当前位置:文档之家› 压杆稳定性分析的动力算法

压杆稳定性分析的动力算法

压杆稳定性分析的动力算法
压杆稳定性分析的动力算法

压杆稳定性分析的动力算法

摘要:本文根据压杆微单元受力模型,基于小挠度理论,根据内力平衡,建立压杆自由振动微分方程并进行求解。结合结构的振动理论,通过固有频率随轴向压力变化而改变的规律,推导了压杆临界荷载的计算公式,给出了不同边界条件下的压杆临界荷载。该方法计算结果与材料力学公式做了比较,证明本方法推导简便,思路清晰,结果准确可靠,可为压杆的稳定性分析提供一种新的研究思路。

关键词:压杆;稳定性;自由振动

中图分类号:tg375+.44 文献标识码:a 文章编号:

引言

结构在外载荷作用下,外力和内力必须保持平衡状态,否则无法正常工作,若这种平衡状态是不稳定的,即使存在一微小的载荷增量就会使结构或其组成构件产生很大且无法确定的变形以致最后丧失承载能力,这种情况就称为失稳[1]。压杆是一种典型的易发生失稳的结构。作用在结构上的外力达到某一个数值时,稳定平衡状态开始丧失,稍有扰动,结构变形便迅速增大,使结构失去正常工作能力[2]。压杆目前已被广泛应用于各种工程结构,由于长细比较大,如果考虑不当就有可能由于构件失稳而使结构丧失承载力[3],此时稳定性分析显得尤为重要,强度已不再是其主要影响因素。压杆稳定问题一直以来都是力学中的一个重要课题。本文以结构振动[4]的基本理论为基础,,由最低阶自由振动频率退化为零来

压杆的稳定性验算

建筑力学行动导向教学案例教案提纲

模块七压杆稳定性 7.1压杆稳定的概念 为了说明问题,取如图 7-2 (a)所示的等直细长杆,在其两端施加轴向压力 F ,使杆在直 线状态下处于平衡,此时,如果给杆以微小的侧向干扰力, 使杆发生微小的弯曲,然后撤去干扰 力,贝9当杆承受的轴向压力数值不同时, 其结果也截然不同。当杆承受的轴向压力数值 F 小于某 数值 F cr 时,在撤去干扰力以后, 杆能自动恢复到原有的直线平衡状态而保持平衡, (a)、(b)所示,这种原有的直线平衡状态称为稳定的平衡; 压力F 小于匚 时,杆件就能够保持稳定的平衡,这种性能称为压杆具有稳定性;而当压 F cr 杆所受的轴向压力 F 等于或者大于 F cr 时,杆件就不能保持稳定的平衡而失稳。 压杆经常被应用于各种工程实际中,例如脚手架立杆和基坑支护的支撑杆,均承受压力, 此时必须考虑其稳定性,以免引起压杆失稳破坏。 7.2临界力和临界应力 7.2.1细长压杆临界力计算公式一一欧拉公式 从上面的讨论可知,压杆在临界力作用下,其直线状态的平衡将由稳定的平衡转变为不稳 定的平衡,此时,即使撤去侧向干扰力,压杆仍然将保持在微弯状态下的平衡。当然,如果压力 超过这个临界力,弯曲变形将明显增大。 所以,使压杆 在微弯状态下保持平衡的最小的轴向压力, 即为压杆的临界压力。下面介绍不同约束条件下压杆的临界力计算公式。 一、两端铰支细长杆的临界力计 算公式一一欧拉公式设两端铰支长度 为z 的细长杆,在轴向压力/ cr 的作 用下保持微弯平衡状态,如图 7-3所示。杆在小变形时其挠曲线近似微分方程为: 图7-2 到某一数值匚时,即使撤去干扰力,杆仍然处于微弯形 F cr 状,不能自动恢复到原有的直线平衡状态,如图 7-2 (c)、 (d)所示,则原有的直线平衡状态为 不稳定的平衡。如果力 F 继续增大,则杆继续弯曲, 产生显著的变形,甚至发生突然破坏。 上述现象表明,在轴向压力 F 由小逐渐增大的过程中,压 杆由稳定的平衡转变为不稳定的平衡,这种现象称为压杆 丧失稳定性或者压杆失稳。显然压杆是否失稳取决于轴向 压力的数值,压杆由直线状态的稳定的平衡过渡到不稳定 的平衡时所对应的轴向压力,称为压杆的临界压力或临界 力,用表示 / cr 当压杆所受的轴向 图7-2 如图7-2 图 7-1 F 逐渐增大 当杆承受的轴向压力数值 图7-1

第八章 压杆稳定

第八章 压杆稳定 在某些特殊情况下(特别是杆件受压时),尽管杆件满足强度及刚度设计要求,但是,由于受力状态的改变,使得杆件仍然处于不安全状态,这种情形就是稳定的范畴。 §8.1压杆稳定的概念 物体保持静止或匀速直线状态称平衡状态。工程中的平衡状态主要指静止的平衡状态。杆件受到压力后,保持静止的平衡状态可能是稳定的,也可能是不稳定的。平衡状态的稳定性定义为:杆件在荷载作用下处于一定的位置(初始平衡位置)保持的平衡状态称(初始平衡状态),受到微小外界扰动使其偏离初始平衡位置,若外界扰动除去后仍能回到初始平衡位置,则称杆件的初始平衡状态是稳定的平衡状态;若外界扰动除去后不能回到初始平衡位置,且偏离初始平衡位置越来越远,则称杆件的初始平衡状态是不稳定的平衡状态;若外界扰动除去后不能回到初始平衡位置,但仍能停留在新的平衡位置,则称杆件的初始平衡状态是临界平衡状态,也称随遇平衡状态。压杆稳定问题就是指受压杆件处于静止的平衡状态的稳定性问题。 图8.1 工程中实际的压杆,其轴线不可避免的存在初弯曲,即压杆未受力时,已呈微弯状态,这时可简化为具有微小弯曲的压杆模型,如图8.1(a)所示,称为初弯曲压杆。杆件所受轴向压力的作用线,实际上也不可能与杆件轴线绝对重合,即存在初偏心,这时可简化为具有小偏心矩的压杆模型,如图8.1(b)所示,称为小偏心压杆。初弯曲压杆和为小偏心压杆在轴向压力作用下除产生压缩变形外,还要产生弯曲变形。实质上是偏心受压杆件。如果小偏心压杆的偏心距极小(近似等于零)或初弯曲压杆的微小弯曲极小(近似等于零),则压杆简化 学习指导 本章分4节内容,本章的学习目标是: (1)学习掌握压杆稳定的工程概念、压杆临界力的欧拉公式、压杆稳定的工程计算及提高压杆稳定性的措施。 (2)了解工程中常见的压杆稳定现象,掌握压杆稳定工程计算的基本方法,培养工作岗位有关受压构件设计的能力。 本章重点难点为:稳定的工程概念、压杆稳定的工程计算;理解两类稳定问题的实质。 (a) (b) (c)

《压杆稳定》问答题

压杆稳定 【例1】 压杆的压力一旦达到临界压力值,试问压杆是否就丧失了承受荷载的能力? 解:不是。压杆的压力达到其临界压力值,压杆开始丧失稳定,将在微弯形态下保持平衡,即丧失了在直线形态下平衡的稳定性。既能在微弯形态下保持平衡,说明压杆并不是完全丧失了承载能力,只能说压杆丧失了继续增大荷载的能力。但当压杆的压力达到临界压力后,若稍微增大荷载,压杆的弯曲挠度将趋于无限,而导致压溃,丧失了承载能力。且在杆系结构中,由于某一压杆达到临界压力,引起该杆弯曲。若在增大荷载,将引起结构各杆内力的重新分配,从而导致结构的损坏,而丧失其承载能力。因此,压杆的压力达到临界压力时,是其承受荷载的“极限”状态。 【例2】 如何判别压杆在哪个平面内失稳?图示截面形状的压杆,设两端为球铰。试问,失稳时其截面分别绕哪根轴转动? 解:(1)压杆总是在柔度大的纵向平面内失稳。 (2)因两端为球铰,各方向的μ=1,由柔度知l i μλ= (a )x y i i =,在任意方向都可能失稳。 (b ),x y i i <失稳时截面将绕x 轴转动。 (c )x y i i >,失稳时截面将绕y 轴转动。 【例3】 细长压杆的材料宜用高强度钢还是普通钢?为什么? 解:对于细长压杆,其临界压力与材料的强度指标无关,而与材料的弹性模量E 有关。由于高强度钢与普通钢的E 大致相等,而其价格贵于普通钢,故细长压杆的材料宜用普通钢。 【例4】 图示均为圆形截面的细长压杆(λ≥λp),已知各杆所用的材料及直径d 均相同,长度如图。当压力P 从零开始以相同的速率增加时,问哪个杆首先失稳?

1.6a P P 1.3a a P 解:方法一:用公式P lj = π2 EI /(μl )2 计算,由于分子相同,则μl 越大,P lj 越小,杆件越先失稳。 方法二:运用公式P lj =σlj A =π2 EA /λ2 ,分子相同,而λ=μl /i ,i 相同,故μl 越大,λ越大,P lj 越小,杆件越先失稳。 综上可知,杆件是否先失稳,取决于μl 。 图中,杆A :μl =2×a =2 a 杆B :μl =1×1.3a =1.3a 杆C :μl =0.7×1.6a =1.12a 由(μl )A >(μl )B >(μl )C 可知,杆A 首先失稳。 【例5】 松木制成的受压柱,矩形横截面为b ×h =100mm ×180mm ,弹性模量E =10GPa , λP =110,杆长l =7m 。在xz 平面内失稳时(绕y 轴转动),杆端约束为两端固定(图a ),在xy 平面内失稳时(绕z 轴转动),杆端约束为两端铰支(图b )。求木柱的临界应力和临界力。

压杆稳定性最新计算

停车库的受力分析计算 一、停车状态如下图所示 二、分析立柱受力并校核 已知:立柱截面为环形,令钢管厚度﹩=(D-d)/2为20mm 即D-d=0.02,材料选为45#, 屈服强度s σ≥355Mpa,安全系数n 取为1.5,弹性模量取为210Gpa ,泊松比取为0.26。 解:简化模型如图1所示,显然Mx>My,故按照Mx 情况进行校核。板自重m1=500Kg ,小车自重为m2=2000Kg 。分析立柱受力知其受压力和弯矩(包含风载), 故:需校核其强度 即,[]σσ≤ 1、起升载荷Q 的确定 起升载荷包括允许起升的最大汽车重量、以及载车板,因起 升高度<50米,故钢丝绳质量不计。 因起升速度≤R v 0.2m/s,故起升载荷动载系数2?05.1min ==? 故,()2221m ???+=?=g m Q F 2、 风载荷W P 的确定 qA CK P W h = C ——风力系数,用以考虑受风结构物体型、尺寸等因素对风压的影响 h K ——风力高度变化系数 q ——计算风压() 2/m N A ——立柱垂直于风向的迎风面积() 2m 正视图左视图

1) 计算风压q 风压计算公式为 2613.0q v = 风压按照沿海地区工作状态风压计算v=20m/s,故q=245.22 m /N 风压按照工作状态下的最大计算风压计算,此时q 取2502m /N ,故最终q 取250 2m /N 。 2) 风力系数C 因为离地面高度≤10m,按照海上及海岛2 .010?? ? ??h ,风压高度变化系数h K 取1.00 因为是圆管结构且10q 2≈d (q 为计算风压,d 为圆管直径),故C 取0.9 3) 迎风面积A t A A ψ= ψ——结构的充实率,t A A = ψ,钢管桁架结构ψ值取0.2-0.4,故0.3 t A ——结构或物品外形轮廓面积在垂直于风向平面上的投影() 2m h D A t =() 2m D ——立柱外径;h ——立柱高度 D D qA CK P W 675 325000.19.0h =????== 3、 强度校核1 []n s σσσ= ≤ 即[]σσ≤+= W M A F max cmax 令W M A F + = σ 2??=Q F ;()g m m Q 21+= () 22 4 d D A -= π 21M M M += M1——由重力引起的弯矩;M2——由风载引起的弯矩 ()3.121m 1?+=g m M ;h P M W *=2 1 2

工程力学第11章-压杆的稳定性问题答案

工程力学第11章-压杆的稳定性问题答案

工程力学(静力学与材料力学)习题详细解答(教师用书) (第11 章) 范钦珊唐静静 2006-12-18

2 第 11 章 压杆的稳定性问题 11-1 关于钢制细长压杆承受轴向压力达到临界载荷之后,还能不能继续承载有如下四 种答案,试判断哪一种是正确的。 (A )不能。因为载荷达到临界值时屈曲位移将无限制地增加; (B )能。因为压杆一直到折断时为止都有承载能力; (C )能。只要横截面上的最大正应力不超过比例极限; 正确答案是 C 。 (D )不能。因为超过临界载荷后,变形不再是弹性的。 11-2 今有两根材料、横截面尺寸及支承情况均相同的压杆.仅知长压杆的长度是短压 杆的长度的两倍。试问在什么条件下短压杆临界力是长压杆临界力的 4 倍?为什么? 解:只有当二压杆的柔度 λ ≥ λ 时,才有题中结论。这是因为,欧拉公式 F = π EI , 只有在弹性范围才成立。这便要求 P λ ≥ λP 。 Pcr (μl ) 2 11-3 图示四根压杆的材料及横截面(直径为 d 的圆截面)均相同,试判断哪一根最容易 失稳,哪一根最不容易失稳。

习题11-3 解:计算各杆之柔度:λ= μl ,各杆之i 相同 i

3 3 (a ) λa = 5l i (μ = 1) (b ) λb (c ) λ = 4.9l i = 4.5l (μ = 0.7) (μ = 0.5) c (d ) λd i = 4l i (μ = 2) 可见 λa > λb > λc > λd ,故(a )最容易失稳,(d )最 不容易失稳。 11-4 三根圆截面压杆的直径均为 d =160mm ,材料均为 A3 钢,E =200GPa ,σs = 240MPa 。已知杆的两端均为铰支,长度分别为 l 1、l 2 及 l 3,且 l 1=2l 2=4l 3 =5m 。试求各杆的临 界力。 解: i = d / 4 = 160 / 4 = 40mm , μ = 1 λ = μl 1 1 i = 5 ×10 40 = 1.25 3 λ = μl 2 2 i μl λ = 3 3 i = 2.5 ×10 40 = 1.25 ×10 40 = 62.5 = 31.5

(整理)压杆稳定计算.

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于

压杆稳定小结

压杆稳定小结 1、 压杆稳定的概念 稳定平衡是指干扰撤去后可恢复的原有平衡;反之则为不稳定平衡。 压杆稳定性是指压杆保持或恢复原有平衡状态的能力。 压杆的临界压力是指压杆由稳定平衡转变为不稳定平衡时所受轴向压力的界限值,用cr F 来表示。 2、 细长中心受压直杆的临界力 在线弹性和小变形条件下,根据压杆的挠曲线近似微分方程,结合压杆的边界条件,可推导得到使压杆处于微弯状态平衡的最小压力值,即压杆的临界压力欧拉公式可写成统一的形式: 2 2 ) (l EI F cr μπ= 式中μ为长度因数。几种常见细长压杆的临界力可见,杆端约束越强,杆的长度因数越小。l μ为相当长度,可理解为压杆的挠曲线两个拐点之间的直线距离。 (d) (d)表13-1 (d) 表13-1

3、 压杆的临界应力总图 (1) 压杆的临界应力 压杆在临界力作用下,其横截面上的平均应力称为压杆的临界应力, cr cr F A σ= (2) 欧拉公式的适用范围 线弹性范围,()22cr cr p 22 F EI E A l A ππσσλμ===≤ 即 p λλ≥ = 时,欧拉公式才能适用。通常称p λλ≥的压杆为大柔度压杆或细长压杆。 (3) 压杆的柔度(或长细比) i l μλ= 是一无量纲的量。一般情况下,由于杆端约束(μ)或惯性半径(i )的不同,压杆在不同的纵向平面内具有不同的柔度值,压杆失稳首先发生在柔度最大的纵向平面内。

(4) 临界应力总图 压杆的临界应力随柔度λ变化的λσ-cr 图称为临界应力总图。 大柔度杆p λλ≥,临界应力低于比例极限,可按欧拉公式计算,2 2 λπσE cr = ; 中柔度杆p s λλλ≤≤,临界应力超过比例极限,可按经验公式计算,如直线公式: λσb a cr -=,其中a 、b 为与材料有关的常数。或钢结构设计中采用的抛物线公式,以及折减弹性模量理论进行计算; 小柔度杆s λλ≤(或b λ),临界应力达极限应力:塑性材料s cr σσ=,脆性材料 cr b σσ=,属于强度问题。 其中,p p E σπλ2=,s s a b σλ-=为材料常数,仅与压杆的材料有关。 4、 压杆的稳定计算 (1) 压杆的稳定条件 采用稳定安全因数法,压杆的稳定条件为: []st st n n ≥ 或 []st st cr F n F F =≤ ][ 或 []st st cr n σσσ=≤][ 式中,[]st n 为规定的稳定安全因素。st n 为工作安全因数,由下式确定: 图13-12

!第八章压杆稳定性

15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)? 解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。 15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。 解:(a) 柔度: 230 1500.4 λ?= = 相当长度:20.30.6l m μ=?= (b) 柔度: 150 1250.4 λ?== 相当长度:10.50.5l m μ=?= (c) 柔度: 0.770 122.50.4 λ?= = 相当长度:0.70.70.49l m μ=?= (d) 柔度: 0.590 112.50.4 λ?= = 相当长度:0.50.90.45l m μ=?= (e) 柔度: 145 112.50.4 λ?== 相当长度:10.450.45l m μ=?= 由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。即:() 22 cr EJ P l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为: () 2948 2 2 2 320010 1.610640.617.6410cr EJ P l N π ππμ-??? ??= ==?

() 2948 2 2 2 320010 1.610640.4531.3010cr EJ P l N π ππμ-??? ??= ==? 15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。 解: 92.6 33827452.5 p s s a λπσλ===--=== 15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr P 。若实际作用于挺杆的最大压缩力P =2.33kN ,规定稳定安全系数W n =2~5。试校核此挺杆的稳定性。 解:(1)

第十一章压杆的稳定_工程力学

第十一章 压杆的稳定 承受轴向压力的杆,称为压杆。如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。本章研究细长压杆的稳定。 §11.1 稳定的概念 物体的平衡存在有稳定与不稳定的问题。物体的平衡受到外界干扰后,将会偏离平衡状态。若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。 上述小球是作为未完全约束的刚体讨论的。对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。如二端铰支的受压直杆,如图11.2(a )所示。当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。若轴向压力F 较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a ),平衡是稳定的;若轴向压力F 足够大,即使 (a ) 稳定平衡 图11.1 稳定平衡与不稳定平衡

微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。压杆保持稳定与发生屈曲间的力F cr 称为压杆的临界载荷或临界压力。 建筑物中的立柱、桁架结构中的受压杆、液压装置中的活塞推杆、动力装置中的气门挺杆等都是工程中常见的压杆,细长压杆的稳定是设计中必需考虑的。 §11.2 两端铰支细长压杆的临界载荷 压杆是否能保持稳定,取决于压杆的临界载荷或临界压力F cr 。当F =F cr 时,压杆处于如图11.2(b)所示的微弯平衡状态。现将二端铰支的细长压杆重画于图11.3,用静力学的方法研究其平衡问题。 一、力的平衡 取任一截面,由力的平衡方程可知,杆在任一距原点o 为x 处的弯矩为: M (x )=-Fy 二、物理方程 讨论弹性小变形情况,有线弹性应力-应变关系: (a ) 图11.2 压杆稳定概念 (b) (c) 图11.3 二端铰支的细长压杆

建筑力学第11章压杆稳定

第11章压杆稳定 [内容提要]稳定问题是结构设计中的重要问题之一。本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。 11.1 压杆稳定的概念 工程中把承受轴向压力的直杆称为压杆。前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。 为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。 P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值 cr P时,杆件虽位置上保持平衡。但如果继续增加荷载,当轴向压力等于某个临界值,即P= cr 然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。 P= cr

压杆稳定

压杆稳定 一、概念题 1.判断题:(以下结论对者画√,错者画×) (1)直杆受压时的承载能力取决于它的强度是否足够。()(2)临界应力愈大,压杆愈容易失稳。()(3)压杆的柔度与压杆的材料无关。()(4)计算压杆临界力的公式是欧拉公式。()(5)压杆总是在 值大的纵向平面内失稳。()(6)两杆的材料、长度、截面积以及两端支撑均相同,它们的临界应力相同。()(7)细长压杆不易采用高强度钢来提高其稳定性。()(8)提高压杆稳定性的措施,实际上就是如何增大柔度的措施。()2.选择题: (1)图示截面形状的压杆,设两端为铰链支承。失稳时() A、图(A)截面绕y轴转动; B、图(B)截面绕x轴转动; C、图(C)截面绕x轴转动; D、以上回答都不正确。 (2)两根材料相同的压杆,下列哪种情况容易失稳() A、μ 值大的; B、λ值大的; C、μλ值大的; D、i值小的。 (3)图示为四根材料相同、直径相等的杆件,承载能力大的是()

二、计算题: 9-1.图示细长压杆均为圆杆,直径d 均相同,材料是Q235钢,E=200GPa 。图(a )为两端铰支,图(b)为一端固定,另一端铰支,图(c )为两端固定。试判别那种情况的临界力最大?那种最小?若圆杆直径d=16mm ,试求最大的临界力cr P F 。 题图9-1 9-2.有两根细长压杆,其长度、横截面积、弹性模量、端部支承方式相同,其中一根压杆截面为圆形,另一根压杆截面为正方形,试比较二者的临界力cr P F 和cr P F '。 9-3.图示压杆的材料为Q235钢,E=200GPa,在正视图(a )的平面内,两端为铰支,在俯视图(b )的平面内,两端为固定,试求压杆的临界力。 (提示:正视图的平面内1μ=,在俯视图的平面内0.5μ=) 题图9-3

压杆稳定性计算

第16章压杆稳定 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5

材料力学压杆稳定分析

第九章压杆稳定 9-1由五根圆截面钢杆组成的正方形平面桁架,杆的直径均为d=40mm,材料的弹性模量E=200GPa, a=1m,试求使结构到达临界状态时的最小荷载。如F力向里作用,则最小荷载又是多少? 答:F t=124kN, F c=350.2kN F 题 9 - 1 图解:当F的杆受压 由静力学平衡方程可知该杆所受压力为F 294 2 2 200100.04 124 () 124 cr t cr EI F kN l F F kN π π π μ ???? ===∴== 当F 为压力时,长为a的杆受压 由静力学平衡方程可知该杆所受压力为 2 F 294 2 22 200100.04 64248 ()(11) 248 2 350.7 cr c c EI F kN l F kN F kN π π π μ ???? === ? = ∴= 9-2 如图所示细长杆,试判断哪段杆首先失稳。 答:(d) 解:0.5 μ= a 0.7 μ= b 0.7 μ= c 2 μ= d 2 2 () π μ μμμμ = >=> cr d c b a EI F l

crd F ∴最小 ∴d 杆最容易失稳 9-3 试求图示压杆的临界力,材料是HPB235。 答:F cr =19.7kN 题 9 - 3 图 30X 30X 4 解:一端为自由端,一端为固定端,则2μ = 22 ()cr EI F l πμ= 查表可知: 8408 4 0 2.92100.7710x y I m I m --=?=? 因为最容易失稳的方向是惯性矩最小的方向 所以8400.7710y I I m -==? 298 2 210100.771019.7(20.45)cr F kN π-????∴= =? 9-4两端为球铰的压杆的横截面为图示各种不同形状时,压杆会在哪个平面内失稳(即失稳时,横截面绕哪根轴转动)?

第十一章 压杆稳定()

第十一章 压杆稳定 是非判断题 1 压杆失稳的主要原因是由于外界干扰力的影响。( ) 2 同种材料制成的压杆,其柔度愈大愈容易失稳。( ) 3 细长压杆受轴向压力作用,当轴向压力大于临界压力时,细长压杆不可能 保持平衡。( ) 4 若压杆的实际应力小于欧拉公式计算的临界应力,则压杆不失稳( ) 5 压杆的临界应力值与材料的弹性模量成正比。( ) 6 两根材料、长度、截面面积和约束条件都相同的压杆,则其临界力也必定 相同。( ) 7 若细长杆的横截面面积减小,则临界压力的值必然随之增大。( ) 8 压杆的临界应力必然随柔度系数值的增大而减小。( ) 9 对于轴向受压杆来说,由于横截面上的正应力均匀分布,因此不必考虑横 截面的合理形状问题。( ) 填空题 10 在一般情况下,稳定安全系数比强度安全系数要大,这是因为实际压杆总 是不可避免地存在 以及 等不利因 素的影响。 11 按临界应力总图,1λλ≥的压杆称为 ,其临界应力计算公式 为 ;12λλλ≤≤的压杆称为 ,其临界应力计算公式 为 ;2λλ≤的压杆称为 ,其临界应力计算公式 为 。 12 理想压杆的条件是① ;② ; ③ 。 13 压杆有局部削弱时,因局部削弱对杆件整体变形的影响 ;所以在 计算临界压力时,都采用 的横截面面积A 和惯性矩I 。 14 图示两端铰支压杆的截面为矩形,当其失稳时临界压力F cr = , 挠曲线位于 平面内。 B 题15图 15 图示桁架,AB 和BC 为两根细长杆,若EI 1>EI 2,则结构的临界载荷 F cr = 。

16对于不同柔度的塑性材料压杆,其最大临界应力将不超过材料 的。 17提高压杆稳定性的措施 有,,以及 和。 18细长杆的临界力与材料的有关,为提高低碳钢压杆的稳定性,改用高强度钢不经济,原因时。 19按图示钢结构(a)变换成(b)的形式,若两种情形下CD为细长杆,结 P (a)(b) 20图示材料相同,直径相等的细长杆中,杆能承受压力最大;杆能承受的压力最小。F ( 选择题 F ,而实际压杆属 cr )。 (A)并不影响压杆的临界压力值; (B)实际的临界压力大于F ,是偏于安全的; cr ,是偏于不安全的; (C)实际的临界压力大于F cr (D)实际的临界压力小于F ,是偏于不安全的; cr 22方形截面压杆,2:1 P是原 b;如果将b改为h后仍为细长杆,临界力 h := cr 来的多少倍?( ) (A)16倍;(B)8倍;(C)4倍;(D)2倍。 23在横截面积等其他条件均相同的条件下,压杆采用图()所示的截面形状,其稳定性最好。 F 500 题23图24图

(整理)压杆稳定计算.

第16 章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F 由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F 达到屈服强度载荷F s (或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a 所示的同样粗细而比较长的杆件(图16-1b),当压力F 比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F 逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图 16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的 稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的 O 点处于平衡状态,如图 16-5a 所示。先用外加干 扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。 因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的 O 点处于平衡状态,如图 16-5c 所示。当用外加干 扰力使其偏离原有的平衡位置后, 小球将继续下滚, 不再回到原来的平衡位置。 因此, 小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的 O 点处于平衡状态,如图 16-5b 所示,当用外加干 扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置 O 1 再次处于平 衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡 状态为随遇平衡。 图 16-5 图 16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏 离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于 图 16-3

提高压杆稳定性的措施

提高压杆稳定性的策略 首先援引课本中的“压杆稳定性的概念”: “在第二章研究受压直杆时,认为其之所以破坏是由于强度不够造成的,即当横截面上的正应力达到材料的极限应力时,压杆就发生破坏。实践表明,这对于粗而短的压杆是正确的,但对于细长的压杆,情况并非如此。细长压杆的破坏并不是由于强度不够,而是由于荷载增大到一定数值后,不能保持其原有的直线平衡形式而失效。” 故“提高压杆稳定性”即“令受压杆件能够更好地保持其原有的直线平衡形式”,表观上体现为“提高压杆临界力”。由临界力公式 ()22cr L EI F μπ= 其中 π为圆周率 E 为压杆材料的弹性模量 I 为压杆截面的形心主惯性矩 μ为长度因数 L 为压杆长度 杆件又分细长杆(大柔度杆)、中长杆(中柔度杆)、和短杆(小柔度杆)短杆实际上发生的是强度破坏。 故要使cr F 增大,可以采取以下措施: ①采用合理的材料制作压杆(选择合适的E )。选择弹性模量高的材料,如优质钢,各种复合材料等。但是由于各种钢材的弹性模量相差不大,所以当细长压杆要选用钢材时,仅仅出于稳定性的要求而选用高强度钢材制作细长压杆是不经济的;对于中长杆采用高强度材料才能够比较明显地提高稳定性。 ②采用合理截面形式(使m in I 增大)。由于杆件一般处于空间受力状态或双向平面受力状态,故压杆稳定性总是受限于稳定性最差的一个方向,即决定于截面的m in I 。当截面面积不变时,可改变截面形状,尽量使其形心主惯性矩相等或相近,这样压杆在各个方向就具有相近的稳定性,下面举例说明: 由两个槽型钢组成的截面,左边的截面形式若间距控制得不好,会使得Y Z I I ≠,若将其换成右边的形式则可使得Y Z I I ≈,更有利于维稳。

压杆稳定性计算

后支撑压杆稳定性计算: 1.后支撑的截面系数: 2.后支撑的长度: 假设后支撑的长度L=1325mm 3.后支撑所受的压力: 假设后支撑所受的压力F1: F1= 3702 N 后支撑主要受压力的作用,需校验其抗压性,即压杆稳定。 4.压杆的3种类型: a.大柔度杆 b.中柔度杆 c.小柔度杆 5.压杆的柔度由下式算出: λ:柔度 μ:压杆的长度因素 l: 压杆的长度 i : 压杆的惯性半径 6.压杆类型的判定: a.λ≥λ1,判定为大柔度杆 b.λ 2 <λ<λ1,判定为中柔度杆 c. λ≤λ2,判定为小柔度杆 (说明:λ1、λ2与材料的性质有关,不同的材料有不同的取值。 i l μλ =

材质Q235B: λ1=100; λ2=62 材质硬铝:λ1=55;λ2=0) 7.压杆临界力计算: a. 大柔度杆 : (欧拉公式) b.中柔度杆: (直线公式) (说明:a 与b 与材料的性质有关的常数。 材质Q235B: a =304Mpa ; b =1.12 Mpa 材质硬铝:a =372 Mpa ;b =2.14 Mpa ) c.小柔度杆: A F s cr ?=σ 8.计算: 由压杆的约束条件选择相应的长度因素:因为后支撑的两端铰接,所以μ=1 压杆长度l=1325mm 惯性半径 i=15.4mm 由于斜支撑的材质:Q235B 所以,弹性模量E=206GPa ;λ1=100 ;λ2=62 柔度判定: 因为λ 2 <λ<λ 1 ; 所以为中柔度杆 因此,采用直线公式进行计算: F1=3702N <cr F N 61681= 所以后支撑稳定。 864.1513251=?==i l μλ()()N A F cr 616811013.297 108612.1304b λa 66=????-=?-=-22)(l EI F cr μπ=()A F cr ?-=b λa

压杆稳定性计算

第16章压杆稳定 16、1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但就是,实践与理论证明,这个结论仅对短粗的压杆才就是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不就是因为强度不够,而就是由于出现了与强度问题截然不同的另一种破坏形式,这就就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但就是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲与绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性就是指杆件保持原有直线平衡形式的能力。实际上它就是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态就是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态就是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于直线平衡状态的压杆偏离原有的位置,如图16-6a所示。当轴向压力F 由小变大的过程中,可以观察到: 1)当压力值F1较小时,给其一横向干扰力,杆件偏离原来的平衡位置。若去掉横向干扰力后,压杆将在直线平衡位置左右摆动,最终将恢复到原来的直线平衡位置,如图16-6b所示。所以,该杆原有直线平衡状态就是稳定平衡。 2)当压力值F2超过其一限度F cr时,平衡状态的性质发生了质变。这时,只要有一轻微的横向干扰,压杆就会继续弯曲,不再恢复原状,如图16-6d所示。因此,该杆原有直线平衡状态就是不稳定平衡。

知识点10:压杆稳定

知识点10:压杆稳定 一、弹性平衡稳定性的概念 1.弹性体保持初始平衡状态的能力称为弹性平衡的稳定性。 2.受压杆件保持初始直线平衡状态的能力称为压杆的稳定性。 二、压杆的临界力 1.两端铰支细长压杆欧拉(Euler )临界力公式为2 2l EI F cr π= 。欧拉临界力公式只适用于小变形、 线弹性范围内。 2.在临界状态两端铰支细长压杆的弹性曲线方程为一个半波正弦方程:x l C y π sin =。由此利用 “形状比较法”可求得不同约束下细长压杆的临界力。 3.杆端约束对临界力的影响: (1)不同杆端约束的压杆的临界力,可用解压杆的挠曲线近似微分方程或用形状比较法求得。 (2)不同杆端约束细长压杆临界力的欧拉公式为2 2) (l EI F cr μπ=,式中μl 称为计算长度(或有效长度),μ称为支座系数(或长度系数)。当压杆在两个惯性平面内的μ值不同时,计算临界力应取较大的μ值。 (3)几种常见杆端约束的支座系数: 4.临界应力与柔度: 细长压杆的临界应力公式为2 2λπσE cr =,式中i l μλ=称为压杆的柔度,和压杆的长度、约束情况、截面形状及尺寸相关。 三、压杆的分类与临界应力总图 1.柔度的分界值

P P E σπλλ22)(= ; b a s s σλλ-= )(1 式中a ,b 是与材料性质相关的常数,单位为MPa 。 2.压杆的分类 压杆根据其柔度的大小而分类,计算压杆临界应力时应先判断是何类压杆,然后选择相应的临界应力公式。压杆可分为下列三类: (1)细长杆(λ≥λP ):计算临界应力用欧拉公式2 2λ πσE cr =(欧拉双曲线公式); (2)中长杆(λs <λ<λP ):计算临界应力用经验公式σcr =a -b λ(雅辛斯基直线公式); (3)粗短杆(λ≤λs ):计算临界应力用压缩强度公式σcr =σs (或σb )。 3.临界应力总图 临界应力总图如图10-1所示。 四、压杆稳定性的校核 1.进行压杆稳定性的校核时,通常用安全系数法。在建筑等行业常用折减系数法。 2.工程中,考虑到压杆的初曲率、载荷的偏心、材料的不均匀及失稳破坏的突发性等因素对压杆临界力的影响,因而规定的稳定安全系数大于强度安全系数。 3.对于截面有局部削弱(如油孔等)的压杆,除校核稳定性外,还须对局部削弱处进行强度校核,其计算面积应是扣除孔洞削弱后的实际面积(称为净面积)。 4.压杆的稳定性是对压杆整体而言的,截面的局部削弱,对临界力影响不大,故可不必考虑。 a .安全系数法 为了保证压杆有足够的稳定性,应使其工作压力小于临界力,或使其工作应力小于临界应力,即 F<Fcr 或 σ<σcr 用安全系数来校核压杆稳定性,其稳定性条件为 []W cr W n F F n ≥= 或 []W cr W n n ≥= σ σ 式中n W 为压杆实际稳定安全系数,[n W ]为规定的稳定安全系数。

相关主题
文本预览
相关文档 最新文档