当前位置:文档之家› 基于线性互补的非连续变形分析_李小凯

基于线性互补的非连续变形分析_李小凯

基于线性互补的非连续变形分析_李小凯
基于线性互补的非连续变形分析_李小凯

大跨度桥梁实用几何非线性分析.

大跨度桥梁实用几何非线性分析 一.引言.现代大跨度桥梁等工程结构的柔性特征已十分明显,对于这些结构考虑几何非线性的影响己必不可少。并且,计算机能力的大大提高也使得分析大型复杂结构的非线性问题成为可行。80年代国外对几何非线性问题的发展已相当完善[1,2],国内在这方面也做了不少的工作[4-6]在工程结构几何非线性分析中,按照参考构形的不同可分为TL(Total Lagranrian) 法和UL(Updated Lagrangian)法[1]。后来,引入随转坐标系后又分别得出 CR(Co-rotational)-TL法和CR-LU法[2,3],在工程中UL(或CR-UL)法应 用较多。以前的文献大都对结构的几何刚度矩阵进行了复杂而详细的推导。从文中的分析可以发现,结构几何刚度矩阵的精确与否并不实质性地影响迭代收敛的最终结果,求解几何非线性问题的关键在于如何由节点位移增量准确地计算出单元的内力增量,而这一点以前文献都没有提到过。因此,本文的重点放在论述单元内力增量的计算上。工程上很早就开始使用拖动坐标系来求解大跨度桥梁结构的大挠度问题,本文则把它应用到单元内力增量的计算中。从实质上说,这里的拖动坐标系与上面提到的随转坐标系没有区别。因此,在理论方法上,目前文中的方法可以归类到CR-UL法。但由于本文重点不在于详细介绍这种方法的理论体系,所以论述中均不再使用该名词。本文的目的主要是通过简化复杂的几何非线性分析方法,推广该方法在实际工程中的应用。二、非线性商限元求解过程对于工程结构的非线性问题,用有限元方法求解时的非线性平衡方程可写成以下的一般形式:Fs(δ)-P0(δ)=0 (l)其中,为节点的位移向量;Fs(δ)为结构的等效节点抗力向量,它随节点位移及单元内力而变化;PO(δ)为外荷载作用的等效节点荷载向量,为方便起见,这里暂时假定它不随节点位移而变化。由于式(l)中的等效节点抗力一般无法用节点位移显式表示,故不可能直接对非线性平衡方程进行求解。但实际结构的整体切向刚度容易得到,所以通常应用Newton-Raphson迭代方法求解该问题。结构的整体切向刚度矩阵KT可表示如下dPO=KTdδ (2)式中,KT= KE十KG,其中KE 为结构的整体弹性刚度矩阵,KG为几何刚度矩阵。用混合Newton-Raphson迭代方法求解结构非线性问题的基本过程如下:(1)将等效节点荷载PO分成n 步,ΔP0=PO/n,计算并组集结构的整体切向刚度矩阵,进入加载步循环;(2)求解节点位移增量;(3)计算各单元内力增量,修正单元内力;(4)更新节点坐标,计算节点不平衡力R;(5)判断节点不平衡力R是否小于允许值,如满足条件,则进入下一个加载步;如不满足条件,重新计算结构的整体切向刚度矩阵,用R代替ΔP0,回到第2步;(6)全部加载步完成之后,结束。从上述求解过程中可见,最为关键的一步是第3步,即由节点位移增量计算单元的内力增量。也可以说是由这一步决定了最终的收敛结果,以下将对此着重论述。其实结构的整体切向刚度矩阵对结果并无实质性的影响,修正的NetwRaphson方法正是利用这一点来节省迭代计算的时间。以前的文献对空间梁单元几何刚度矩阵的推导方面论述较多,都建立在一些假定的基础上,这里就不详细说明。考虑到结构的整体切向刚度矩阵精确与否并不改变最终结果,仅影响迭代收敛的速度,并且不是越精确的整体切向刚度矩阵迭代收敛越快。三、小应变时单元内力增百计算在一般情况下,工程结构的几何非线性都属于小应变大位移(大平移、大转动)问题。对于这类问题,单元内力增量的计算比较简单。平面梁单元是空间梁单元发展的基础,故这里先分析平面梁单元的情况。平面梁

岩土工程非连续变形的数值分析方法

文章编号:1009-2269(2005)04-0044-05 岩土工程非连续变形的数值分析方法 Ξ 王彦海1,郑 宏1,江 巍1,戚道国2(1.三峡大学土木水电学院,湖北宜昌 443002;2.德州市公路勘察设计院,山东德州 253005) 摘要:以阐述岩土工程中数值分析方法的发展趋势为目的,回顾了非连续变形数值分析方法的发展历史,系统综述了节理单元法、离散单元法、刚体弹簧元法等具有代表性的几种方法的基本理论、求解过程、适用范围和优缺点,为今后的研究提供参考. 关 键 词:岩土工程;非连续变形;数值分析方法 中图分类号:T U 45文献标识码:A 在岩土工程中,常会遇到各种非连续变形力学问题,这是由工程岩土的特征决定的.岩土是在漫长的地质历史发展过程中形成的地质体的一部分,它的成因和构造复杂,岩性多样.为了综合研究岩土的工程特性,近年来人们提出了岩土结构这一概念,认为岩土是有结构的,岩土的力学作用主要受岩土结构面控制,岩土的变形与破坏一般都发生在结构面上.所谓结构面是在地质发展历史中,岩土内形成具有一定方向、一定规模、一定形态和特性的面、缝隙以及带状的地质界面,如层面、片理、节理、软弱夹层,以及断层破碎带等.岩土就是由结构面及所包围的结构体共同组成的. 正是由于岩土的这种结构特点,在建筑物与岩土的交界面上、结构的分缝面上等均具有普遍的滑移或脱开等非连续变形特性,使应力或位移不连续,而这些交界面上,结构的分缝面上等均具有普遍的滑移或脱开等非连续变形特性,使应力或位移不连续,而这些交界面上的非连续力学行为极大地影响着结构的受力和变形,往往成为问题分析的关键.随着以有限元为代表的连续变形力学离散模型的日趋完善和广泛运用,学术界和工程界已不再满足在连续变形力学框架下得到上述问题的解答.因此,近年来,先后出现了不少的理论和模型来解决这些非连续变形力学问题.本文详细总结了这些理论和模型的基本理论和研究发展,提出了一些认识,为进一步研究起抛砖引玉的作用. 1 非连续变形数值分析的发展历史 从整个数值分析的发展历史来看,对结构的分析有4种基本的方法.按它们的发展先后,解析法最早,其次是有限差分法,然后是以有限单元法为代表的连续变形分析,最近的是非连续变形分析方法.相对于前3种数值分析方法,非连续变形分析方法的提出还只有很短的历史. 最初对非连续变形问题的数值分析也是从有限元法入手,在反映位移连续的有限单元模型中引入节理单元、薄层单元等特殊单元来模拟位移非连续变形情况.在70年代初期,Cundall 将岩土材料视为由软弱结构面切割而成的一系列刚性岩块组合体,运用牛顿运动定律对岩土材料进行非连续变形模拟.同年代,K awai 针对均质体静力问题提出了刚体———弹簧元模型.至此,对岩土变形的数值分析已从连续介质过渡到了非连续介质.80年代,Cundall 又提出快速拉格朗日法(F LAC 法)并将其程序化、实用化,其基本原理 第12卷 第4期2005年12月 兰州工业高等专科学校学报Journal of Lanzhou P olytechnic C ollege V ol.12,N o.4Dec.,2005 Ξ收稿日期:2005-09-26作者简介:王彦海(1980-),男,河南漯河人,硕士生.

4非连续变形分析(DDA)方法讲稿

非连续变形分析(DDA)方法 1 DDA方法的提出 模拟介质不连续缝的历史可追溯到30年前的Goodman、Taylor和Brekke等教授发展的节理单元。对岩土裂缝的数值计算发展很快,并己在岩石工程中得到广泛应用。Cundall介绍的离散元法现在被广泛应

用于节理或块状岩石。两者是用虚拟力来调整滑动和阻止块体重叠的一种方法,有时候可达到稳定。 20世纪80年代中期,在完全的运动理论和能量极小化的基础上,美籍华人石根华博士和Goodman提出并发展了一个计算块体系统的应变与位移的新方法——非连续变形分析方法(Discontinuous

Deformation Analysis)。这种方法是以研究非连续块体系统不连续位移和变形为目的的一种数值方法,它将块体理论与岩土体的应力、应变分析相结合,在假定的位移模式下,由弹性理论位移变分法建立总体平衡方程式,通过施加或去掉块体界面刚性弹簧,使得块体单元界面之间不存在嵌入和张拉现象,应用最小势能原理使整个

系统能量最小化,从而保证在静力和动力荷载下包含离散和不连续块体的地质系统大位移破坏分析得到唯一解。 该方法具有离散元法的大多数特点,特别适合于非连续体的位移模拟。 非连续变形分析严格遵循经典力学规则,它可用来分析块体系统的力和位移的相互作用,对各块体允许有位移、变形和应变;

对整个块体系统,允许滑动和块体界面间张开或闭合。如果知道每个块体的几何形状、荷载及材料特性常数,以及块体接触的摩擦角、粘着力和阻尼特征。 DDA即可计算应力、应变、滑动、块体接触力和块体位移。 DDA方法自提出以后,由于这一数值模拟方法所得结果非常接近实际,能够很

第三章 非线性分析

第三章非线性分析 在工程结构实际中,常常会遇到许多不符合小变形假设的问题,例如板和壳等薄壁结构在一定载荷作用F,尽管应变很小,甚至未超过弹性极限,但是位移较大,材料微单元会有较大的刚体转动位移。这时平衡条件应如实地建立在变形后的位形上,以考虑变形对平衡的影响。同时应变表达式也应包括位移的二次项。这样,结构的几何形变关系将是非线性的。这种由于大位移和大转动引起的非线性问题称为几何非线性问题。在涉及几何非线性问题的有限元方法中,可以采用两种不同的表达格式来建立有限元方程。一种格式是所有静力学和运动学变量总是参考于初始位形的完全拉格朗日格式,即在整个分析过程中参考位形保持不变。而另一种格式中,所有静力学和运动学的变量参考于每一载荷步增量或时间步长开始的位形,即在分析过程中参考位形是不断被更新的,这种格式就称为更新的拉格朗日格式。下面将分别具体讨论大变形情况下应变和应力度量,几何非线性有限元方程的建立以及系数矩阵的形成。 在涉及几何非线性问题的有限元方法中,可以采用两种不同的表达格式来建立有限元方程。一种格式是所有静力学和运动学变量总是参考于初始位形的完全拉格朗日格式,即在整个分析过程中参考位形保持不变。而另一种格式中,所有静力学和运动学的变量参考于每一载荷步增量或时间步长开始的位形,即在分析过程中参考位形是不断被更新的,这种格式就称为更新的拉格朗日格式。下面将分别具体讨论大变形情况下应变和应力度量,几何非线性有限元方程的建立以及系数矩阵的形成。 第三章非线性分析的数值计算方法 3.1概述 非线性问题一般包括三类:材料非线性、几何非线性和边界非线性;而在许多实际的结构中,常常是三种非线性问题的融合,因此其解析方法能够得到的解答是十分有限的。对于非线性问题的求解,可以采用有限元分析的方法,因此非线性方程组的解法也就成为非线性问题有限元分析涉及的基本问题,也就是通常所说的非线性分析的数值计算方法I”。常用的有Newton—Raphson法(简称N-R)和弧长法。本文将详细介绍Newton-Raphson法和弧长法,且依据不同的约束方程形式介绍各种不同形式的弧长法并比较其准确性和可靠性,这在非线性分析计算中是非常有意义的。 3.2牛顿一拉夫森法

非连续数值方法综述

非连续数值方法综述 杨凡 (河海大学水利水电学院,江苏南京210098) 摘要:非连续问题是岩土及水利工程中不可避免的一类难题,由于其对工程的影响巨大, 近几百年来特别近一个世纪以来一直是工程界研究的一个热门话题。从最早的非连续问题 解析解法—刚体极限平衡法出发,引申出近几十年来有关非连续问题研究的热点—非连续 问题的数值解法,然后对这些非连续的数值方法的基本原理和实际应用发展情况进行一一 综述。 关键词:非连续;数值方法; 岩石和土都是经历过变形的地质体,受其成因、组成、结构、年代等诸多因素的影响,岩土材料具有高度的非连续性、非均匀性和各向异性的特征,在力学性质上表现出强烈的非线性。岩土工程是一门综合应用岩石力学、土力学、工程地质学等基本知识解决实际工程中有关岩体与土体变形及稳定问题的学科[1]。岩土工程中的非连续变形问题主要是由岩石及土体中不连续面的存在引起的,岩土工程问题中的不连续面大致可分为两类,一类是指存在于岩体中的节理、软弱夹层以及土体中的剪切破坏面,另一类则是岩土结构如各类基础、挡土结构、地下结构等与岩土体之间的接触面。显然,不连续面对岩土体或结构的受力、变形有着重要的影响,因此为使计算结果真实地反映出岩土体及结构的受力和变形情况,在计算时不能忽视不连续面的存在[2]。 对于具有不连续面的结构,在承受荷载的过程中,不连续面的状态是在不断变化的,这将影响到两侧岩土体的应力和变形,从而影响到整个体系的应力场,而应力场的改变又影响到不连续面的状态。因此,解决岩土力学问题的关键在于对非连续变形的模拟,分析研究结构中各种不连续面的构造特点和力学性能,研究其受力状态的变化规律及其对结构整体性能的影响是工程设计中的关键研究课题之一,具有很大的学术意义和实用价值[3]。 几百年来,人们对非连续变形问题作了大量的研究工作。最早有关非连续问题的研究主要集中在寻求解析解的层面上。1773年,法国科学家库伦在大量实验基础上总结了著名的库伦土压理论,刚性楔体和静力平衡的应用也为后续研究奠定了一个基调。在此基础上,瑞典圆弧法的提出表明刚体极限平衡方法的正式诞生,在接下来的几十年间该方法得到了很好的发展并出现了Bishop、Janbu、Sarma等改进的方法。在发展过程中,极限平衡法在水利工程上得到了很好的运用。但其缺点亦非常明显,即不考虑土体的变形,得到的结果偏安全。在许多的工程中,其运用受到局限。 近年来,伴随着计算机技术的高速发展,有关非连续问题的数值分析逐渐发展成为热门。非连续分析的数值方法主要包括:界面单元有限元法(FEM with interface elements)、刚性有限元法(RFEM)、离散单元法(DEM:Distinct Element Method)、非连续变形分析(DDA:Discontinuous Deformation Analysis)、数值流形方法(NMM:Numerical Manifold Method)、无单元法((Element—Free Method)、耦合方法(Couple Methods)以及渐进破坏模型(Progressive Fracture Models)等[4]。以下对各个方法研究进展情况进行综述。

几何非线性分析

几何非线性分析 随着位移增长,一个有限单元已移动的坐标可以以多种方式改变结构的刚度。一般来说这类问题总是是非线性的,需要进行迭代获得一个有效的解。 大应变效应 一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变变。首先,如果这个单元的形状改变,它的单元刚度将改变。(看图2─1(a))。其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变。(看图2─1(b))。小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移。(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级。 相反,大应变分析说明由单元的形状和取向改变导致的刚度改变。因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。通过发出NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。这效应改变单元的形状和取向,且还随单元转动表面载荷。(集中载荷和惯性载荷保持它们最初的方向。)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。在ANSYS/Linear Plus程序中大应变效应是不可用的。

图1─11 大应变和大转动 大应变处理对一个单元经历的总旋度或应变没有理论限制。(某些ANSYS 单元类型将受到总应变的实际限制──参看下面。)然而,应限制应变增量以保持精度。因此,总载荷应当被分成几个较小的步,这可以〔NSUBST,DELTIM,AUTOTS〕,通过GUI路径 Main Menu>Solution>Time/Prequent)。无论何时当系统是非保守系统,来自动实现如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。 关于大应变的特殊建模讨论 应力─应变 在大应变求解中,所有应力─应变输入和结果将依据真实应力和真实(或对数)应变。(一维时,真实应变将表求为。对于响应的小应变区,真实应变和工程应变基本上是一致的。)要从小工程应变转换成对数应变,使用。要从工程应力转换成真实应力,使用。(这种应力)转化反对不可压缩塑性应力─应变数据是有效的。) 为了得到可接受的结果,对真实应变超过50%的塑性分析,应使用大应变单元(VISCO106,107及108)。 单元的形状 应该认识到在大应变分析的任何迭代中低劣的单元形状(也就是,大的纵横比,过度的顶角以及具有负面积的已扭曲单元)将是有害的。因此,你必须和注

线性分析与非线性分析的区别

线性分析在结构方面就是指应力应变曲线刚开始的弹性部分,也就是没有达到应力屈服点的结构分析 非线性分析包括状态非线性,几何非线性,以及材料非线性,状态非线性比如就是钓鱼竿,几何比如就是物体的大变形,材料比如就是塑性材料属性。

2.非线性行为的原因 引起结构非线性的原因很多,主要可分为以下3种类型。 (1)状态变化(包括接触) 许多普通结构表现出一种与状态相关的非线性行为。例如,一根只能拉伸的电缆可能是松弛的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变而突然变化。状态改变或许和载荷直接有关(如在电缆情况中),也可能是由某种外部原因引起的(如在冻土中的紊乱热力学条件)。接触是一种很普遍的非线性行为,接触是状态变化非线性类型中一个特殊而重要的子集。(2)几何非线性 结构如果经受大变形,其变化的几何形状可能会引起结构的非线性响应。如图5.2所示的钓鱼杆,在轻微的载荷作用下,会产生很大的变形。随着垂向载荷的增加,杆不断弯曲导致动力臂明显减少,致使杆在较高载荷下刚度不断增加。 (3)材料非线性

非线性的应力-应变关系是结构非线性的常见原因。许多因素可以影响材料的应力-应变性质,包括加载历史(如在弹-塑性响应状况下)、环境状况(如温度)、加载的时间总量(如在蠕变响应状况下)等。 3.非线性结构分析中应注意的问题 (1)牛顿-拉普森方法 ANSYS程序的方程求解器可以通过计算一系列的联立线性方程来预测工程系统的响应。然而,非线性结构的行为不能直接用这样一系列的线性方程来表示,需要一系列的带校正的线性近似来求解非线性问题。 一种近似的非线性求解是将载荷分成一系列的载荷增量。可以在几个载荷步内或者在一个载荷步的几个子步内施加载荷增量。在每一个增量的求解完成后,继续进行下一个载荷增量之前,程序调整刚度矩阵以反映结构刚度的非线性变化。遗憾的是,纯粹的增量近似不可避免地随着每一个载荷增量积累误差,最终导种结果失去平衡,如图5.3a所示。 ANSYS程序通过使用牛顿-拉普森平衡迭代克服了这种困难,在某个容限范围内,它使每一个载荷增量的末端解都达到平衡收敛。图5.3b描述了在单自由度非线性分析中牛顿-拉普森平衡迭代的使用。在每次求解前,NR方法估算出残差矢量,这个矢量是回复力(对应于单元应力的载荷)和所加载荷的差值。之后,程序使用非平衡载荷进行线性求解,并且核查收敛性。如果不满足收敛准则,则重新估算非平衡载荷,修改刚度矩阵,获得新解,持续这种迭代过程直到问题收敛。 几何非线性分析 随着位移增长,一个有限单元已移动的坐标可以以多种方式改变结构的刚度。一般来说这类问题总是非线性的,需要进行迭代获得一个有效的解。 大应变效应 一个结构的总刚度依赖于它组成单元的方向和刚度。当一个单元的节点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。首先,如果这个单元的形状改变,它的单元刚度将改变,如图5.9a所示;其次,如果这个单元的取向改变,它的单元刚度也将改变,如图5.9b所示。小变形和小应变分析假定位移小到足够使所得到的刚度改变无足轻重。这

相关主题
文本预览
相关文档 最新文档