡为1.5%。 1.1.2 设计荷载: 公路—Ⅰ级 1.1.3 材料及施工工艺 混凝土:主梁C50,人行道、栏杆、桥面铺装及混凝土三角垫层用C30; 预应力钢筋:采用《公路钢筋混凝土及预应力混凝土桥梁设计规范》(JTG D62—2004)的2.15s φ钢绞线,每束7根,全梁配6束,pk f =1860MPa 。 按后张法工艺制作主梁,采用φ70mm 金属波纹管成孔,预留孔道直径为75mm 和OVM 锚。 1.1.4 设计依据 (1)《公路桥涵设计通用规范》(JTG D60—2004)简称《桥规》 (2)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004) (3)《桥梁工程》 (人民交通出版社,姚铃森编) 1.2.1 主梁间距与主梁片数

主梁间距通常应随着梁高与跨径的增加而加宽为经济,由此可提高主梁截面效率指标值,采用主梁间距 2.3m,考虑人行道可以适当挑出,考虑设计资料给 定的桥面净宽选用7片主梁,其横截面布置形式图1.2.1。 图1.2.1 1.2.2主梁尺寸拟定 1.2.2.1主梁高度 预应力混凝土简支梁桥的主梁高度与其跨径之比在1/15~1/25之间,标准设计中一般取为1/16~1/18。所以梁高取用175cm。 1.2.2.2主梁腹板的厚度 在预应力混凝土梁中,梁中腹板内主拉应力较小,腹板厚度翼板由布置预制孔管的构造决定,同时从腹板本身的稳定要求出发,腹板厚度一般不宜小于其高度的1/15。本设计采用16cm.在跨中区段梁腹板下部设置马蹄,设计实践表明马蹄面积与截面面积以10%-20%为宜,马蹄宽:36cm,高:30cm。 1.2.3 翼板尺寸拟定 在接近梁的两端的区段内,为满足预应力束筋布置锚具的需要,肋厚应逐渐扩展加厚,其过渡段长度不宜小于12倍肋板的增加厚度。 预应力混凝土T梁的下缘,为了满足布置预应力束筋的要求,要扩大成马蹄形,马蹄的尺寸应该满足预应力各个阶段的强度要求。由于马蹄形部分承受预应力锚具的局部荷载作用,其尺寸不宜过小,否则在施工中易形成水平纵向裂缝,

过程控制-转炉供养量控制设计Word版

前言 本项目是根据生产过程自动化原理汇编而成的以气体管道中的压 力作为被控制量的反馈控制系统。在许多生产过程中,保持恒定的压力或一定的真空度常是正常生产的必要条件。很多化学反应需要在恒压下进行,为保持流量不变也常需要控制主压力源的压力恒定。根据不同应用场合,压力控制采用不同的方式。 氧气转炉炼钢车间的供氧系统一般是由制氧机、加压机、中间储气罐、输氧管、控制闸阀、测量仪表及氧枪等主要设备组成。 本项目有以下特点: (1)、集工业背景、仪表选用、控制原理与流程为一体,内容清晰明了易懂。 (2)、将知识点与技能点紧密结合,锻炼了实际动手与动脑能力。 (3)、项目仪表选型严谨

1、摘要 2、第一章转炉氧枪的供氧制度 1.1转炉炼钢工艺简介 1.2 供氧制度的主要内容 1.3 供氧制度中的工艺参数 本章小结 3、第二章转炉氧枪供氧系统参数 2.1 转炉氧枪氧气流量 2.2 转炉氧枪冷却水 2.3 转炉氧枪枪位 本章小结 4、第三章转炉氧枪氧压控制 3.1转炉氧枪氧压控制意义 3.2转炉供氧装置及其设计 3.3转炉氧枪氧压检测与控制设计 3.3.1氧枪氧压检测与控制参数 3.3.2设计的具体方案 3.3.3仪表选型 3.3.4氧枪氧压控制设计图 5、总结 6、参考文献

氧枪是转炉炼钢的关键设备。在转炉顶吹炼中,氧枪的主要作用是向熔池供氧和传氧,吹炼氧压及氧枪枪位的高低对熔池的脱碳速度和炉渣中二氧化铁含量以及熔池温度有重大影响。因此,氧压和氧枪枪位的控制是关系到炼钢生产质量好坏的至关重要的环节。在本课程设计中首先是对转炉氧枪中通氧管道进行取压,具体实施办法是将节流装置安装在氧气管道中通过安装在氧气管道上的取压管获得差压,然后将差压引入弹簧管,此时弹簧管会有形变,将霍尔片固定在弹簧管的自由端,在霍尔片的上、下方垂直安放两对磁极,当被测压力引入后,弹簧管的自由端会产生位移,即改变了霍尔片在非均匀磁场中的位置。这样就将压力信号转为电信号可取得4~20mA DC的氧气压力信号,将它送至调节器与给定值相比较,根据偏差情况,调节器给出调节信号,驱动执行机构改变氧气管道阀门开度,从而控制氧气压力为规定值。 关键词:转炉氧枪、氧枪氧压、氧枪枪位

氧枪设计

氧枪设计 顶底复吹转炉是在氧气射流对熔池的冲击作用下进行的,依靠氧气射流向熔池供氧并搅动熔池,以保证转炉炼钢的高速度。因此氧气射流的特性及其对熔池作用对转炉炼钢过程产生重大影响,氧枪设计就是要保证提供适合于转炉炼钢过程得氧气射流。 转炉氧枪由喷头、枪身和尾部结构三部分组成,喷头一般由锻造紫铜加工而成,也可用铸造方法制造,枪身由无缝钢管制作得三层套管组成。尾部结构是保证氧气管路、进水和出水软管便于同氧枪相连接,同时保证三层管之间密封。需要特别指出的是当外层管受热膨胀时,尾部结构必须保证氧管能随外层管伸缩移动,氧管和外层管之间的中层管时冷却水进出的隔水套管,隔水套管必须保证在喷头冷却水拐弯处有适当间隙,当外层管受热膨胀向下延伸时,为保证这一间隙大小不变,隔水套管也应随外层管向下移动。 (1)喷头设计:喷头是氧枪的核心部分,其基本功能可以说是个能量转换器,将氧管中氧气的高压能转化为动能,并通过氧气射流完成对熔池的作用。 1)设计主要要求为: A 正确设计工况氧压和喷孔的形状、尺寸,并要求氧气射流沿轴线的衰减应尽可能的慢。 B 氧气射流在熔池面上有合适的冲击半径。 C 喷头寿命要长,结构合理简单,氧气射流沿氧枪轴线不出现负压区和强的湍流运动。 2)喷头参数的选择: A 原始条件: 类别\成分(%) C Si Mn P S 铁水预处理后设定值 3.60 0.10 0.60 0.004 0.005 冶炼Q235A,终点钢水C=0.10%根据铁水成分和所炼钢种进行的物料平衡计算,取每吨钢铁料耗氧量为50.4m3(物料平衡为吨钢耗氧52m3),吹氧时间为20min 。转炉炉子参数为:内径6.532m ,熔池深度为1.601m ,炉容比0.92m3/t 。转炉公称容量270t ,采用阶段定量装入法。 B 计算氧流量 每吨钢耗氧量取 52m3,吹氧时间取20min min /70220270523m Q =? = C 选用喷孔出口马赫数为2.0、采用5孔喷头(如下图3-3所示),喷头夹角为14°喷孔为拉瓦尔型。 图3-3 五孔喷头

氧枪横移传动装置设计

内蒙古科技大学 本科生毕业设计说明书(毕业论文) 题目: 学生姓名: 学号: 专业: 班级: 指导教师:

摘要 本次毕业设计题目是氧枪横移传动装置,主要研究炼钢转炉中氧枪的升降和横移机构。目前国内吹氧装置换枪多数都不能远距离操作,其中一个主要问题就是横移小车定位不准。现在横移小车的定位无非是采用电气,机械,液压或者它们的组合方式。应用普遍的是行程开关方式,但如把此方式作为唯一或是主要控制手段,是难以达到所要求精度的。所以本课题利用机械优化设计方法,采用更加明确的“二次控制”,即行程开关只用来进行位置的粗定位,再借专用装置来精确定位。这样使横移小车定位更准确,换枪效率更高。 关键词:氧枪;炼钢;转炉

Abstract This graduation project topic is the oxygen lance moves to the transmission device horizontally, mainly studies in the steel-making converter the oxygen lance's fluctuation and the traversing gear construction. At present domestic blows the oxygen attire to replace the gun most not to be able the indirect maintenance, a subject matter is that the localization of the car is not Accurate. Nowadays the methods of localization of the car moving horizontally are nothing but using electricity, machinery, hydraulic pressure or their combination way. What using common is the limiting switch way, but only taking this way as the primary control method, will achieve to the required accuracy difficultly. Therefore this topic uses the method of machinery optimization designing and “second control”which named the limiting switch is only used to Local the position thickly, then uses special Installment to pinpoint again. Like this causes to the localization of the car to be more accurater and the efficiency of trading the lance higher Key words: lance; steelmaking; converter

转炉氧枪设计方案

广青金属有限公司 65T转炉φ180氧枪及氧枪喷头设计方案 山东崇盛冶金氧枪有限公司 2012年2月 65T转炉φ180氧枪及氧枪喷头设计方案

简介 山东崇盛冶金氧枪有限公司,系冶金氧枪及喷头的专业研究生产单位。位于中国潍坊高新技术产业开发区。技术力量雄厚,技术装备先进,检测手段齐全。我公司在转炉用氧枪设计方面有丰富的设计和制造经验,例如:宝钢300吨转炉炼钢φ406氧枪喷头,武钢三炼钢250吨转炉用φ355锥度氧枪及喷头,马钢300吨转炉用φ355锥度氧枪及喷头,济钢210吨转炉用φ355氧枪及喷头,新余三期210T 转炉炼钢φ325氧枪及喷头,上海罗泾150吨转炉炼钢φ299氧枪及喷头,河北承德钢铁、普阳钢铁、宁波钢铁、天铁、安阳钢铁、通化钢铁等150吨转炉炼钢φ299氧枪及喷头,目前均正常使用,效果良好。现国内120吨以上转炉用氧枪80%由我公司设计制造。 公司秉承“以人为本,科技领先”的发展战略,技术力量雄厚,拥有世界先进水平的科研机构、精良的机械加工设备及国内一流的检测设施,最大程度上保证产品最佳的使用性能。 65T转炉φ180×1孔喷头设计方案

一、设计工况参数: 1、出钢量:~65吨/炉 2、现场操作氧流量:~4200Nm3/hr 3、现场操作供氧压力:0.85~1.0Mpa (阀后压力) 4、纯吹氧吹炼时间:13~15min 5、冷却水压力:≥1.2MPa 6、进出水温差≤27℃(水温差根据现场实际情况要有所差异) 7、氧枪喷头形式:1孔拉瓦尔孔喷头 二、喷头参数设计 2.1马赫数的选择 流体力学中表征流体可压缩程度的一个重要的无量纲参数,记为,定义为流场中某点的速度v同该点的当地声速c之比,即=v/c, 在可压缩流中,气体流速相对变化dv/v同密度相对变化之间的关系是dρ/ρ=-2dv/v,即在流动过程中,马赫数愈大,气体表现出的可压缩性就愈大。另外,马赫数大于或小于1时,扰动在气流中的传播情况也大不相同。因此,从空气动力学的观点来看,马赫数比流速能更好地表示流动的特点。按照马赫数的大小,气体流动可分为低速流动、亚声速流动、跨声速流动、超声速流动和高超声速流动等不同类型。 马赫数就是气流速度与当地温度条件下的音速之比: M=U/a 式中:U为气流速度m/s a为在当地温度下的音速,单位m/s 氧枪的供氧压力的大小是由喷头的出口马赫数确定的,氧气的压力能转化成

转炉设计任务书

辽宁科技学院 课程实践报告 课程实践名称:设计一座公称容量为380吨的转炉和氧枪指导教师:尹雪亮 班级:冶金姓名: 2012年月日

………………………..………装订线……..………………………… 课程设计(论文)任务书题目:设计一座公称容量吨的转炉和氧枪 系别:冶金工程学院 专业:班级: 学生姓名:学号: 指导教师(签字):2012年月日 一、课程设计的主要任务与内容 1、转炉设计 1.1 氧气顶吹转炉炉型设计 1.2 氧气转炉炉衬设计 1.3 转炉炉体金属构件设计 2、氧枪设计 2.1 氧枪喷头尺寸计算 2.2 转炉氧枪枪身尺寸计算 2.3 氧枪水冷系统设计 2.4 氧枪升降机构与更换装置 二、设计(论文)的基本要求 1、说明书符合规范,要求打印成册; 2、独立按时完成设计任务,遵守纪律; 3、选取参数合理,要有计算过程; 4、制图符合制图规范。

三、推荐参考文献(一般4~6篇,其中外文文献至少1篇) 期刊:[序号] 作者.题名[J].期刊名称.出版年月,卷号(期号):起止页码。 书籍:[序号] 著者.书写[M].编者.版次(第一版应省略).出版地:出版者,出版年月:起止页码 论文集:[序号] 著者.题名[C].编者. 论文集名,出版地:出版者,出版年月:起止页码 学位论文:[序号] 作者.题名[D].保存地:保存单位,年份 专利文献:[序号] 专利所有者.专利题名[P].专利国别:专利号,发布日期 国际、国家标准:[序号] 标准代号,标准名称[S].出版地:出版者,出版年月 电子文献:[序号] 作者.电子文献题名[文献类型/载体类型].电子文献的出版或可获得地址,发表或更新日期/引用日期 报纸:[序号]作者.文名[N].报纸名称,出版日期(版次) 四、进度要求 五、专业教研室审核意见 教研室主任签字:年月日

转炉与氧枪

四.炉型与氧枪的设计计算 4.1炉型的设计计算 4.1.1原始数据 ⑴ 炉子平均出钢量220 t 钢水的收得率91.05% 新炉的金属装入量G =220 t/0.9105=242 T ⑵ 吨钢耗氧量=7.18/91.05×1000×22.4/32=55.20 Nm 3/T 供氧强度3.68m 3/(T·min) 供养时间t =15min ,4.1.2熔池尺寸计算 ⑴熔池的直径 D =K t G / K (1.5~1.75) 取K =1.53 所以D =1.5315/242=6141 mm ⑵熔池深度计算 选用筒球型 熔池深度为 h =V 金属+0.046D 3/0.079D 2=(35.5+0.046×6.1413)/(0.79×6.1412) =1550mm ⑶熔池其他尺寸的确定 炉底球冠的曲率半径R =0.91D =5588 mm 球冠的弓形高度h 1=0.15D =921 mm ⑷ 炉帽尺寸的确定 ① 取炉口直径与炉膛直径之比d/D =0.51 d =0.51×6141=3132 mm ② 取炉帽的倾角为64° ③ 炉帽高度的计算 H 帽=1/2(D-d)tanθ+400=3485 mm H 锥=H 帽-400=3085 mm ④ 炉帽容积计算 V 帽=0.257×3.14×(6.1412+3.1322+6.141×3.132)+0.785×3.1322×0.4 =56.954m 3 ⑸ 出钢口尺寸计算 d 出钢=T 75.163+=22075.163?+=210 mm

取水平倾角为18° 出钢口衬砖外径dST =6×210=1270mm 出钢口长度=7×210=1480mm ⑹炉子内型高度的计算 取炉容比V/T =1.0 新炉炉膛有效容积: V =G ×V/T =1.0×220=220 m 3 V 身=V -(V 金+V 帽)=220-(35.5+56.954)=127.513 m 3 炉身高度: H =141 .66.141×4/513.127?π=4.308 m=4038 mm 炉型内高: H =h +H 身+H 帽=1550+4308+3485=9343 mm ⑺炉衬的选择 工作层选用镁碳砖 炉身永久层选115 mm ,工作层选700 mm ,填充层100mm 炉帽永久层选150 mm ,工作层选600 mm 炉底永久层选425 mm ,工作层选600 mm D 壳内=6.141+0.915×2=7.971m H 壳内=9.343+1.025=10.368m ⑻炉壳钢板 炉身选75mm ,炉底炉帽选用65 mm H 总=10.368+0.065=10.433m D 壳=7.971+0.075×2=8.121m ⑼炉子高宽比 壳总D H =121 .8433.10=1.28 因为顶底复吹转炉的高宽比一般为1.25~1.45,所以炉子尺寸基本是合理地,能保证炉子的操作正常进行。 4.2低吹喷嘴设计 本次设计采用管式喷嘴结构 一般说来,喷嘴多而直径小些好。生产中喷嘴数量常为2~4个,具体视炉子容量和布置形式而定。本炉喷嘴取4个。 合理的布置应使底吹和顶吹产生的熔

桥梁墩台支座设计

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 第五篇桥梁墩台和支座 第一节桥梁墩台类型与构造 一、概述 组成:墩台帽、墩台身、基础 承受荷载:上部结构:竖向力、水平力、弯矩,地震力、风力、流水压力等 二、桥墩的类型与构造 受力:刚性墩、柔性墩 构造:实体墩、空心墩、柱式墩、框架墩等 按截面形式分:矩形、圆形、园端形、尖端形 1、实体墩 实体桥墩由一个实体结构组成,按其截面尺寸及重量的不同又可分为实体重力式桥墩和实体轻型桥墩。实体重力式桥墩是一实体圬工墩,主要靠自身的重量(包括桥跨结构重力)平衡外力,从而保证桥墩的强度和稳定。此种桥墩自身刚度大,具有较强的防撞能力,但同时存在阻水面积大的缺陷,比较适合于修建在地基承载力较高、覆盖层较薄、基岩埋深较浅的地基上。 实体轻型桥墩可用混凝土、浆砌块石或钢筋混凝土材料做成,此结构显著减少了圬工体积,但其抗冲冲击力较差,不宜用在流速大并夹有大量泥沙的河流或可能有船舶、冰、漂流物撞击的河流中,一般用于中小跨径桥梁上 墩帽是直接支承桥跨结构,应力较集中,因此对大跨径的重力式桥墩墩帽厚度一般不小于0.4m,中小跨梁桥也不应小于0.3m,并设有50~100mm的檐口。 2、空心桥墩 空心桥墩有两种形式:一种为部分镂空实体桥墩,另一种为薄壁空心桥墩。 3、桩(柱)式桥墩和柔性墩 柱式桥墩是目前公路桥梁中广泛采用的桥墩型式。它具有线条简捷、明快、美观,既节省材料数量又施工方便的特点,特别适用于桥梁宽度较大的城市桥梁和立交桥。 柱式桥墩一般可分为独柱、双柱和多柱等形式,它可以根据桥宽的需要以及地物地貌条件任意组合。柱式桥墩由承台、柱式墩身和盖梁组成,对于上部结构为大悬臂箱形截面,墩身可以直接与梁相接。 柔性排架桩墩是由单排或双排的钢筋混凝土桩与钢筋混凝土盖梁连接而成。其主要特点是,可以通过一些构造措施,将上部结构传来的水平力(制动力、温度影响力等)传递到全桥的各个柔性墩台,或相邻的刚性墩台上,以减少单个柔性墩所受到的水平力,从而达到减小桩墩截面的目的 4、框架式桥墩 框架式桥墩采用钢筋混凝土或预应力混凝土等压挠和挠曲构件组成平面框架代替墩身,支承上部结构,必要时可做成双层或多层的框架 三、桥墩防撞 流冰对桥墩的危害主要表现在大面积流冰对桥墩的撞击力和大面积流冰堆积现象以及流冰对桥墩的磨损。对此,在中等以上流冰河道(冰厚大于0.5 m,流水速度1 m/s左右)及有大量漂流物的河道,应在迎水方向设置破冰棱体 航运繁忙的河道,船只往往因突发原因引起航行失控,或是因能见度低造成船舶与桥墩相撞。桥墩在设计中不但要有一定抵抗船舶冲击荷载的能力,还要考虑采用缓冲装置和保护系统,预防或改变船只冲击荷载

12 重力式桥台示例(含U形基础)

12 重力式桥台示例(含U形基础) 1.本文目的 本文的目的是,通过一个重力式桥台示例的演示,使用户掌握在“桥梁设计师”中重力式桥台和U 形基础的设计过程。 2.系统支持 设计师1.0.2版本重力式桥台和U形扩大基础的主要依据: 各大中设计院的施工图纸 交通部《公路桥涵设计通用规范》(JTG D60-2004) 《公路桥涵地基与基础设计规范》(JTG D63-2007) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 《公路圬工桥涵设计规范》(JTG D61-2005) 以下各节中的《基规》指的是《公路桥涵地基与基础设计规范(JTG D63—2007)》,《通规》指的是《公路桥涵设计通用规范(JTG D60—2004)》,《混规》指的是《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62—2004)》。 重力式桥台支持整体式和分离式(前墙设置沉降缝),支持的基础形式有:四边形扩大基础,U形扩大基础、承台桩基础。 3.流程介绍 按如下流程可从无到有建立一个重力式桥台。 图3-1

4.工程实例 4.1 工程概况 为使大家比较直观的了解桥梁设计师中重力式桥台的设计过程,下面我们以一个整体式重力式桥台为例来介绍,基础形式为U形基础,共有两层。(图4-1-1) 图4-1-1 4.2 布孔信息 双击打开路线下的路线总体,打开布孔信息标签进行编辑。(图4-2-1) 图4-2-1 ●布孔线里程:第一行数字表示里程桩号,其后各行数字表示跨径。 ●布孔线序号:构件名中的“##”后的数字与布孔线序号是一一对应的。对下部构件,如果构件名是 “新墩1##n”(n为阿拉伯数字),则布孔线序号的第n行就是这个构件所在的位置。如图4-2-1,本例我们的构件名是“重力式桥台示例##1”,那么布孔线序号的第1行桩号10是重力式桥台所在位置(实际里程在表格的最后一列中由程序自动计算)。 ●桥墩中心线距离布孔线L:桥墩中心线在布孔线大桩号侧为正,小桩号侧为负。本例中设为0。 ●布孔线名称:对布孔线的特征进行描述,图纸上可能会进行注释。 ●工程墩号名称:对各墩位进行数字标识,图纸上可能会进行注释。 ●斜交角A(度):平面上,由道路设计线法线旋转至布孔线的角度。顺时针为正,逆时针为负,角 度范围为-90°~+90°。本例中为5度。

转炉氧枪设计方案

山东崇盛冶金氧枪有限公司 SHANDONG CHONGSHENG METALLURGICAL OXYGEN LANCE CO.,LTD. 1 广青金属有限公司 65T转炉φ180氧枪及氧枪喷头设计方案 山东崇盛冶金氧枪有限公司 2012年2月

山东崇盛冶金氧枪有限公司 SHANDONG CHONGSHENG METALLURGICAL OXYGEN LANCE CO.,LTD. 2 65T转炉φ180氧枪及氧枪喷头设计方案 简介 山东崇盛冶金氧枪有限公司,系冶金氧枪及喷头的专业研究生产单位。位于中国潍坊高新技术产业开发区。技术力量雄厚,技术装备先进,检测手段齐全。我公司在转炉用氧枪设计方面有丰富的设计和制造经验,例如:宝钢300吨转炉炼钢φ406氧枪喷头,武钢三炼钢250吨转炉用φ355锥度氧枪及喷头,马钢300吨转炉用φ355锥度氧枪及喷头,济钢210吨转炉用φ355氧枪及喷头,新余三期210T 转炉炼钢φ325氧枪及喷头,上海罗泾150吨转炉炼钢φ299氧枪及喷头,河北承德钢铁、普阳钢铁、宁波钢铁、天铁、安阳钢铁、通化钢铁等150吨转炉炼钢φ299氧枪及喷头,目前均正常使用,效果良好。现国内120吨以上转炉用氧枪80%由我公司设计制造。 公司秉承“以人为本,科技领先”的发展战略,技术力量雄厚,拥有世界先进水平的科研机构、精良的机械加工设备及国内一流的检测设施,最大程度上保证产品最佳的使用性能。

山东崇盛冶金氧枪有限公司 SHANDONG CHONGSHENG METALLURGICAL OXYGEN LANCE CO.,LTD. 3 65T转炉φ180×1孔喷头设计方案 一、设计工况参数: 1、出钢量:~65吨/炉 2、现场操作氧流量:~4200Nm3/hr 3、现场操作供氧压力:0.85~1.0Mpa (阀后压力) 4、纯吹氧吹炼时间:13~15min 5、冷却水压力:≥1.2MPa 6、进出水温差≤27℃(水温差根据现场实际情况要有所差异) 7、氧枪喷头形式:1孔拉瓦尔孔喷头 二、喷头参数设计 2.1马赫数的选择 流体力学中表征流体可压缩程度的一个重要的无量纲参数,记为,定义为流场中某点的速度v同该点的当地声速c之比,即=v/c, 在可压缩流中,气体流速相对变化dv/v同密度相对变化之间的关系是dρ/ρ=-2dv/v,即在流动过程中,马赫数愈大,气体表现出的可压缩性就愈大。另外,马赫数大于或小于1时,扰动在气流中的传播情况也大不相同。因此,从空气动力学的观点来看,马赫数比流速能更好地表示流动的特点。按照马赫数的大小,气体流动可分为低速流动、亚声速流动、跨声速流动、超声速流动和高超声速流动等不同类型。 马赫数就是气流速度与当地温度条件下的音速之比:

转炉氧枪系统分析

炼钢转炉氧枪装置的使用现状分析 摘要:介绍氧枪装置工作原理,使用现状及存在问题,并对存在问题提出对策。 关键词:炼钢转炉氧枪氧枪传动 炼钢厂炼钢转炉氧枪装置包括氧枪和氧枪升降装置,是纯氧顶吹转炉的重要设备之一,是通过用高质水冷却的吹氧管将工业纯氧送入吹炼半钢或铁水来完成冶炼钢种的任务。其升降和横移传动装置通过电气连锁与转炉倾动机械有关设备配合共同完成冶炼,更换氧枪等操作任务。 一、转炉对氧枪的升降机构和更换装置的要求 在吹炼过程中氧枪需要多次升降调整枪位,对氧枪的升降机械和更换装置提出如下要求: (1)应具有合适的升降速度,并可以变速。 (2)应保证氧枪升降平稳,控制灵活,操作安全,结构简单,便于维护。 (3)能快速更换氧枪。 (4)为保证安全生产氧枪有相应的连锁装置,如转炉不在垂直位置,氧枪不能下降;氧枪降至炉口以内,转炉不能倾动。氧枪下降至氧气开氧点时,氧气阀自动打开,同时转为慢速运行;氧枪提升至此点时自动转为快速运行;氧枪升至关氧点时,氧气阀自动关闭,同时由慢速转为快速运行。当供氧氧压或冷却水的

水压低于规定值,或冷却水的水温高于规定值时,氧枪自动提升报警。 二、氧枪系统现工作原理和结构 氧枪装置由吹氧管,氧枪传动装置,升降小车,升降小车滑道及换管装置和横移小车,横移小车传动装置,平衡锤,平衡锤滑道等组成。 氧枪由3根同心无缝钢管制成,外径尺寸ф219,枪体总长17355mm,目前采用的喷头为535。吹氧管冷却采用高质水,水压为10--12kg/h,给水量≥120t/h,进水温度≤25℃,回水温度≥45℃,氧枪冷却水采用金属软管,型号:SA25JRL150A-15500,数量为两根。氧气输送软管采用同样的金属软管,氧气软管和冷却水管东西分别布置。 氧枪的升降是由提升平衡锤来实现的,平衡锤系数为1.3倍,由钢绳的两端固定在升降小车和平衡锤的滑轮支座上。传动钢绳有卷筒绕过平衡锤的滑轮固定在小底座的支架上。当开动电动机,经过减速机,由Ф800mm的卷筒提升或下降平衡锤,完成氧枪的升降。 氧枪升降制动采用液压制动器,备有紧急电源,在升降过程中,发生断电时,由另外的电源打开制动器。将氧枪提出转炉炉体,如图1。

转炉氧枪及供氧技术知识

转炉氧枪及供氧技术知识 1.喷头设计需考虑哪些因素? 主要根据炼钢车间生产能力大小、原料条件、供氧能力、水冷条件和炉气净化设备的能力来决定。同时考虑到转炉的炉膛高度、直径大小、熔池深度等参数确定其孔数、喷孔出口马赫数和氧流股直径。对于原料中废钢比高、高磷铁水冶炼或需二次燃烧提温等情况,则其氧枪喷头的设计就需特殊考虑。 根据以上因素确定氧气流量(Nm3/h)、喷头马赫数、操作氧压(MPa)、喷头孔数、喉口直径(mm)、喷孔出口直径(mm),喷孔夹角等。  2.转炉炉容比(V/T)的概念,及它对吹炼过程有何影响? 转炉炉容比(V/T)是指转炉炉腔内的自由空间的容积V(m3)与金属装入量(铁水+废钢+生铁块单位t)之比。装入量过大,则炉容比相对就小,在吹炼过程中可能导致喷溅增加、金属损耗增加、易烧枪粘钢;装入量过小,则熔池变浅,炉底会因氧气射流对金属液的强烈冲击而过早损坏,甚至造成漏钢。大型转炉的炉容比一般在0.9-1.05m3/t之间,而小型转炉的炉容比在0.8m3/t左右。通常在转炉容量小、铁水含磷高、供氧强度大、喷孔数少,或用铁矿石或氧化铁皮做冷却剂等情况下,则炉容比应选取上限。反之则选取下限。   3.如何选取熔池深度? 通常最大冲击深度L与熔池深度h之比选取L/h=0.4 — 0.7。当 L/h〈0.3时,即冲击深度过浅,则脱碳速度和氧的利用率会大为降低,还会导致出现终点成分及温度不均匀的现象;当L/h〉0.7时,即冲击深度过深,有可能损坏炉底和喷溅严重;在适合的炉容比情况下,如果熔池装入量过浅,可考虑将熔池砌成台阶形。 4.如何计算冲击反应区深度? 计算公式为: h/d 出 =(ρ出 /ρ钢 )1/2·(β / H)1/2·V出 /g1/2 (4.1) 式中 h —冲击反应区深度m ρ出 —出口气体密度kg/m3; ρ钢 ——钢液密度kg/m3; β—常数,决定于射流的马赫数M,当M=0.5—3.0 时,距

重力式桥台的计算与验算

重力式桥台的计算与验算 Prepared on 22 November 2020

一、重力式墩台的验算 (一)截面强度验算 重力式墩台主要采用圬工材料建造,一般为偏心受压构件,根据《公路圬工桥涵设计规范》(JTG D61—2005),其设计过程采用以概率理论为基础的极限状态设计方法,采用分项系数表达式进行计算。在不利荷载组合作用下,验算墩台各控制截面作用效应的设计值(内力)应小于或等于结构抗力效应的设计值。 0(,)d d S R f a γ≤ S―作用效应组合设计值,按《通规》JTGD60-2004的规定计算; R(.) ―构件承载力设计值函数; f d ―材料强度设计值 ; a d ―几何参数设计值,可采用几何参数标准值,即设计文件规定值。 具体的墩台截面的强度验算包括以下各项内容: (1)选取验算截面 1)通常选取墩台身的基础顶面与墩台身截面突变处。 2)采用悬臂式墩台帽的墩身,除对墩台帽进行验算外,应对墩台帽交界处墩身截面进行验算。 3)当桥墩、桥台较高时,需沿墩台身每隔2~3米选取一个验算截面。 (2)验算截面的内力计算 按照各种组合,分别计算各验算界面的竖向力、水平力和弯矩,得到N ∑、H ∑及M ∑,并按下式计算各种组合的竖向力设计值: 0j d N N γ=∑

式中: j N——各种组合中最不利的设计荷载效应(竖向力); d N——各种组合中按不同荷载算得的竖向力设计值; (3)砌体构件受压承载力计算 承载能力极限状态验算:按轴心或偏心受压构件验算墩身各截面的承载能力。对于砌体以及混凝土截面,要分别采用《圬规》相应条款的规定计算。如果不满足要求就应根据修改墩身截面尺寸重新验算; (4)截面偏心距验算 如超过表限制时,可按下式确定截面尺寸: 1)单向偏心: 1 tmd d Af N Ae W γ? ≤ - 2)双向偏心: 1 tmd d y x y x Af N Ae Ae W W γ? ≤ +- W y、W x―双向偏心时,构件x方向受拉边缘绕y轴的截面弹性抵抗矩和构件y 方向受拉边缘绕x轴的截面弹性抵抗矩,对于组合截面应按弹性模量比换算为换算截面弹性抵抗矩;

转炉氧枪喷头设计方案

xxx氧枪喷头设计方案 一、工况参数: 1、转炉公称容量:120吨 2、氧流量:24610m3/hr 3、供氧压力:0.8 MPa~0.85MPa 二、喷头参数设计 2.1马赫数的选择 过高的马赫数反应激烈,操作难度大;而马赫数过小,则输氧管线的氧压没有被充分利用,也是不经济的。 综合考虑:取M=2.0。 2.2计算工况氧压Po 查等熵流表,当M=2.0时,P出/Po=0.1278,由于炉膛压力近似于大气压力,所以P出=0.102MPa,则Po=0.8Mpa (8.14Kg/cm2)。 建议氧压在0.8Mp a~0.85 Mp a 2.3计算氧流量Q 根据实际情况,设定Q=25278m3/hr 2.4计算喉口直径D喉 由氧流量公式 Q=64.3236×Po×A喉 A喉——喉口截面积得出:D喉=39.3mm 2.5 计算出口直径D出 根据M=2.0,查等熵流表,得A出/A喉=1.688 A出——出口截面积得出:D出=51.1 mm 2.6 计算扩张段长度L 理论的气体膨胀角为4~8度,扩张段的张角理应也设计成4~8度。小扩张

角具有控制膨胀作用,因而出口流股会有轻微膨胀,氧流贴近孔壁流动会出现层流,从而加重射流表面与炉氧混合,有利于提高热效率。大扩张角控制膨胀作用小,扩张段短,受孔壁粗糙度影响小,有利于减小氧射流的能量损失,提高作用熔池贯穿力,考虑喷头的穿透能力,应取较大的张角,定为3.5度。 则L=(51.1-39.3)/2×tg3.5°=96mm 取L=100mm 2.7 确定孔倾角α 喷孔倾角应满足射流不交汇的要求,也要保证射流不能冲刷炉壁,根据全国其它钢厂的使用经验,对于Φ273四孔喷头,这里取孔倾角a=12o。 2.8四孔分布圆直径D孔 为减轻喷孔出口氧射流互相掺混,减小氧射流作用熔池叠加冲击,要求增大端底氧孔分布圆直径与出口直径之比,一般在2~4之间,所以D孔=150mm 2.9 操作枪位H(暂定)操作基本枪位:H=35×D出 基本枪位:1787mm 最高枪位:2042mm 最低枪位:1533mm 此枪位仅做参考,具体应以实践为准。 2.10设计枪位下冲击深度 由佛林公式h=3.4×P0×D喉/H0.5—0.0381 此公式对单孔喷头适用,对于四孔喷头取修正系数0.9 得冲击深度:h=685mm 注:冲击深度为熔池深度的40%~60%为正常。 Xxx

转炉氧枪课程设计

转炉氧枪课程设计 --300吨转炉炼钢用氧枪设计 专业班级:冶金102班 学生:吴** 指导老师:***

一、课程设计题目 金属装入量中铁水占90%,废钢占10%,吹炼钢种是Q235B,渣量是金属装入量的7.78%;吹炼过程中,金属料中93%的碳氧化生成CO,7%的碳氧化生成CO2。 二、吨钢氧消耗量的计算 12g的C生成CO消耗16g氧气,生成CO2消耗32g氧气,设100kg金属料ω[C]=1%生成CO消耗氧气量为x t、生成CO2消耗氧气量为y t。 [C] + 1/2{O2} = {CO} 12g 16g 1%×100×93% kg x 得到:x=1.240kg [C] + {O2} = {CO2} 12g 32g 1%×100× 7% kg y 得到:y=0.187kg 因此,100kg的金属料ω[C]=1%氧化消耗的氧气量为1.427kg 同理可以计算出100kg金属料中ω[Si]=1%耗氧量为 3.429t、ω[Mn]=1%耗氧量为0.785t、ω[P]=1%耗氧量为3.484t、ω[S]=1%耗氧量为2.700t、ω[Fe]=1%的氧耗量为1.543t。 所以铁水的总耗氧量4.400+3.429+0.785+3.484+2.700+1.543=16.705t

渣中ω(FeO)=9%、ω(Fe2O3)=3%,吹炼过程中被氧化进入炉渣的Fe元素数量,FeO中ω[Fe]= ,Fe2O3中ω[Fe]= 100kg金属料各元素氧化量和氧耗量如下表所示。 100kg金属料各元素氧化量和氧耗量 项目 元素成分ω/% C Si Mn P S Fe 铁水 4.30 0.50 0.30 0.04 0.04 废钢0.10 0.25 0.40 0.02 0.02 平均 3.88 0.475 0.31 0.038 0.038 终点0.15 痕迹0.124 0.004 0.025 FeO Fe 2O 3 烧损量/kg 3.73 0.475 0.186 0.034 0.013 0.544 0.163 每1%元素消 耗氧气量/kg 这样每100kg金属料需氧量为: ×△ω[C]+ ×△ω[Si]+ ×△ω[Mn]+ ×△ω[P]+ ×△ω[S]+ ×△ω[Fe]-(FeO)+ ×△ω[Fe]-(Fe2O3) 其中,△ω[C]、△ω[Si]、△ω[Mn]、△ω[P]、△ω[S]、△ω[Fe]分别为钢中C、Si、Mn、P、S、Fe的氧化量。 铁水ω[C]=4.3%,占装入量的90%;废钢ω[C]=0.1%,占装入量的10%;平均碳含量为4.3%×90%+0.1%×10%=3.88%。 同样可以算出Si、Mn、P、S的平均成分。 每100kg金属氧耗量为: ×△ω[C]+ ×△ω[Si]+ ×△ω[Mn]+ ×△ω[P]+ ×△ω[S]+ ×△ω[Fe]-(FeO)+ ×△ω[Fe]-(Fe2O3) =

80t转炉氧枪设计

《冶金工程设计》课程设 计报告 学院: 专业班级: 学生姓名: 学号: 设计地点(单位): 设计题目: 80t顶吹氧气转炉的氧枪设计 完成日期:2014 年 1 月 4 日 指导教师评语: __________________________________________________________ __________________________________________________________ __________________________________________________________ 成绩(五级记分制): 指导教师(签字):

目录 一、课程设计任务书------------------------------1 二、设计计算------------------------------------2 1.转炉炼钢物料平衡计算 -------------------------2 1.1计算原始数据------------------------------2 1.2物料平衡基本项目--------------------------3 1.3计算步骤----------------------------------4 1.3.1计算脱氧和合金化前的总渣量及其成分---4 1.3.2计算氧气消耗量-----------------------4 1.3.3计算炉气量及其成分-------------------7 1.3.4计算脱氧和合金化前的钢水量-----------8 1.3.5计算加入废钢的物料平衡---------------9 1.3.6计算脱氧合金化后的物料平衡-----------10 2.氧枪设计计算---------------------------------13 2.1吨钢氧消耗量的计算-----------------------13 2.2氧枪喷头设计-----------------------------13 2.2.1计算氧流量--------------------------14 2.2.2选择喷孔出口马赫数------------------14 2.2.3理论设计氧压------------------------14 2.2.4计算喉口直径------------------------14

相关主题
文本预览
相关文档 最新文档