当前位置:文档之家› 塑料、橡胶、纤维的区别

塑料、橡胶、纤维的区别

塑料、橡胶、纤维的区别
塑料、橡胶、纤维的区别

塑料、橡胶、纤维之间的区别

塑料

塑料是指以树脂(或在加工过程中用单体直接聚合)为主要成分,以增塑剂、填充剂、润滑剂、着色剂等添加剂为辅助成分,在加工过程中能流动成型的材料。

塑料为合成的高分子化合物,可以自由改变形体样式。塑料是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。

橡胶

具有可逆形变的高弹性聚合物材料。在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低,分子量往往很大,大于几十万。

纤维

聚合物经一定的机械加工(牵引、拉伸、定型等)后形成细而柔软的细丝,形成纤维。纤维具有弹性模量大,受力时形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。

纤维大体分人造纤维和合成纤维

人造纤维素或蛋白质作原料(如木材、棉籽绒、稻草、甘蔗渣等纤维或牛奶、大豆、花生等蛋白质),经过一系列的化学处理与机械加工而制成类似棉花、羊毛、蚕丝一样能够用来纺织的纤维。如人造

棉、人造丝等。

合成纤维:合成纤维的化学组成和天然纤维完全不同,是从一些本身并不含有纤维素或蛋白质的物质(如石油、煤、天然气、石灰石或农副产品加工提炼出来的有机物质),再用化学合成与机械加工的方法制成纤维。如涤纶、锦纶、腈纶、丙纶、氯纶等。

几种肠内营养剂的区别

几种肠内营养剂的区别 (一)大分子聚合物肠内营养配方(polymeric formulas) 以全蛋白质、脂肪和糖等大分子为主要成分的营养制剂,所含的蛋白质系从酪蛋白、乳清蛋白或卵蛋白等水解、分离而来;糖类通常是淀粉及其水解物形式的葡萄糖多聚体;脂肪来源于植物油,如谷物油、红花油、葵花油等;配方中蛋白质、糖类和脂肪分别占总能量的12%~18%、40%~60%和30%~40%。此外配方中尚含有多种维生素和矿物质,通常不含乳糖。有些还含有膳食纤维,含量自6~14g/4180kJ不等。大分子聚合物制剂可经口摄入或经喂养管注入,适合于有完整胃或胃肠功能基本正常者。 1、标准的大分子聚合物肠内营养制剂 特点:不含乳糖、等渗、残渣少、宜通过小孔径的肠内喂养管,含有完整的蛋白、多聚糖、长链和(或)中链脂肪酸,其营养素组成为:糖占50-55%,蛋白质占10-15%,脂肪占25-30%。该类制剂调配成液体时,标准能量密度为1kcal(4.18kJ)/ml,非蛋白质能量与氮的比例约为150kcal(627kJ)∶1g,渗透压自300~450mOsm/kg?H2O不等,适用于多数病人。 主要制剂:能全素(Nutrison,纽迪希亚) 安素(Ensure,雅培) 瑞素(Fresubin,华瑞) 立适康(普通型)(LESCON,西安力邦) 2、高能量、高氮大分子聚合物肠内营养制剂 高能量配方以较少容量提供较高能量,能量密度为1.5~2kcal(6.27~8.36kJ)/ml,适用于需限制液体入量的病人。高氮配方中的热氮比约为313kJ∶1g,适用于需补充大量蛋白质的病人。 主要制剂:瑞高(Fresubin 750 MCT,华瑞) 倍力安力加(Enercal Plus,惠氏) 3、含膳食纤维的大分子聚合物肠内营养制剂 特点:在标准型中加入从肉、水果、蔬菜和谷物中提取出来的纤维素,尤适用于腹泻或便秘患者。使用时应采用口径较大的输注管。 主要制剂:能全力(Nutrison Multi Fibre,纽迪希亚) 瑞先(Fresubin Energy Fibre,华瑞) (二)预消化肠内营养配方(predigested formulas) 含有1种或1种以上的部分消化的大分子营养素。其中氮以氨基酸和短肽型形式存在,糖类为部分水解的淀粉(麦芽糖糊精和葡萄糖寡糖),脂肪常为植物来源的MCT和LCT,少数制剂含有短链脂肪酸;不含乳糖和膳食纤维。氨基酸、糖和脂肪分别约占总能量的12%~20%、80%和1%~5%。标准密度为1~1.27kcal(4.18~6.27kJ)/ml。这类配方亦含有足够的矿物质、微量元素和维生素。该类配方的渗透压一般为400~700mOsm/kg?H2O。适用于胃肠道消化功能不全的病人,如吸收不良综合征、Crohn病、肠瘘、小肠切除术后、胰腺炎、肠粘膜萎缩等。 1、以氨基酸为基础的配方 特点:(1)蛋白质来源于结晶氨基酸; (2)糖来源于多聚糖或双糖; (3)脂肪来源于植物油; (4)组成分子量最小,渗透压高。 主要制剂:维沃(Vivonex TEN,北京诺华)

怎样区别塑料和橡胶

怎样区别塑料和橡胶.txt6宽容润滑了彼此的关系,消除了彼此的隔阂,扫清了彼此的顾忌,增进了彼此的了解。PVC:聚氯乙烯 EVA:乙烯乙酸乙烯共聚物 PVC:Poly Vinyl Chloride 聚氯乙烯 EVA:Ethylene Vinyl Acetate 乙烯乙酸乙烯共聚物 EPDM:Ethylene Propylene Diene Monomer 乙烯丙烯二烯单体(为乙烯丙烯丁二烯嵌段共聚物),俗称三元乙丙胶。 PVC、EVA是塑料,EPDM是橡胶,三者皆可制成发泡材料。 PVC 英文全称: Polyvinyl chloride 聚氯乙烯材料 PVC材料是塑料装饰材料的一种。PVC是聚氯乙烯材料的简称,是以聚氯乙烯树脂为主要原料,加入适量的抗老化剂、改性剂等,经混炼、压延、真空吸塑等工艺而成的材料。 PVC材料具有轻质、隔热、保温、防潮、阻燃、施工简便等特点。规格、色彩、图案繁多,极富装饰性,可应用于居室内墙和吊顶的装饰,是塑料类材料中应用最为广泛的装饰材料之一。PVC扣板的优点主要有以下几方面: 1.质量轻、隔热、保温、防潮、阻燃、耐酸碱、抗腐蚀。 2.稳定性、介电性好,耐用、抗老化,易熔接及粘合。 3.抗弯强度及冲击韧性强,破裂时延伸度较高。 4.通过捏合、混炼、拉片、切粒、挤压或压铸等工艺极易加工成型,可满足各种型材规格的需要。 5.表面光滑、色泽鲜艳、极富装饰性,装饰应用面较广。 6.施工工艺简单,安装较为方便 聚氯乙烯(Polyvinylchlorid,PVC) 全名为Polyvinylchlorid,主要成份为聚氯乙烯,另外加入其他成分来增强其耐热性,韧性,延展性等。它是当今世界上深受喜爱、颇为流行并且也被广泛应用的一种合成材料。它的全球使用量在各种合成材料中高居第二。据统计,仅仅1995年一年,不PVC在欧洲的生产量就有五百万吨左右,而其消费量则为五百三十万吨。在德国,PVC的生产量和消费量平均为一百四十万吨。PVC正以4%的增长速度在全世界范围内得到生产和应用。近年来PVC 在东南亚的增长数度尤为显著,这要归功于东南亚各国都有进行基础设施建设的迫切需求。在可以生产三维表面膜的材料中,PVC是最适合的材料。 PVC可分为软PVC和硬PVC。其中硬PVC大约占市场的2/3,软PVC占1/3。软PVC一般用于地板、天花板以及皮革的表层,但由于软PVC中含有柔软剂(这也是软PVC与硬PVC的区别),容易变脆,不易保存,所以其使用范围受到了局限。硬PVC不含柔软剂,因此柔韧性好,易成型,不易脆,无毒无污染,保存时间长,因此具有很大的开发应用价值。下文均简称PVC。PVC的本质是一种真空吸塑膜,用于各类面板的表层包装,所以又被称为装饰膜、附胶膜,应用于建材、包装、医药等诸多行业。其中建材行业占的比重最大,为60%,其次是包装行业,还有其他若干小范围应用的行业。 PVC是聚氯乙烯塑料,色泽鲜艳、耐腐蚀、牢固耐用,由于在制造过程中增加了增塑剂、抗

纤维的种类

一、植物纤维 主要组成物质是纤维素,又称为天然纤维素纤维。是由植物上种籽、果实、茎、叶等处获得的纤维。根据在植物上成长的部位的不同,分为种子纤维、叶纤维和茎纤维。 1.种子纤维:棉、木棉等; 2.叶纤维:剑麻、蕉麻等; 3.茎纤维:苎麻、亚麻、大麻、黄麻等。 二、动物纤维 主要组成物质是蛋白质,又称为天然蛋白质纤维,分为毛和腺分泌物两类。 1.毛发类:绵羊毛、山羊毛、骆驼毛、兔毛、牦牛毛等; 2.腺分泌物:桑蚕丝、柞蚕丝等。 三、矿物纤维 主要成分是无机物,又称为天然无机纤维,为无机金属硅酸盐类,如石棉纤维。 四、化学纤维 用天然的或人工合成的高分子化合物为原料经化学纺丝而制成的纤维。可分为人造纤维、合成纤维、无机纤维。 五、人造纤维 用纤维素、蛋白质等天然高分子物质为原料,经化学加工、纺丝、后处理而制得的纺织纤维。用失去纺织加工价值的纤维原料,经人工溶解或熔融再抽丝而制成,其原始的化学结构不变,纤维成分仍分别为纤维素和蛋白质,而形成的物理结构、化学结构变化的衍生物,组成成分为纤维素醋酸酯纤维。 1.再生纤维素纤维:粘胶纤维、富强纤维、铜氨纤维等;(其区别为用烧碱、 二氧化硫不同的溶液溶解) 2.纤维素酯纤维:醋酯纤维; 3.再生蛋白质纤维:大豆纤维、花生纤维等。 六、合成纤维 用人工合成的高分子化合物为原料经纺丝加工制得的纤维。 1.普通合成纤维:涤纶、锦纶、晴纶、丙纶、维纶、氯纶等; 2.特种合成纤维:芳纶、氨纶、碳纤维等。 七、无机纤维 以矿物质为原料制成的纤维,如:玻璃纤维、金属纤维等。 人们通常喜欢天然纤维而不喜欢化学纤维是因为天然纤维的柔韧性和光滑性比合成纤维好。

橡胶与塑料的区别

一、生胶的形成: 生胶可分别为天然橡胶及合成橡胶两大类: 1.天然橡胶:由橡胶树干切割口,收集所流出的胶浆,经过去杂质、凝固、烟熏、干燥等加工程序,而形成的生胶料。 2.合成橡胶:由石化工业所产生的副产品,依不同需求,合成不同物性的生胶料。常用的如:SBR、NBR、EPDM、BR、IIR、CR、Q、FKM等。但因合成方式的差异,同类胶料可分出数种不同的生胶,又经由配方的设定,任何类型胶料,均可变化成千百种符合制品需求的生胶料。 天然橡胶来自热带和亚热带的橡胶树。由于橡胶在工业、农业、国防领域中有重要作用,因此它是重要的战略物资,这促使缺乏橡胶资源的国家率先研究开发合成橡胶。 二、橡胶的化学成分 通过对天然橡胶的化学成分进行剖析,发现它的基本组成是异戊二烯。于是启发人们用异戊二烯作为单体进行聚合反应,得到了合成橡胶,称为异戊橡胶。异戊橡胶的结构与性能基本上与天然橡胶相同。由于当时异戊二烯只能从松节油中获得,原料来源受到限制,而丁二烯则来源丰富,因此以丁二烯为基础开发了一系列合成橡胶。如顺丁橡胶、丁苯橡胶、丁腈橡胶和氯丁橡胶等。 随着石油化学工业的发展,从油田气、炼厂气经过高温裂解和分离提纯,可以得到乙烯、丙烯、丁烯、异丁烯、丁烷、戊烯、异戊烯等各种气体,它们是制造合成橡胶的好原料。 世界橡胶产量中,天然橡胶仅占15%左右,其余都是合成橡胶。合成橡胶品种很多,性能各异,在许多场合可以代替、甚至超过天然橡胶。合成橡胶可分为通用橡胶和特种橡胶。通用橡胶用量较大,例如丁苯橡胶占合成橡胶产量的60%;其次是顺丁橡胶,占15%;此外还有异戊橡胶、氯丁橡胶、丁钠橡胶、乙丙橡胶、丁基橡胶等,它们都属通用橡胶。 三、橡胶原料的配制: 橡胶原料的配制可分三个基本过程: 1.塑炼:塑练是将生胶剪断,并将生胶可塑化、均匀化,帮助配合剂的混练作业。其效果是改善药品的分散,防止作业中产生摩擦热,而致橡胶发生焦烧现象,进而改变橡胶的加工性。 2.混炼:混练是将配合药物均匀混入塑炼完成的生胶中,而混炼的优劣,直接影响制品的良否。药物分散不均,分子结构无法完全交联,橡胶则无法达到理想的物性。 3.压出:混炼完成的生胶,经过压出作业,将胶料中含有的多余空气

塑料和橡胶的区别

塑料和橡胶的区别 简单的说: 塑料与橡胶最本质的区别在于塑料发生形变时塑性变形,而橡胶是弹性变形。换句话说,塑料变形后不容易恢复原状态,而橡胶相对来说就容易得多。塑料的弹性是很小的,通常小于100%,而橡胶可以达到1000%甚至更多。塑料在成型上绝大多数成型过程完毕产品过程也就完毕;而橡胶成型过程完毕后还得需要硫化过程。 塑料与橡胶同属于高分子材料,主要由碳和氢两种原子组成,另有一些含有少量氧,氮,氯,硅,氟,硫等原子,其性能特殊,用途也特别.在常温下,塑料是固态,很硬,不能拉伸变形.而橡胶硬度不高,有弹性,可拉伸变长,停止拉伸又可回复原状.这是由于它们的分子结构不同造成的.另一不同点是塑料可以多次回收重复使用,而橡胶则不能直接回收使用,只能经过加工制成再生胶,然后才可用.塑料在100多度至200度时的形态与橡胶在60至100度时的形态相似.塑料不包括橡胶. 复杂的说: 广义地说,橡胶其实是塑料的一种,塑料包括橡胶。现详细介绍之 一、生胶的形成: 生胶可分别为天然橡胶及合成橡胶两大类: 1.天然橡胶: 由橡胶树干切割口,收集所流出的胶浆,经过去杂质、凝固、烟熏、干燥等加工程序,而形成的生胶料。 2.合成橡胶: 由石化工业所产生的副产品,依不同需求,合成不同物性的生胶料。常用的如:

SBR、NBR、EPDM、BR、IIR、CR、Q、FKM等。但因合成方式的差异,同类胶料可分出数种不同的生胶,又经由配方的设定,任何类型胶料,均可变化成千百种符合制品需求的生胶料。 天然橡胶来自热带和亚热带的橡胶树。由于橡胶在工业、农业、国防领域中有重要作用,因此它是重要的战略物资,这促使缺乏橡胶资源的国家率先研究开发合成橡胶。 二、橡胶的化学成分 通过对天然橡胶的化学成分进行剖析,发现它的基本组成是异戊二烯。于是启发人们用异戊二烯作为单体进行聚合反应,得到了合成橡胶,称为异戊橡胶。异戊橡胶的结构与性能基本上与天然橡胶相同。由于当时异戊二烯只能从松节油中获得,原料来源受到限制,而丁二烯则来源丰富,因此以丁二烯为基础开发了一系列合成橡胶。如顺丁橡胶、丁苯橡胶、丁腈橡胶和氯丁橡胶等。 随着石油化学工业的发展,从油田气、炼厂气经过高温裂解和分离提纯,可以得到乙烯、丙烯、丁烯、异丁烯、丁烷、戊烯、异戊烯等各种气体,它们是制造合成橡胶的好原料。 世界橡胶产量中,天然橡胶仅占15%左右,其余都是合成橡胶。合成橡胶品种很多,性能各异,在许多场合可以代替、甚至超过天然橡胶。合成橡胶可分为通用橡胶和特种橡胶。通用橡胶用量较大,例如丁苯橡胶占合成橡胶产量的60%;其次是顺丁橡胶,占15%;此外还有异戊橡胶、氯丁橡胶、丁钠橡胶、乙丙橡胶、丁基橡胶等,它们都属通用橡胶。 三、橡胶原料的配制: 橡胶原料的配制可分三个基本过程: 1.塑炼: 塑练是将生胶剪断,并将生胶可塑化、均匀化,帮助配合剂的混练作业。其效果是改善药品的分散,防止作业中产生摩擦热,而致橡胶发生焦烧现象,进而改变橡胶的加工性。

塑料和橡胶区别

简单的说: 塑料与橡胶最本质的区别在于塑料发生形变时塑性变形,而橡胶是弹性变形。换句话说,塑料变形后不容易恢复原状态,而橡胶相对来说就容易得多。塑料的弹性是很小的,通常小于100%,而橡胶可以达到1000%甚至更多。塑料在成型上绝大多数成型过程完毕产品过程也就完毕;而橡胶成型过程完毕后还得需要硫化过程。 塑料与橡胶同属于高分子材料,主要由碳和氢两种原子组成,另有一些含有少量氧,氮,氯,硅,氟,硫等原子,其性能特殊,用途也特别.在常温下,塑料是固态,很硬,不能 拉伸变形.而橡胶硬度不高,有弹性,可拉伸变长,停止拉伸又可回复原状.这是由于它们的分子结构不同造成的.另一不同点是塑料可以多次回收重复使用,而橡胶则不能直接回收使用,只能经过加工制成再生胶,然后才可用.塑料在100多度至200度时的形态与橡胶在60至100度时的形态相似.塑料不包括橡胶. 复杂的说: 广义地说,橡胶其实是塑料的一种,塑料包括橡胶。现详细介绍之 一般工业用双面胶,可分压克力胶系及橡胶胶系两大类。而此两大类,又都可分有基材及无基材两种型态(有基材:于胶中加上一层棉质,加强双面胶本身胶量及强度、无基材:纯胶质,确保双面胶之透明度)。因橡胶胶系的主体为CR,用于橡胶制品,极易与橡胶之硫化系统,产生反应而变黄。所以较淡颜色的橡胶制品,均采用压克力胶系中的有基材双面胶(同种类的双面胶,无论有基材或无基材,均以其本身胶质厚度做区分。 参考资料:中国工程橡胶网 塑料的成分包括以下部分: 塑料有单成分、多成分之分。单成分塑料仅含有塑料中必不可少的合成树脂。如有机玻璃就是一种单成分的聚甲基丙烯酸甲酯的塑料制成的,而大多数的塑料除有合成树脂外,还有填充料、硬化剂、着色剂以及其他添加剂,这就是多成分塑料。 1、合成树脂 在塑料中几乎都采用合成树脂。树脂是塑料中最主要的成分,起着胶粘剂的作用,能将塑料的其他成分胶结成一个整体。虽然加入各类添加剂可以改变塑料的性质,但树脂是决定塑料类型、性能及使用的根本因素。 在塑料装饰材料中常用的树脂种类有: 聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)、酚醛(PF)、脲醛(UF)、环氧(EP)、聚酯(PR)、聚氨酯(PU)、聚甲基丙烯酸甲酯(PUMA)、有机硅(SI)等。 按照受热时所发生的变化不同,合成树脂又可分为热塑性树脂和热固性树脂两种。 (1)热塑性树脂:是具有受热软化、冷却硬化的性能,而且不起化学反应,无论加热和冷却重复进行多少次,均能保持这种性能。凡具有热塑性树脂其分子结构都属线型。它包括含全部聚合树脂和部分缩合树脂。热塑性树脂有:聚乙烯、聚氯乙烯、聚苯乙烯、聚酰胺、聚甲醛、聚碳酸酯、聚苯醚、聚砜、橡胶等。热塑性树脂的优点是加工成型简便,具有较高的机械能。缺点是耐热性和刚性较差。(2)热固性树脂:树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,也不能溶解。热固性树脂其分子结构为体型,它包括大部分的缩合树脂,热固性

粗纤维和膳食纤维区别

膳食纤维是指食物中不能消化的多糖。在一定酸碱度的条件下分为可溶性和不可溶性膳食纤维两种。我们通常把不可溶的膳食纤维叫粗纤维。 通常蔬菜、水果、粮谷类所含的食物纤维都叫粗纤维。目前我们国家还没有粗纤维的定义,只是一个习惯称呼而已。 粗纤维是膳食纤维的一类,他们不能被我们人体消化吸收,但有助于胃肠蠕动,对人体是有益的。 膳食纤维和粗纤维不同。植物性食物中,有胃肠道不能消化的物质,统称膳食纤维;食物用酸碱处理后的不溶物称为粗纤维。经过这一处理,大部分膳食纤维都丢失,测得的数值仅有膳食纤维总量的20~50%。 粗纤维是植物细胞壁的主要组成成分,包括纤维素、半纤维素、木质素及角质等成分。常规饲料分析方法测定的粗纤维,是将饲料样品经1.25%稀酸、稀碱各煮沸30分钟后,所剩余的不溶解碳水化合物。其中纤维素是由β-1,4葡萄糖聚合而成的同质多糖;半纤维素是葡萄糖、果糖、木糖、甘露糖和阿拉伯糖等聚合而成的异质多糖;木质素则是一种苯丙基衍生物的聚合物,它是动物利用各种养分的主要限制因子。该方法在分析过程中,有部分半纤维素、纤维素和木质素溶解于酸、碱中,使测定的粗纤维含量偏低,同时又增加了无氮浸出物的计算误差。为了改进粗纤维分析方案,Van Soest(1976)提出了用中性洗涤纤维(Neutral Detergent Fiber,缩写NDF)、酸性洗涤纤维(Acid Detergent Fiber, 缩写ADF)、酸性洗涤木质素(Acid Detergent Lignin,缩写ADL)作为评定饲草中纤维类物质的指标。同时将饲料粗纤维中的半纤维素、纤维素和木质素全部分离出来,能更好地评定饲料粗纤维的营养价值。 另外,粗纤维是不能被人体消化和吸收的. 膳食纤维(dietaryfiber,DF)是一类多聚物的复合混合体。现在学者大多同意将其定义为“不被人体胃肠道分泌物消化的植物组分”。DF组分主要包括:①纤维素,是一种由葡萄糖分子以β-糖苷键连接起来的长链聚合物;②半纤维素,是由一些单糖如阿拉伯糖、半乳糖和木糖混合组成的一种聚合物③木质素,并非多糖,而是以苯丙烷为单位的多聚物;④果胶,这是由半聚糖醛酸残基组成的聚合物,其中分布有鼠李糖,且含有中性糖支链;⑤粘液和树胶,它们多是一些半纤维素。按水溶性又可将DF分为可溶性纤维(SDF)和不可溶性纤维(IDF)两类,SDF包括:果胶、部分半纤维素、树胶和粘液;IDF包括部分半纤维素、纤维素和木质素。

膳食纤维与人体健康的关系论文

膳食纤维与人体健康 引言 随着社会的发展和人类对食品学的研究。人类对食品的营养要求更高而且对各种营养物越来越了解,现在人们都在讨论膳食纤维对人类的影响,它到底与人类的健康有怎样的关系?根据所学的知识和查阅资料,我得出了以下的结果。 一.纤维素的概念 纤维素包括粗纤维,它是用以描述不能被消化、吸收的食物残渣,且仅包括部分纤维素和木质素。食品中的膳食纤维是由纤维素、半纤维素、果胶物质、亲水胶体(植物胶、粘胶)、抗性淀粉和抗性低聚糖组成。从是否溶入水分为膳食纤维分为非水溶性和水溶性纤维两大类。纤维素、半纤维素和木质素是3种常见的非水溶性纤维,存在于植物细胞壁中,主要存在于禾谷类和豆类种子的外皮及植物的茎和叶中;而果胶和树胶等属于水溶性纤维,则存在于自然界的非纤维性物质中。从组成上,纤维素包括纤维素、混合键的β- 葡聚糖、半纤维素、果胶及树胶。它们虽不能被人体吸收,但都是维持身体健康所必需的。因此纤维素对人类却有着重要意义。 二.膳食纤维素的来源 纤维素主要存在于植物的细胞壁里,膳食纤维主要存在于谷、薯、豆类及蔬菜、水果等植物性食物中。植物成熟度越高其纤维含量也就越多,谷类加工越精细则所含膳食纤维就越少。其中大麦、豆类、胡萝卜、柑橘、亚麻、燕麦和燕麦糠等食物都含有丰富的水溶性纤维,而小麦糠、玉米糠、芹菜、果皮和根茎蔬菜主要含的是非溶性纤维。 三膳食纤维素的物理的特性 1 溶水性纤维的溶水性是指它的基质内保留的水分量。可溶性膳食纤维的溶水 量比不可溶的膳食纤维和麦麸的溶水量大的多。蔬菜纤维的溶水量介于两者之间。溶水量大的纤维在通过消化道过程中吸水膨胀,刺激和加强肠道蠕动,连同消化道中其它“废物”形成柔软的粪便易于排出,可防止便秘。

橡胶与塑料并用技术

来源于:注塑人才网https://www.doczj.com/doc/fd9767954.html, 橡胶与塑料并用技术 当今橡胶材料已成为人们生活不可或缺的一类重要材料。但是,随着现代科学技术的不断发展,对橡胶材料的性能提出了日益广泛和苛刻的要求。以橡胶与塑胶并用的弹性体的研究日益引起重视,本文着重以橡胶为主并用部分塑胶进行共混形成的弹性体的性能予以介绍。 橡塑并用混溶性原则 谈到橡塑并用材料的性能,必须提及聚合物的共混。橡胶和塑胶的共混是有条件的,并不是任意一种橡胶和任意一种塑胶都能够进行共混,橡胶与塑胶共混体的性能取决於共混体的形态结构,而形态结构受橡胶与塑胶组分之间热力学的相容性,以及实施共混的方法和工艺条件等方面的影响。 在讨论共混体形态结构的各类文献中,常出现“相容性”、“混溶性”等不同的提法,一般以“相容性”表示热力学的相互溶解,以“混溶性”表徵是否获得比较均匀和稳定的形态结构的共混体系,而不论共混体系是否热力学相互溶解。因此,即使热力学不相容的共混体,依靠外界条件实现了强制的良好的分散混合,得到力学性能优良的橡塑共混体,就可谓之混溶性好。 正因为橡塑能遵照混溶性好这一原则,实现橡胶与塑胶的并用,才会有相互性能之间的互补,从而提高弹性体的拉伸强度、撕裂强度、耐磨性和模量等性能,同时也可以降低扯断伸长率和回弹性等性能。例如,在橡胶中并用高苯乙烯树脂、改性酚醛树脂、三聚氰胺树脂等可提高强度;在二烯类橡胶中并用聚氯乙烯塑胶可提高耐臭氧龟裂性;在丁基橡胶中并用聚乙烯可提高绝缘性等。 橡塑共混的方法 实施橡塑共混的方法有乾粉共混、溶液共混、乳液共混和机械共混。而综合考虑到各种条件和成本,橡胶制品厂多采用机械共混工艺。 机械共混可分为一段法和二段法。一段法是先将热塑性塑胶在密炼机或高温开炼机上熔融塑化,然後降温,再加入橡胶,翻炼、混炼均匀後下片。二段法也称母料共混法,即先将塑胶与部分橡胶在密炼机中按比例共混成母炼胶,然後再在较低温度下混入橡胶。二段法的优点是两相分散更均匀。 机械共混的原动力来自提供的机械搅拌和剪切作用。机械共混是机械力作用下的体系均化过程,通常认为该均化过程包括体系各组分的物理混合与分散,但实际上,机械共混过程中的机械力除了为组分的混合与分散提供能量外,还会引发组分间的力化学反应,该反应对橡胶与塑胶的并用性能有重要影响。 橡塑共混设备主要包括高温开炼机、密炼机、螺杆挤出机和连续混炼机。连续混炼机

塑料与橡胶的区别

塑料与橡胶最本质的区别在于塑料发生形变时塑性变形,而橡胶是弹性变形。换句话说,塑料变形后不容易恢复原状态,而橡胶相对来说就容易得多。塑料的弹性是很小的,通常小于100%,而橡胶可以达到1000%甚至更多。塑料在成型上绝大多数成型过程完毕产品过程也就完毕;而橡胶成型过程完毕后还得需要硫化过程。 塑料与橡胶同属于高分子材料,主要由碳和氢两种原子组成,另有一些含有少量氧,氮,氯,硅,氟,硫等原子,其性能特殊,用途也特别.在常温下,塑料是固态,很硬,不能拉伸变形.而橡胶硬度不高,有弹性,可拉伸变长,停止拉伸又可回复原状. 这是由于它们的分子结构不同造成的.另一不同点是塑料可以多次回收重复使用,而橡胶则不能直接回收使用,只能经过加工制成再生胶,然后才可用.塑料在100 多度至200度时的形态与橡胶在60至100度时的形态相似.塑料不包括橡胶. 橡胶是指具有显著高弹性的一类高分子化合物,有天然橡胶和合成橡胶两类。天然橡胶可以从一些植物中获取。合成橡胶是以天然气、石油气中得到的丁二烯、异戊二烯,氯丁二烯等为单体,在一定的条件下聚合,并经硫化和加入填料后,制成的成品。合成橡胶有很多种,其中丁苯橡胶是产量最高、用途最广的一种合成橡胶。 橡胶,塑料,纤维都是高分子产品,塑料,纤维的微观都是饱和键的高分子,纤维的分子量比塑料更大,都可以多次加工,当然性能有下降,橡胶为含不饱和键的高分子,没硫化的橡胶基本没有使用价值,硫化后橡胶具有弹性,具有实用价值,更具体的来说,橡胶,塑料,纤维主要是他们的化学结构有很大的不同,比如结晶性,链结的柔性,刚性,分子量大小,分子量分布,结构基团不同。有些塑料可以做成纤维,如PP,聚丙烯,有些是不可以的,而橡胶除少数特种橡胶外,基本即为橡胶,而不能是别的,少数的就是聚氨酯橡胶,也有热塑性的,就是聚氨酯塑料。普通的橡胶,如天然胶,丁苯胶,顺丁胶等没法是塑料或纤维的。塑料和纤维来讲,相似的程度更大,而橡胶和他们程度要低点。

几种肠内营养剂的区别知识交流

几种肠内营养剂的区 别

几种肠内营养剂的区别 (一)大分子聚合物肠内营养配方(polymeric formulas) 以全蛋白质、脂肪和糖等大分子为主要成分的营养制剂,所含的蛋白质系从酪蛋白、乳清蛋白或卵蛋白等水解、分离而来;糖类通常是淀粉及其水解物形式的葡萄糖多聚体;脂肪来源于植物油,如谷物油、红花油、葵花油等;配方中蛋白质、糖类和脂肪分别占总能量的12%~18%、40%~60%和30%~40%。此外配方中尚含有多种维生素和矿物质,通常不含乳糖。有些还含有膳食纤维,含量自6~14g/4180kJ不等。大分子聚合物制剂可经口摄入或经喂养管注入,适合于有完整胃或胃肠功能基本正常者。 1、标准的大分子聚合物肠内营养制剂 特点:不含乳糖、等渗、残渣少、宜通过小孔径的肠内喂养管,含有完整的蛋白、多聚糖、长链和(或)中链脂肪酸,其营养素组成为:糖占50-55%,蛋白质占10-15%,脂肪占25-30%。该类制剂调配成液体时,标准能量密度为 1kcal(4.18kJ)/ml,非蛋白质能量与氮的比例约为150kcal(627kJ)∶1g,渗透压自300~450mOsm/kg?H2O不等,适用于多数病人。 主要制剂:能全素(Nutrison,纽迪希亚) 安素(Ensure,雅培) 瑞素(Fresubin,华瑞) 立适康(普通型)(LESCON,西安力邦) 2、高能量、高氮大分子聚合物肠内营养制剂

高能量配方以较少容量提供较高能量,能量密度为1.5~2kcal(6.27~8.36kJ)/ml,适用于需限制液体入量的病人。高氮配方中的热氮比约为313kJ∶1g,适用于需补充大量蛋白质的病人。 主要制剂:瑞高(Fresubin 750 MCT,华瑞) 倍力安力加(Enercal Plus,惠氏) 3、含膳食纤维的大分子聚合物肠内营养制剂 特点:在标准型中加入从肉、水果、蔬菜和谷物中提取出来的纤维素,尤适用于腹泻或便秘患者。使用时应采用口径较大的输注管。 主要制剂:能全力(Nutrison Multi Fibre,纽迪希亚) 瑞先(Fresubin Energy Fibre,华瑞) (二)预消化肠内营养配方(predigested formulas) 含有1种或1种以上的部分消化的大分子营养素。其中氮以氨基酸和短肽型形式存在,糖类为部分水解的淀粉(麦芽糖糊精和葡萄糖寡糖),脂肪常为植物来源的MCT和LCT,少数制剂含有短链脂肪酸;不含乳糖和膳食纤维。氨基酸、糖和脂肪分别约占总能量的12%~20%、80%和1%~5%。标准密度为 1~1.27kcal(4.18~6.27kJ)/ml。这类配方亦含有足够的矿物质、微量元素和维生素。该类配方的渗透压一般为400~700mOsm/kg?H2O。适用于胃肠道消化功能不全的病人,如吸收不良综合征、Crohn病、肠瘘、小肠切除术后、胰腺炎、肠粘膜萎缩等。 1、以氨基酸为基础的配方 特点:(1)蛋白质来源于结晶氨基酸; (2)糖来源于多聚糖或双糖;

2020年(塑料橡胶材料)塑料知识问

(塑料橡胶材料)塑料知识 问

塑料知识38问 1、什么是PPC类塑料,如何从外观上辨认? 回复:PPC属于PP类,全称为氯化聚丙烯,用于制造日用品,电器等。 2、我是搞废旧塑料破碎的,``请问当下废旧塑料分别都是壹些什么价格 (2004-11-9)? 回复:聚丙料(编织袋):1200-1600元/吨;聚丙料(盆桶料):2100-2600元/吨;聚乙烯(软料):2300-3300元/吨;聚乙烯(硬料):2700-3800元/吨;聚氯乙烯:2500-3100元/吨;泡沫:2000-3300元/吨;聚脂(矿泉水瓶):5000-5800元/吨; (声明:所供数据仅供参考,且请参考报价日期。) 3、用于生产HDPE燃气管、给水管的原料是什么型号的? 回复:用于生产HDPE燃气管、给水管的原料是PE80、PE100 4、PPN是什么材料? 回复:PPN是聚丙烯的壹种。 5、当下的EVA具有最好弹性的是哪产的<2004-11-21>?什么牌号?要国产的,仍有软质聚氯乙烯用于注塑的有什么啊?

回复:国产的EVA基本是北京产的,分为挤塑级的14型(VA=14)壹般用途膜,18型(VA=18)发泡体,和注塑级的5型(VA=5)食品包装膜。 PVC用于注塑的壹般是5型和3型。 6、请问PPU这种塑料的中文是什么? 回复:PPU是热塑性聚氨酯。 7、怎样才能鉴别PVC塑料,PVC能够再生造粒吗?采取什么方式进行?当前的再生PVC行情如何(2004-12-4)? 回复:1)PVC中文名:聚氯乙烯。 燃烧法鉴别,软化或熔融温度范围:75~90°C;燃烧情况:难软化;燃烧火焰状态:上黄下绿有烟;离火后情况:离火熄灭;气味:刺激性酸味。 溶剂处理鉴别,溶剂:四氢呋喃,环己酮,甲酮,二甲基甲酰胺;非溶剂:甲醇,丙酮,庚烷。 2)能够再生造粒。 3)PVC的回收工艺主要包括以下6个步骤: (1)对PVC废料的预处理;(2)在混合溶剂中进行有选择的溶解;(3)分离不可溶解物质;(4)再生PVC的析出;(5)干燥处理;(6)回收及循环使用溶剂 4)目前价格在8200元/吨左右(2004-12-4)。

膳食纤维在食品加工中的应用与研究进展

膳食纤维在食品加工中的应用 与研究进展 陈燕卉1,陈敏1,张绍英1,李亚秋2 (1. 中国农业大学食品科学与营养工程学院,北京 100083) (2. 北京市化工学校,北京 100023) 摘要:本文对膳食纤维的主要生理功能进行了归纳,对膳食纤维在食品中的开发应用和研究进行了评述,对膳食纤维应用与研究的发展趋势进行了展望。 关键词:膳食纤维;应用;进展 Abstract:The physiological function of dietary fiber are introduced. application and researches of dietary fiber on food processing are commoned. Prospect for research on the development of dietary fiber are briefly discussed. Key words: dietary fiber;application;development 膳食纤维作为一种极其重要的食品成分已经成为功能性食品领域研究的热门课题。膳食纤维被公认为是蛋白质、碳水化合物、脂肪、维生素、矿物质和水之后的第七大营养素。 在我国,人们的饮食习惯已发生了很大的改变,大中城市特别是经济比较发达的沿海城市已出现了膳食纤维摄入量不足、营养素摄入不平衡的现象,其表现是肥胖症、糖尿病、动脉硬化、冠心病和恶性肿瘤的发病率在老年人群中很常见,在中青年人群中发病率也逐年上升,在少年儿童中“小胖子”越来越多。 1993年,我国国务院颁发《九十年代中国食物结构改革与发展纲要》指出:由于膳食不平衡或营养过剩而造成的“文明病”已在我国出现,肥胖症、高血脂、冠心病、糖尿病和结肠癌等已成为危害我国人民健康的主要疾病。因此,开展膳食纤维的研究对提高我国人民的健康水平是非常必要和紧迫的任务,具有非常重要的现实意义。 1 膳食纤维的功能 膳食纤维对人体健康有很多重要的生理功能,这已被国内外大量的研究事实与流行病学调查结果所证实,其主要的生理功能包括以下几个方面: 膳食纤维通过影响胆汁酸代谢使机体胆固醇排出增加,从而降低血清胆固醇,预防由冠动脉硬化引起的心脏病[1][2]。 膳食纤维预防便秘与大肠癌。由于膳食纤维的通便作用还有益于肠内压的下降,还可预防长时间便秘而引起的痔疮及下肢静脉曲张[3][4][5]。 膳食纤维可改善糖代谢,对糖尿病患者具有降血糖作用[6]。 膳食纤维对高脂肪膳食引起的肝脂肪变有阻抑作用,起到预防脂肪肝的作用[7]。 膳食纤维对有机农药有一定吸附作用,对重金属离子有清除作用,可以减缓农药的毒害作用[8]。 膳食纤维具有抗氧化活性和清除·OH自由基的作用,具有抗突变作用,增强人体抗癌能力[9]。 膳食纤维具有清除NO2-能力,阻止其与仲胺、叔胺反应形成亚硝胺,预防癌症[10][11]。 膳食纤维具有促进钙、铁、镁吸收的作用[12][13]。 治疗肠炎[14]。 各种不同品种的膳食纤维其生理功能是不同的,不能认为凡是膳食纤维就具备上述所有的生理功能。例如水溶性燕麦纤维对降低血清胆固醇效果十分明显,可以使冠心病的死亡率减少3%,但水不溶性燕麦纤维的这方面功能就要差很多,甚至几乎没有。 膳食纤维还具有食品添加剂的功能,膳食纤维作为食品成分具有很多优点:可以影响产品颜色、风味、保油性和保水性;可以作为稳定剂,对结构、胶凝和粗度有影响;可以作为增稠剂,控制糖的结晶,且对产品货架期有一定影响[15]。 膳食纤维也不是越多越好。因为膳食纤维与有机物结合,可阻碍蛋白质和脂肪的吸收,还可引起腹泻,过量膳食纤维可引起胀气,影响维生素的吸收[16]。

聚氨酯和聚氨酯橡胶有什么区别

聚氨酯和聚氨酯橡胶有什么区别? 聚氨酯和聚氨酯橡胶是一回事。因为聚氨酯具有良好的回弹性,因此常被称为聚氨酯 橡胶,也被称为聚氨酯弹性体。 聚氨酯是由聚酯(或聚醚)与二异睛酸酯类化合物聚合而成的。耐磨性能好、其次 是弹性好、硬度高、耐油、耐溶剂。缺点是耐热老化性能差。聚氨酯橡胶在汽车、制 鞋、机械工业中的应用最多。 氨酯应该分类成塑料还是橡胶要看实际情况。 台湾、香港等地区一般把塑料称为塑胶,因此严格区分塑料和橡胶没有什么意义。从理 论角度区分塑料和橡胶,一般是看材料的玻璃化转变温度(Tg)是在常温以上还是在常温以下。通常将Tg小于常温的聚合物材料称为塑料(如聚乙烯Tg为-78度),而将Tg温度 高于常温的聚合物材料称为橡胶。 聚氨酯是一种很特别的聚合物,它由硬段和软段组成,硬段部分Tg很低,具有塑料 的特性,软段部分Tg高于室温很多,具有橡胶的特性。在聚氨酯的合成过程中,通过控 制聚合反应,可以调节聚合物的硬段和软段的比例,从而使聚氨酯表现为塑料或橡胶。 胶鞋包括不包括塑料鞋,一般常识应该不包括。常识中所说的胶鞋一般是下雨穿的防水 鞋、军鞋等,塑料鞋一般有拖鞋等。 橡胶与塑料区别 橡胶与塑料区别简单的说: 橡胶与塑料最本质的区别在于塑料发生形变时塑性变形,而橡胶是弹性变形。换句话说,塑料变形后不容易恢复原状态,而橡胶相对来说就容易得多。塑料的弹性是很小的,通常小于100%,而橡胶可以达到1000%甚至更多。塑料在成型上绝大多数成型过程完毕产品过程也就完毕;而橡胶成型过程完毕后还得需要硫化过程。 橡胶与塑料同属于高分子材料,主要由碳和氢两种原子组成,另有一些含有少量氧,氮,氯,硅,

人类第七大营养素——膳食纤维

人类第七大营养素——膳食纤维 摘要膳食纤维被称为人类第七大营养素,本文介绍了膳食纤维的有关化学问题,如其结构特点、理化性质、生理功能和检测方法,以及膳食纤维的应用与开发现状。 关键词膳食纤维聚葡萄糖甲壳素生理功能 膳食纤维具有突出的保健功能,有研究表明膳食纤维可以促进人体正常排泄;降低某些癌症、心血管和糖尿病的发病率[1~4]。许多常见病如动脉粥样硬化、高血压、冠心病、便秘、肥胖以及严重威胁人类生命的结肠癌等都与膳食纤维的摄入量不足有关。因而膳食纤维逐渐成为营养学家、流行病学家及食品科学家等关注的热点,有科学家将其称为人体“第七营养素”。 1 什么是膳食纤维 1972年,Trowell H C首次将“膳食纤维”(Dietary Fiber,DF)定义为“食物中那些不被人体所消化吸收的植物成分”。随后,又“将那些不被人体消化吸收的多糖类碳水化合物与木质素统称为膳食纤维”。近年来国外对膳食纤维进行了广泛研究,一般认为膳食纤维是指植物性食品中不能被人类胃肠道消化酶消化,但能被大肠内的某些微生物部分酵解和利用的非淀粉多糖类物质与木质素的合称。2001年美国化学家协会对膳食纤维的最新定义为:膳食纤维是指能抗人体小肠消化吸收,而在人体大肠能部分或全部发酵的可食用的植物性成分、碳水化合物及其相类似物质的总和,包括多糖、寡糖、木质素以及相关的植物物质[5]。因此,膳食纤维包括很多不被人体小肠消化的物质,如纤维素、半纤维素、树胶、β葡聚糖、胶质、木质素、聚葡萄糖、果寡糖、抗性淀粉和糊精等。 膳食纤维按溶解性分为可溶性膳食纤维(SDF)和不溶性膳食纤维(IDF)两大类,而总膳食纤维(TDF)是指SDF和IDF之和。可溶性膳食纤维指可溶于温水或热水,且其水溶液能被4倍95%的乙醇再沉淀的那部分纤维,主要是细胞 壁内的储存物质和分泌物,以及微生物多糖和合成多糖,如果胶、 β葡聚糖等。 不溶性膳食纤维是指不溶于温水或热水的那部分纤维,主要是细胞壁的组成部分,包括纤维素、半纤维素、甲壳质等。此外,功能性低聚糖和抗性淀粉(Resistant Starch,RS)也普遍认为属于膳食纤维。 膳食纤维主要来自谷类、薯类、豆类及水果蔬菜等植物性食品中,其含量与

广义地说,橡胶其实是塑料的一种,塑料包括橡胶

广义地说,橡胶其实是塑料的一种,塑料包括橡胶。现详细介绍之 一、生胶的形成: 生胶可分别为天然橡胶及合成橡胶两大类: 1.天然橡胶:由橡胶树干切割口,收集所流出的胶浆,经过去杂质、凝固、烟熏、干燥等加 工程序,而形成的生胶料。 2.合成橡胶:由石化工业所产生的副产品,依不同需求,合成不同物性的生胶料。常用的如: SBR、NBR、EPDM、BR、IIR、CR、Q、FKM等。但因合成方式的差异,同类胶料可分出数种不同的生胶,又经由配方的设定,任何类型胶料,均可变化成千百种符合制品需求的 生胶料。 天然橡胶来自热带和亚热带的橡胶树。由于橡胶在工业、农业、国防领域中有重要作用,因此它是重要的战略物资,这促使缺乏橡胶资源的国家率先研究开发合成橡胶。 二、橡胶的化学成分 通过对天然橡胶的化学成分进行剖析,发现它的基本组成是异戊二烯。于是启发人们用异戊二烯作为单体进行聚合反应,得到了合成橡胶,称为异戊橡胶。异戊橡胶的结构与性能基本上与天然橡胶相同。由于当时异戊二烯只能从松节油中获得,原料来源受到限制,而丁二烯则来源丰富,因此以丁二烯为基础开发了一系列合成橡胶。如顺丁橡胶、丁苯橡胶、丁腈橡 胶和氯丁橡胶等。 随着石油化学工业的发展,从油田气、炼厂气经过高温裂解和分离提纯,可以得到乙烯、丙烯、丁烯、异丁烯、丁烷、戊烯、异戊烯等各种气体,它们是制造合成橡胶的好原料。世界橡胶产量中,天然橡胶仅占15%左右,其余都是合成橡胶。合成橡胶品种很多,性能各异,在许多场合可以代替、甚至超过天然橡胶。合成橡胶可分为通用橡胶和特种橡胶。通

用橡胶用量较大,例如丁苯橡胶占合成橡胶产量的60%;其次是顺丁橡胶,占15%;此外还有异戊橡胶、氯丁橡胶、丁钠橡胶、乙丙橡胶、丁基橡胶等,它们都属通用橡胶。 三、橡胶原料的配制: 橡胶原料的配制可分三个基本过程: 1.塑炼:塑练是将生胶剪断,并将生胶可塑化、均匀化,帮助配合剂的混练作业。其效果是改善药品的分散,防止作业中产生摩擦热,而致橡胶发生焦烧现象,进而改变橡胶的加工性。 2.混炼:混练是将配合药物均匀混入塑炼完成的生胶中,而混炼的优劣,直接影响制品的良 否。药物分散不均,分子结构无法完全交联,橡胶则无法达到理想的物性。 3.压出:混炼完成的生胶,经过压出作业,将胶料中含有的多余空气压出,并完成所需的厚 度,以利于模具内之成型作业。 四、橡胶的成型: 生胶分子结构为不饱和长键的弹性体,所以成型的要件中,需有适当的药品添加物及外在环境因素(如时间、温度、压力等) ,将其不饱和键破坏,再重新结合为饱和键,并以真空辅助,将内含的空气完全逼出。如此,才可令成型的橡胶,发挥其应有的特性。若其成型过程有任何缺失(如配方错误、时间不足、温度失当等),则可造成物性流失,多余药物释出,变 形,老化加速,种种严重不良现象产生。 五、橡胶的老化现象: 依橡胶成品所处的环境条件,随时间的经过,引起龟裂或硬化,橡胶物性退化等现象,称之为老化现象。引起老化的原因,有外部因素及内部因素: 1.外部因素:外部因素有氧、氧化物、臭氧、热、光、放射线、机械性疲劳、加工过程的缺 失等。 2.内部因素:内部因素有橡胶的种类、成型方式、键结程度、配合药物的种类、加工工程中

橡胶和塑料的区别

橡胶和塑料的区别简单的 1、合成树脂 在塑料中几乎都采用合成树脂。树脂是塑料中最主要的成分,起着胶粘剂的作用,能将塑料的其他成分胶结成一个整体。虽然加入各类添加剂可以改变塑料的性质,但树脂是决定塑料类型、性能及使用的根本因素。 在塑料装饰材料中常用的树脂种类有: 聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)、酚醛(PF)、脲醛(UF)、环氧(EP)、聚酯(PR)、聚氨酯(PU)、聚甲基丙烯酸甲酯(PUMA)、有机硅(SI)等。 按照受热时所发生的变化不同,合成树脂又可分为热塑性树脂和热固性树脂两种。 (1)热塑性树脂:是具有受热软化、冷却硬化的性能,而且不起化学反应,无论加热和冷却重复进行多少次,均能保持这种性能。凡具有热塑性树脂其分子结构都属线型。它包括含全部聚合树脂和部分缩合树脂。热塑性树脂有:聚乙烯、聚氯乙烯、聚苯乙烯、聚酰胺、聚甲醛、聚碳酸酯、聚苯醚、聚砜、橡胶等。热塑性树脂的优点是加工成型简便,具有较高的机械能。缺点是耐热性和刚性较差。 (2)热固性树脂:树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,也不能溶解。热固性树脂其分子结构为体型,它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是机械性能较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 2、填充料 填充料可以改善和增强塑料的性能。例如:加入纤维可以提高塑料的机械强度;加入石棉可以增强塑料的耐热性能;加入云母可以增强塑料的电绝缘性能;加入石墨、二硫化钼可以改善塑料的耐磨擦、耐磨损性能。加填充料还可以降低塑料成本。 3、增塑剂 塑料中掺加增塑剂可以改善塑料的可塑性和柔软性,减少脆性。常用的增塑剂有:邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、磷酸三甲酚酯、樟脑、二苯甲酮等。 4、硬化剂

大豆皮纤维与大豆膳食纤维的异同

大豆膳食纤维与豆皮膳食纤维的异同 一、豆渣、豆皮基本成分分析 豆渣、豆皮是生产豆制品和大豆油的副产物,其中均含有丰富的粗纤维、蛋白质等,下表1列出了其各含量的不同。 表1 豆渣、豆皮基本成分分析(%,干基) 二、豆渣、豆皮各种膳食纤维的化学成分分析 三、豆渣、豆皮各种膳食纤维水解后得到的单糖的相对含量 由表3可以看出,在豆渣、豆皮各种膳食纤维样品的单糖组成中,主要包括木糖、阿拉伯糖、果糖、甘露糖、葡萄糖和半乳糖。但其中的单糖相对含量存在的差异非常明显。豆渣膳食纤维中木糖、阿拉伯糖、半乳糖占很大比例,其它单糖含量相对较小;而在豆皮膳食纤维中,木糖和果糖的含量相对较小,其它四种单糖所占比例较大。另外,从表中可以得知,豆渣膳食纤维的单糖组成中,半乳糖相对含量

在50%左右,可知豆渣类膳食纤维所含的果胶类多糖的支链较少,其所含的葡萄糖含量也相对较低,从豆渣膳食纤维样品的成分中可以看出,其所含的淀粉较少,而葡萄糖主要来自淀粉和纤维素的水解,由此可知它主要来自纤维素的水解。而豆皮膳食纤维单糖组成中葡萄糖含量相对较高,而原料中淀粉含量很低,可见其也为纤维素的降解产物。另外其木糖、阿拉伯糖、果糖、甘露糖的比例与豆渣膳食纤维也有很大的差别,根据果胶主链、侧链上的主要单糖分布可以得出,在豆皮膳食纤维中,果胶类多糖多以高支链果胶多糖为主。 四、豆渣、豆皮各种膳食纤维持水力、膨胀力、吸油能力 表4 豆渣、豆皮三个性质的测定结果 从表4可以得到,各种豆渣、豆皮膳食纤维的持水能力、膨胀能力以及吸油能力是不一样的,但其在这三个性质上的优劣顺序是一致的,即SDF 优于IDF。可能是由于样品在挤压剪切的过程中,纤维高聚物断裂生成SDF等聚合度较低吸水性较强的成分。 另外,我们从图中可以得到,豆渣膳食纤维在持水能力、膨胀能力和吸油能力方面都优于豆皮对应的各种膳食纤维,但其作用机理待进一步研究分析。 五、豆渣、豆皮各种膳食纤维在pH不同时吸附胆固醇的能力

相关主题
文本预览
相关文档 最新文档