当前位置:文档之家› 模式识别实验1报告

模式识别实验1报告

模式识别实验1报告
模式识别实验1报告

模式识别实验一报告

正态分布的分类器设计

一、实验目的:

1.对模式识别有一个初步的理解

2.能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识

3.熟悉单元和多元正态分布分类器、判别函数

二、实验条件:

matlab 软件

三、实验原理:

对于具有多个特征参数的样本,其正态分布的概率密度函数可定义为

11

22

11()exp ()()2(2)T d p π-??=--∑-????

∑x x μx μ 式中,12,,,d x x x ????=x 是d 维行向量,12,,,d μμμ????=μ是d 维行向量,∑是d d ?维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。

本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数

()(|)(),

1,2,3i i i g p P i ωω==x x …

其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。

由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。 我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为

112

2

()1()exp ()(),1,2,32(2)T i i d

P g i ωπ-??

=

-∑=????

x x -μx -μ

对上式右端取对数,可得

111()()()ln ()ln ln(2)222

T i i i i d

g P ωπ-=-∑+-∑-i i x x -μx -μ

如果 gi (x )=max gj (x ) (j=1,2,3,…) 则x ∈wi ;

四、实验内容

1(b)、写一个程序计算一个给定正态分布及先验概率P(wi)的判别函数

111()()()ln ()ln ln(2)222

T i i i i d

g P ωπ-=-∑+-∑-i i x x -μx -μ;

2(a)、假设前面两个先验概率相等,P(w1)= P(w2) =1/2,P(w3)=0,仅利用x1

的值特征值为这两个类别判别设计一个分类器; 2(d)、用两个特征值x1、x2重复2(a)步骤; 2(e)、利用所有的特征值重复以上各步;

4、(a )、以下各测试点与2中各类别均值间的Mahalanobis 距离分别是多少?(1,2,1), (5,3,2), (0,0,0), (1,0,0)。

(b )、对以上各点进行分类;

(c )、若设P(w1)=0.8,P(w2)= P(w3) =0.1,再对以上测试点进行分类。

五、实验步骤:

1(b)、写一个程序计算一个给定正态分布及先验概率P(wi)的判别函数

111()()()ln ()ln ln(2)222

T i i i i d

g P ωπ-=-∑+-∑-i i x x -μx -μ;

2(a)、

A . 先输入x 的特征值x ,

B .获取类别w1、w2的10个样本值的一维x1均值向量miu1、miu2和

协方差矩阵sigma1、Sigma2; C. 维数d=1;pw1=1/2;pw2=1/2;

D. 把以上已知量代入判别函数gi (x )中求得g1和g2,

E. 比较g1和g2,哪个值大就判别为哪个类别! 2(d)、

A 先输入特征向量x[ ](1*2);

B 获取类别w1、w2的10个样本值的二维x1和x2的均值向量miu1、

miu2和协方差矩阵sigma1、Sigma2;

C 维数d=2;pw1=1/2;pw2=1/2;

D. 把以上已知量代入判别函数gi (x )中求得g1和g2,

E. 比较g1和g2,哪个值大就判别为哪个类别!

2(e)、A 先输入特征向量x[ ](1*3);

B 获取类别w1、w2的10个样本值的三维x1、x2、x3的均值向量

miu1、miu2和协方差矩阵sigma1、sigma2;

C 维数d=2;

pw1=1/2;pw2=1/2;

D 把以上已知量代入判别函数gi(x)中求得g1和g2,

E 比较g1和g2,哪个值大就判别为哪个类别!

4、(a)、用以下(1,2,1), (5,3,2), (0,0,0), (1,0,0)各测试点与2中各类别均值求出

Mahalanobis距离分别M1、M2、M3。

(b)、对第一个点:

A 维数d=2,先验概率pw1=1/3;pw2=1/3;pw3=1/3;

B 获取类别w1、w2、w3的10个样本值的三维x1、x2、x3的均值向

量miu1、miu2、miu3和协方差矩阵sigma1、sigma2、sigma3;

C 待判别值x=[1 2 1]

D 把以上已知量代入判别函数gi(x)中求得g1,g2和g3

E 比较g1,g2和g3,哪个值大就判别为哪个类别!

F 改变待判别值重复上述步骤。

(c)、令P(w1)=0.8,P(w2)= P(w3) =0.1重复上述步骤4(b)。

六、实验数据

1(b)、判别函数gi:

2(a)、输入:

输出

2(d)、输入:

输出

2(e)、输入:

输出

4、(a)、输出

(b)、输出

(c)、输出

七、实验心得

通过本次试验,我进一步了解分类器的设计概念,对模式识别的实际数值计算有了更多的了解,同时根据自己的设计对单元和多元正态分布分类器、判别函数有更深刻地认识,并通过本次试验基本理解Mahalanobis距离求解的原理。同时,运用Matlab的水平较前一个实验又有了一定的提高,在实验中看到自己的进步,自己的信心又增加了一些,这对以后的学习和实践都会有一定的影响。

模式识别实验指导书

类别1234 样本x 1x 2x 1x 2x 1x 2x 1x 2 10.1 1.17.1 4.2-3.0-2.9-2.0-8.4 2 6.87.1-1.4-4.30.58.7-8.90.23-3.5-4.1 4.50.0 2.9 2.1-4.2-7.74 2.0 2.7 6. 3 1.6-0.1 5.2-8.5-3.25 4.1 2.8 4.2 1.9-4.0 2.2-6.7-4.06 3.1 5.0 1.4-3.2-1.3 3.7-0.5-9.27-0.8-1.3 2.4-4.0-3. 4 6.2-5.3-6.7 80.9 1.2 2.5-6.1-4.1 3.4-8.7-6.4 9 5.0 6.48.4 3.7-5.1 1.6-7.1-9.7 10 3.9 4.0 4.1-2.2 1.9 5.1-8.0-6.3 实验一 感知器准则算法实验 一、实验目的: 贝叶斯分类方法是基于后验概率的大小进行分类的方法,有时需要进行概率密度函数的估计,而概率密度函数的估计通常需要大量样本才能进行,随着特征空间维数的增加,这种估计所需要的样本数急剧增加,使计算量大增。 在实际问题中,人们可以不去估计概率密度,而直接通过与样本和类别标号有关的判别函数来直接将未知样本进行分类。这种思路就是判别函数法,最简单的判别函数是线性判别函数。采用判别函数法的关键在于利用样本找到判别函数的系数,模式识别课程中的感知器算法是一种求解判别函数系数的有效方法。本实验的目的是通过编制程序,实现感知器准则算法,并实现线性可分样本的分类。 二、实验内容: 实验所用样本数据如表2-1给出(其中每个样本空间(数据)为两维,x 1表示第一维的值、x 2表示第二维的值),编制程序实现1、 2类2、 3类的分类。分析分类器算法的性能。 2-1 感知器算法实验数据 具体要求 1、复习 感知器算法;2、写出实现批处理感 知器算法的程序1)从a=0开 始,将你的程序应用在和的训练数据上。记下收敛的步数。2)将你的程序应用在和类上,同样记下收敛的步数。3)试解释它们收敛步数的差别。 3、提高部分:和的前5个点不是线性可分的,请手工构造非线性映射,使这些点在映射后的特征空间中是线性可分的,并对它们训练一个感知

模式识别实验报告

模式识别实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验报告 实验课程名称:模式识别 姓名:王宇班级: 20110813 学号: 2011081325 实验名称规范程度原理叙述实验过程实验结果实验成绩 图像的贝叶斯分类 K均值聚类算法 神经网络模式识别 平均成绩 折合成绩 注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和 2、平均成绩取各项实验平均成绩 3、折合成绩按照教学大纲要求的百分比进行折合 2014年 6月

实验一、 图像的贝叶斯分类 一、实验目的 将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。 二、实验仪器设备及软件 HP D538、MATLAB 三、实验原理 概念: 阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。 最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。 上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。这时如用全局阈值进行分割必然会产生一定的误差。分割误差包括将目标分为背景和将背景分为目标两大类。实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。 假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。以1p 与2p 分别表示目标与背景的灰度分布概率密度函数,1P 与2P 分别表示两类的先验概率,则图像的混合概率密度函数可用下式表示为

模式识别第二次上机实验报告

北京科技大学计算机与通信工程学院 模式分类第二次上机实验报告 姓名:XXXXXX 学号:00000000 班级:电信11 时间:2014-04-16

一、实验目的 1.掌握支持向量机(SVM)的原理、核函数类型选择以及核参数选择原则等; 二、实验内容 2.准备好数据,首先要把数据转换成Libsvm软件包要求的数据格式为: label index1:value1 index2:value2 ... 其中对于分类来说label为类标识,指定数据的种类;对于回归来说label为目标值。(我主要要用到回归) Index是从1开始的自然数,value是每一维的特征值。 该过程可以自己使用excel或者编写程序来完成,也可以使用网络上的FormatDataLibsvm.xls来完成。FormatDataLibsvm.xls使用说明: 先将数据按照下列格式存放(注意label放最后面): value1 value2 label value1 value2 label 然后将以上数据粘贴到FormatDataLibsvm.xls中的最左上角单元格,接着工具->宏执行行FormatDataToLibsvm宏。就可以得到libsvm要求的数据格式。将该数据存放到文本文件中进行下一步的处理。 3.对数据进行归一化。 该过程要用到libsvm软件包中的svm-scale.exe Svm-scale用法: 用法:svmscale [-l lower] [-u upper] [-y y_lower y_upper] [-s save_filename] [-r restore_filename] filename (缺省值:lower = -1,upper = 1,没有对y进行缩放)其中,-l:数据下限标记;lower:缩放后数据下限;-u:数据上限标记;upper:缩放后数据上限;-y:是否对目标值同时进行缩放;y_lower为下限值,y_upper为上限值;(回归需要对目标进行缩放,因此该参数可以设定为–y -1 1 )-s save_filename:表示将缩放的规则保存为文件save_filename;-r restore_filename:表示将缩放规则文件restore_filename载入后按此缩放;filename:待缩放的数据文件(要求满足前面所述的格式)。缩放规则文件可以用文本浏览器打开,看到其格式为: y lower upper min max x lower upper index1 min1 max1 index2 min2 max2 其中的lower 与upper 与使用时所设置的lower 与upper 含义相同;index 表示特征序号;min 转换前该特征的最小值;max 转换前该特征的最大值。数据集的缩放结果在此情况下通过DOS窗口输出,当然也可以通过DOS的文件重定向符号“>”将结果另存为指定的文件。该文件中的参数可用于最后面对目标值的反归一化。反归一化的公式为: (Value-lower)*(max-min)/(upper - lower)+lower 其中value为归一化后的值,其他参数与前面介绍的相同。 建议将训练数据集与测试数据集放在同一个文本文件中一起归一化,然后再将归一化结果分成训练集和测试集。 4.训练数据,生成模型。 用法:svmtrain [options] training_set_file [model_file] 其中,options(操作参数):可用的选项即表示的涵义如下所示-s svm类型:设置SVM 类型,默

模式识别实验指导书

实验一、基于感知函数准则线性分类器设计 1.1 实验类型: 设计型:线性分类器设计(感知函数准则) 1.2 实验目的: 本实验旨在让同学理解感知准则函数的原理,通过软件编程模拟线性分类器,理解感知函数准则的确定过程,掌握梯度下降算法求增广权向量,进一步深刻认识线性分类器。 1.3 实验条件: matlab 软件 1.4 实验原理: 感知准则函数是五十年代由Rosenblatt 提出的一种自学习判别函数生成方法,由于Rosenblatt 企图将其用于脑模型感知器,因此被称为感知准则函数。其特点是随意确定的判别函数初始值,在对样本分类训练过程中逐步修正直至最终确定。 感知准则函数利用梯度下降算法求增广权向量的做法,可简单叙述为: 任意给定一向量初始值)1(a ,第k+1次迭代时的权向量)1(+k a 等于第k 次的权向量)(k a 加上被错分类的所有样本之和与k ρ的乘积。可以证明,对于线性可分的样本集,经过有限次修正,一定可以找到一个解向量a ,即算法能在有限步内收敛。其收敛速度的快慢取决于初始权向量)1(a 和系数k ρ。 1.5 实验内容 已知有两个样本空间w1和w2,这些点对应的横纵坐标的分布情况是: x1=[1,2,4,1,5];y1=[2,1,-1,-3,-3]; x2=[-2.5,-2.5,-1.5,-4,-5,-3];y2=[1,-1,5,1,-4,0]; 在二维空间样本分布图形如下所示:(plot(x1,y1,x2,y2))

-6-4-20246 -6-4 -2 2 4 6w1 w2 1.6 实验任务: 1、 用matlab 完成感知准则函数确定程序的设计。 2、 请确定sample=[(0,-3),(1,3),(-1,5),(-1,1),(0.5,6),(-3,-1),(2,-1),(0,1), (1,1),(-0.5,-0.5),( 0.5,-0.5)];属于哪个样本空间,根据数据画出分类的结果。 3、 请分析一下k ρ和)1(a 对于感知函数准则确定的影响,并确定当k ρ=1/2/3时,相应 的k 的值,以及)1(a 不同时,k 值得变化情况。 4、 根据实验结果请说明感知准则函数是否是唯一的,为什么?

操作实验报告

《Linux操作系统》实验日志 班级: 姓名: 学号: 指导老师: 实验一:Linux常用命令实验日志 指导教师刘锐实验时间:2009 年10 月13 日学院计算机科学与技术学院专业信息安全 班级学号姓名实验室S308 实验题目: Linux常用命令 实验目的:

●练习并掌握Linux的常用命令 ●使用命令方式对用户,用户组及文件使用进行管理 ●使用图形界面方式对用户,用户组及文件使用进行管理 ●编写一个简单的C语言程序,并在linux环境下调试并运行 实验内容: 1.在命令交互方式下完成添加一个用户AA和一个用户组AAteam,并在AA用 户下建立一个名为test的文件,同时改变对该文件的访问权限。 2.在图形交互方式下添加一个用户BB和一个用户组BBteam,并建立一个名为 test文件,同时设置它的访问权限。 3.用C语言编写一个最简单的hello world程序 实验主要步骤: 1.练习Linux初学者需要掌握的常用50条命令 2.helloworld程序用vi或vim编辑器先编写源代码取名为hello.c 1)退出源文件编辑状态到命令行模式, 2)在命令行模式下输入gcc –o hello hello.c,其中hello是经编译过后生成的可执 行文件 3)用chmod命令修改hello文件的权限 4)在命令行模式下输入./hello 实验结果:

心得体会: 第一次实验课,我们开始接触Linux操作系统,很生疏和平时用的基本不一样。更别说命令方式了。这次实验用户组及文件使用进行管理,使用图形界面方式对用户,用户组及文件使用进行管理编写一个简单的C语言程序,并在linux环境下调试并运行。通过这次试验,我们学习和实践了一些基本命令.这些命令对于linux来说是必须的。-o选项表示我们要求输出的可执行文件名. -c表示只要求编译器输出目标代码,而不必要输出可执行文件. -g 表示要求编译器在编译的时候提供以后对程序进行调试的信息。对于编辑和修改程序我们需要应该运用VI编辑器来修改,而VI编辑器给我们提供了关键字的颜色等等,这使我们能更便捷的找到错误。我想这次实验告诉我如果对于一个陌生的操作系统,不仅要了解其基本理论,对于常用的基本操作也要了解。

2014春《文献检索》实验指导书-机械类六个专业-(需要发送电子稿给学课件

《文献检索》实验指导书 刘军安编写 适用专业:机械类各专业 总学时:24~32学时 实验学时:6~14 机械设计与制造教研室 2014. 3

一、课程总实验目的与任务 《文献检索》课程实验是机械学院机械类专业的选修课的实验。通过实验内容与过程,主要培养学生在信息数字化、网络化存储环境下信息组织与检索的原理、技术和方法,以及在数字图书馆系统和数字信息服务系统中检索专业知识的能力,辅助提高21世纪大学生人文素质。通过实验,使学生对信息检索的概念及发展、检索语言、检索策略、检索方法、检索算法、信息检索技术、网络信息检索原理、搜索引擎、信息检索系统的结构、信息检索系统的使用、信息检索系统评价以及所检索信息的分析等技术有一个全面熟悉和掌握。本实验主要培养和考核学生对信息检索基本原理、方法、技术的掌握和知识创新过程中对知识的检索与融合能力。实验主要侧重于培养学生对本专业技术原理和前言知识的信息检索能力,引导学生应理论联系实际,同时要了解本专业科技信息的最新进展和研究动态与走向。 二、实验内容 通过课程的学习,结合老师给出的检索主题,学生应该完成以下内容的实验: 实验一:图书馆专业图书检索(印刷版图书) 实验二:中文科技期刊信息检索 实验三:科技文献数据库信息检索 实验四:网络科技信息检索(含报纸和网络) 文献检索参考主题: 1.工业工程方向: 工业工程;工业工程师的素质、精神、修养、气质与能力;工业工程的本质;企业文化与工业工程;战略工程管理;工程哲学;创新管理;生产管理;品质管理;优化管理或管理的优化;零库存;敏捷制造;敏捷管理;(优秀的、现代的、或未来的)管理哲学;生产管理七大工具;质量管理;设备管理;基础管理;现场管理;六西格玛管理;生产线平衡;工程经济;系统哲学;系统管理;柔性制造;看板管理;工程心理学;管理心理学;激励管理;管理中的真、善、美(或假、恶、丑);工程哲学;工业工程中的责任;安全管理;优化调度;系统工程;系统管理与过程控制;设计哲学;智能管理;工业工程中的数学;智能工业工程,或工业工程的智能化;生态工程管理;绿色工业工程,或绿色管理;协同学与协同管理;工业工程中的协同;概念工程与概念管理;工业工程与蝴蝶效应;管理中的蝴蝶效应,等等…… 2.机械电子工程方向: CAD;CAM;CAE;CAPP;PDM;EPR;CIMS;VD;VM;FMS;PLC;协同设计;协同制造;概念设计;自底向上;自顶向下;智能设计;智能制造;智能材料;特种加工(线切割、电火花、激光加工、电化学加工、超声波加工、光刻技术、快速成型、反求工程);微机械;精密加工;精密制造;机电一体化;自动化;控制论;线性控制;非线性控制;混沌控制;模糊控制;人工智能;神经网络;纳米技术;纳米制造;机器人;智能机器人;传感器;智能传感器;自动化生产线;机械手;智能机械手;自动检测;数据采集;信号处理;信息识别、模式识别等等……

《认知心理学》实验指导

概念形成 简介: 概念是人脑反映事物本质属性的思维形式。个体掌握一类事物本质属性的过程,就是概念形成的过程。实验室中为了研究概念形成的过程,常使用人工概念。 制造人工概念时先确定一个或几个属性作为分类标准,但并不告诉被试,只是将材料交给被试,请其分类。在此过程中,反馈给被试是对还是错。通过这种方法,被试可以发现主试的分类标准,从而学会正确分类,即掌握了这个人工概念。通过人工概念的研究,可以了解概念形成的过程。一般来讲,被试都是经过概括-假设-验证的循环来达到概念形成的。 叶克斯复杂选择器可用来制造人工概念。本实验模拟叶克斯复杂选择器来研究简单空间位置关系概念的形成。 方法与程序: 本实验共有4个人工概念,难度顺次增加,被试可以任选其中1个。 实验时,屏幕上会出现十二个圆键,有空心和实心两种。其中只有一个实心圆与声音相联系,此键出现的相对位置是有规律的,被试要去发现其中的规律(概念),找到这个键。被试用鼠标点击相应的实心圆,如果没有发生任何变化,表明选择错误;如果有声音呈现,同时该圆变为红色,则表明选择正确。只有选择正确,才能继续下一试次。当连续三次第一遍点击就找对了位置时,就认为被试已形成了该人工概念,实验即结束。如果被试在60个试次内不能形成正确概念,实验自动终止。 结果与讨论: 结果文件第一行是被试达到标准所用的遍数(不包括连续第一次就对的三遍)。其后的结果分三列印出:第一列是遍数;第二列为每遍中反应错的次数,如为0则表示这一遍第一次就做对了;第三列表示这一遍所用的时间,以毫秒为单位。 根据结果试说明被试概念形成的过程。 交叉参考:思维策略 参考文献: 杨博民主编心理实验纲要北京大学出版社 319-321页

华南理工大学《模式识别》大作业报告

华南理工大学《模式识别》大作业报告 题目:模式识别导论实验 学院计算机科学与工程 专业计算机科学与技术(全英创新班) 学生姓名黄炜杰 学生学号201230590051 指导教师吴斯 课程编号145143 课程学分2分 起始日期2015年5月18日

实验概述 【实验目的及要求】 Purpose: Develop classifiers,which take input features and predict the labels. Requirement: ?Include explanations about why you choose the specific approaches. ?If your classifier includes any parameter that can be adjusted,please report the effectiveness of the parameter on the final classification result. ?In evaluating the results of your classifiers,please compute the precision and recall values of your classifier. ?Partition the dataset into2folds and conduct a cross-validation procedure in measuring the performance. ?Make sure to use figures and tables to summarize your results and clarify your presentation. 【实验环境】 Operating system:window8(64bit) IDE:Matlab R2012b Programming language:Matlab

《模式识别》实验报告

《模式识别》实验报告 一、数据生成与绘图实验 1.高斯发生器。用均值为m,协方差矩阵为S 的高斯分布生成N个l 维向量。 设置均值 T m=-1,0 ?? ??,协方差为[1,1/2;1/2,1]; 代码: m=[-1;0]; S=[1,1/2;1/2,1]; mvnrnd(m,S,8) 结果显示: ans = -0.4623 3.3678 0.8339 3.3153 -3.2588 -2.2985 -0.1378 3.0594 -0.6812 0.7876 -2.3077 -0.7085 -1.4336 0.4022 -0.6574 -0.0062 2.高斯函数计算。编写一个计算已知向量x的高斯分布(m, s)值的Matlab函数。 均值与协方差与第一题相同,因此代码如下: x=[1;1]; z=1/((2*pi)^0.5*det(S)^0.5)*exp(-0.5*(x-m)'*inv(S)*(x-m)) 显示结果: z = 0.0623 3.由高斯分布类生成数据集。编写一个Matlab 函数,生成N 个l维向量数据集,它们是基于c个本体的高斯分布(mi , si ),对应先验概率Pi ,i= 1,……,c。 M文件如下: function [X,Y] = generate_gauss_classes(m,S,P,N) [r,c]=size(m); X=[]; Y=[]; for j=1:c t=mvnrnd(m(:,j),S(:,:,j),fix(P(j)*N)); X=[X t]; Y=[Y ones(1,fix(P(j)*N))*j]; end end

调用指令如下: m1=[1;1]; m2=[12;8]; m3=[16;1]; S1=[4,0;0,4]; S2=[4,0;0,4]; S3=[4,0;0,4]; m=[m1,m2,m3]; S(:,:,1)=S1; S(:,:,2)=S2; S(:,:,3)=S3; P=[1/3,1/3,1/3]; N=10; [X,Y] = generate_gauss_classes(m,S,P,N) 二、贝叶斯决策上机实验 1.(a)由均值向量m1=[1;1],m2=[7;7],m3=[15;1],方差矩阵S 的正态分布形成三个等(先验)概率的类,再基于这三个类,生成并绘制一个N=1000 的二维向量的数据集。 (b)当类的先验概率定义为向量P =[0.6,0.3,0.1],重复(a)。 (c)仔细分析每个类向量形成的聚类的形状、向量数量的特点及分布参数的影响。 M文件代码如下: function plotData(P) m1=[1;1]; S1=[12,0;0,1]; m2=[7;7]; S2=[8,3;3,2]; m3=[15;1]; S3=[2,0;0,2]; N=1000; r1=mvnrnd(m1,S1,fix(P(1)*N)); r2=mvnrnd(m2,S2,fix(P(2)*N)); r3=mvnrnd(m3,S3,fix(P(3)*N)); figure(1); plot(r1(:,1),r1(:,2),'r.'); hold on; plot(r2(:,1),r2(:,2),'g.'); hold on; plot(r3(:,1),r3(:,2),'b.'); end (a)调用指令: P=[1/3,1/3,1/3];

温度控制系统曲线模式识别及仿真

锅炉温度定值控制系统模式识别及仿真专业:电气工程及其自动化姓名:郭光普指导教师:马安仁 摘要本文首先简要介绍了锅炉内胆温度控制系统的控制原理和参数辨识的概念及切线近似法模式识别的基本原理,然后对该系统的温控曲线进行模式识别,而后着重介绍了用串级控制和Smith预估器设计一个新的温度控制系统,并在MATLAB的Simulink中搭建仿真模型进行仿真。 关键词温度控制,模式识别,串级控制,Smith预测控制 ABSTRACT This article first briefly introduced in the boiler the gallbladder temperature control system's control principle and the parameter identification concept and the tangent approximate method pattern recognition basic principle, then controls the curve to this system to carry on the pattern recognition warm, then emphatically introduced designs a new temperature control system with the cascade control and the Smith estimator, and carries on the simulation in the Simulink of MATLAB build simulation model. Key Words:Temperature control, Pattern recognition, Cascade control, Smith predictive control

设计模式上机实验二实验报告

设计模式实验二 实验报告书 专业班级软件0703 学号24 姓名吉亚云 指导老师刘伟 时间2010年4月24日 中南大学软件学院

实验二设计模式上机实验二 一、实验目的 使用PowerDesigner和任意一种面向对象编程语言实现几种常用的设计模式,加深对这些模式的理解,包括装饰模式、外观模式、代理模式、职责链模式、命令模式、迭代器模式、观察者模式、状态模式、策略模式和模板方法模式。 二、实验内容 使用PowerDesigner和任意一种面向对象编程语言实现装饰模式、外观模式、代理模式、职责链模式、命令模式、迭代器模式、观察者模式、状态模式、策略模式和模板方法模式,包括根据实例绘制相应的模式结构图、编写模式实现代码,运行并测试模式实例代码。 三、实验要求 1. 正确无误绘制装饰模式、外观模式、代理模式、职责链模式、命令模式、迭代器模式、观察者模式、状态模式、策略模式和模板方法模式的模式结构图; 2. 使用任意一种面向对象编程语言实现装饰模式、外观模式、代理模式、职责链模式、命令模式、迭代器模式、观察者模式、状态模式、策略模式和模板方法模式,代码运行正确无误。 四、实验步骤 1. 使用PowerDesigner绘制装饰模式结构图并用面向对象编程语言实现该模式; 2. 使用PowerDesigner绘制外观模式结构图并用面向对象编程语言实现该模式; 3. 使用PowerDesigner绘制代理模式结构图并用面向对象编程语言实现该模式; 4. 使用PowerDesigner绘制职责链模式结构图并用面向对象编程语言实现该模式; 5. 使用PowerDesigner绘制命令模式结构图并用面向对象编程语言实现该模式; 6. 使用PowerDesigner绘制迭代器模式结构图并用面向对象编程语言实现该模式; 7. 使用PowerDesigner绘制观察者模式结构图并用面向对象编程语言实现该模式; 8. 使用PowerDesigner绘制状态模式结构图并用面向对象编程语言实现该模式; 9. 使用PowerDesigner绘制策略模式结构图并用面向对象编程语言实现该模式; 10. 使用PowerDesigner绘制模板方法模式结构图并用面向对象编程语言实现该模式。 五、实验报告要求 1. 提供装饰模式结构图及实现代码; 2. 提供外观模式结构图及实现代码; 3. 提供代理模式结构图及实现代码; 4. 提供职责链模式结构图及实现代码;

模式识别实验

实验1 图像的贝叶斯分类 1.1 实验目的 将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。 1.2 实验仪器设备及软件 HP D538、MATLAB 1.3 实验原理 1.3.1 基本原理 阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。此过程中,确定阈值是分割的关键。 对一般的图像进行分割处理通常对图像的灰度分布有一定的假设,或者说是基于一定的图像模型。最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。 上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。这时如用全局阈值进行分割必然会产生一定的误差。分割误差包括将目标分为背

景和将背景分为目标两大类。实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。 假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。以1p 与2p 分别表示目标与背景的灰度分布概率密度函数,1P 与2P 分别表示两类的先验概率,则图像的混合概率密度函数可用下式表示 1122()()()p x P p x P p x =+ 式中1p 和2p 分别为 212 1()21()x p x μσ--= 222()22()x p x μσ-- = 121P P += 1σ、2σ是针对背景和目标两类区域灰度均值1μ与2μ的标准差。若假定目标的灰 度较亮,其灰度均值为2μ,背景的灰度较暗,其灰度均值为1μ,因此有 12μμ< 现若规定一门限值T 对图像进行分割,势必会产生将目标划分为背景和将背景划分为目标这两类错误。通过适当选择阈值T ,可令这两类错误概率为最小,则该阈值T 即为最佳阈值。 把目标错分为背景的概率可表示为 12()()T E T p x dx -∞ =? 把背景错分为目标的概率可表示为

模式识别实验报告(一二)

信息与通信工程学院 模式识别实验报告 班级: 姓名: 学号: 日期:2011年12月

实验一、Bayes 分类器设计 一、实验目的: 1.对模式识别有一个初步的理解 2.能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识 3.理解二类分类器的设计原理 二、实验条件: matlab 软件 三、实验原理: 最小风险贝叶斯决策可按下列步骤进行: 1)在已知 ) (i P ω, ) (i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计 算出后验概率: ∑== c j i i i i i P X P P X P X P 1 ) ()() ()()(ωωωωω j=1,…,x 2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险 ∑== c j j j i i X P a X a R 1 )(),()(ωω λ,i=1,2,…,a 3)对(2)中得到的a 个条件风险值) (X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的 决策k a ,即()() 1,min k i i a R a x R a x == 则 k a 就是最小风险贝叶斯决策。 四、实验内容 假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=; 异常状态:P (2ω)=。 现有一系列待观察的细胞,其观察值为x : 已知先验概率是的曲线如下图:

)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,)(2,4)试对观察的结果 进行分类。 五、实验步骤: 1.用matlab 完成分类器的设计,说明文字程序相应语句,子程序有调用过程。 2.根据例子画出后验概率的分布曲线以及分类的结果示意图。 3.最小风险贝叶斯决策,决策表如下: 结果,并比较两个结果。 六、实验代码 1.最小错误率贝叶斯决策 x=[ ] pw1=; pw2=; e1=-2; a1=; e2=2;a2=2; m=numel(x); %得到待测细胞个数 pw1_x=zeros(1,m); %存放对w1的后验概率矩阵 pw2_x=zeros(1,m); %存放对w2的后验概率矩阵

网络实验报告总结.doc

实验 1 PacketTrace基本使用 一、实验目的 掌握 Cisco Packet Tracer软件的使用方法。 二、实验任务 在 Cisco Packet Tracer中用HUB组建局域网,利用PING命令检测机器的互通性。 三、实验设备 集线器( HUB)一台,工作站PC三台,直连电缆三条。 四、实验环境 实验环境如图1-1 所示。 图 1-1交换机基本配置实验环境 五、实验步骤 (一)安装模拟器 1、运行“ PacketTracer53_setup”文件,并按如下图所示完成安装; 点“ Next ”

选择“ I accept the agreement”后,点“ next”不用更改安装目录,直接点“ next ” 点“ next ”

点“ next ” 点“ install”

正在安装 点“ Finish ”,安装完成。 2、进入页面。 (二)使用模拟器 1、运行Cisco Packet Tracer 软件,在逻辑工作区放入一台集线器和三台终端设备PC,用 直连线按下图将HUB 和PC工作站连接起 来, HUB端 接 Port 口, PC端分别接以太网口。

2、分别点击各工作站PC,进入其配置窗口,选择桌面项,选择运行IP 地址配置(IP Configuration ),设置IP 地址和子网掩码分别为PC0:1.1.1.1 ,255.255.255.0 ;PC1:1.1.1.2 ,255.255.255.0 ; PC2: 1.1.1.3 , 255.255.255.0 。 3、点击 Cisco Packet Tracer软件右下方的仿真模式按钮,如图1-2所示。将Cisco Packet Tracer的工作状态由实时模式转换为仿真模式。 图1-2 按Simulation Mode 按钮 4、点击PC0进入配置窗口,选择桌面Desktop 项,选择运行命令提示符Command Prompt,如图1-3 所示。 图5、在上述DOS命令行窗口中,输入(Simulation Panel)中点击自动捕获1-3进入PC配置窗口 Ping 1.1.1.3命令,回车运行。然后在仿真面板 / 播放( Auto Capture/Play)按钮,如图1-4 所示。 图 1-4 点击自动抓取 /运行按钮 6、观察数据包发送的演示过程,对应地在仿真面板的事件列表( 的类型。如图1-5 和图 1-6 所示。 Event List )中观察数据包

模式识别实验报告年月

模式识别实验报告-年月

————————————————————————————————作者: ————————————————————————————————日期:

学院: 班级: 姓名: 学号: 2012年3月

实验一 Bay es分类器的设计 一、 实验目的: 1. 对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识; 2. 理解二类分类器的设计原理。 二、 实验条件: 1. PC 微机一台和MA TL AB 软件。 三、 实验原理: 最小风险贝叶斯决策可按下列步骤进行: 1. 在已知 ) (i P ω, )|(i X P ω,c i ,,1 =及给出待识别的X 的情况下,根据贝叶斯 公式计算出后验概率: ∑== c j j j i i i P X P P X P X P 1 ) ()|() ()|()|(ωωωωω c j ,,1 = 2. 利用计算出的后验概率及决策表,按下式计算出采取 i α决策的条件风险: ∑==c j j j i i X P X R 1) |(),()|(ωωαλα a i ,,1 = 3. 对2中得到的a 个条件风险值) |(X R i α(a i ,,1 =)进行比较,找出使条件 风险最小的决策k α,即: ) |(min )|(,,1X R X R k c i k αα ==, 则 k α就是最小风险贝叶斯决策。 四、 实验内容: (以下例为模板,自己输入实验数据) 假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为: 正常状态:)(1ωP =0.9; 异常状态:)(2ωP =0.1。

模式识别实验最小错误率下的贝叶斯决策

《模式识别》实验报告题目:最小错误率贝叶斯决策

一、实验内容 1,实验原理 2,实验步骤 1)从iris.txt 文件(课程邮箱-文件中心)中读取估计参数用的样本,每一类样本抽出前40个,分别求其均值; (2)求每类样本的协方差矩阵、逆矩阵以及协方差矩阵的行列式; (3)对三个类别,分别取每组剩下的 10个样本,每两组进行分类。由于每类样本都相等, 且每类选取用作训练的样本也相等,在每两组进行分类时,待分类样本的类

先验概率为0.5。 将各个样本代入判别函数既公式(5),进行分类。 3,实验要求 (1)复习最小错误率贝叶斯决策原理,写出实验代码,实现对三类样本的分类; (2)计算分类的正确率,画出三维空间的样本分类图; (3)分析实验结果,完成实验报告。 二、实验代码 (1), clear % 原始数据导入 iris=load('iris.txt'); N=40;%每组取N=40个样本 %求第一类样本均值 for i = 1:N for j = 1:4 w1(i,j) = iris(i,j+1); end end sumx1 = sum(w1,1); for i=1:4 meanx1(1,i)=sumx1(1,i)/N; end %求第二类样本均值 for i = 1:N for j = 1:4 w2(i,j) = iris(i+50,j+1); end end sumx2 = sum(w2,1); for i=1:4 meanx2(1,i)=sumx2(1,i)/N; end %求第三类样本均值

for i = 1:N for j = 1:4 w3(i,j) = iris(i+100,j+1); end end sumx3 = sum(w3,1); for i=1:4 meanx3(1,i)=sumx3(1,i)/N; end (2), %求第一类样本协方差矩阵 z1(4,4) = 0; var1(4,4) = 0; for i=1:4 for j=1:4 for k=1:N z1(i,j)=z1(i,j)+(w1(k,i)-meanx1(1,i))*(w1(k,j)-meanx1(1,j)); end var1(i,j) = z1(i,j) / (N-1); end end %求第二类样本协方差矩阵 z2(4,4) = 0 ; var2(4,4) = 0; for i=1:4 for j=1:4 for k=1:N z2(i,j)=z2(i,j)+(w2(k,i)-meanx2(1,i))*(w2(k,j)-meanx2(1,j)); end ar2(i,j) = z2(i,j) / (N-1); end end %求第三类样本协方差矩阵 z3(4,4) = 0 ;

模式识别实验报告

实验一Bayes 分类器设计 本实验旨在让同学对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。 1实验原理 最小风险贝叶斯决策可按下列步骤进行: (1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率: ∑== c j i i i i i P X P P X P X P 1 ) ()() ()()(ωωωωω j=1,…,x (2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险 ∑== c j j j i i X P a X a R 1 )(),()(ωω λ,i=1,2,…,a (3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即 则k a 就是最小风险贝叶斯决策。 2实验内容 假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=0.9; 异常状态:P (2ω)=0.1。

现有一系列待观察的细胞,其观察值为x : -3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682 -1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532 已知类条件概率密度曲线如下图: )|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,0.25)(2,4)试对观察的结果进 行分类。 3 实验要求 1) 用matlab 完成分类器的设计,要求程序相应语句有说明文字。 2) 根据例子画出后验概率的分布曲线以及分类的结果示意图。 3) 如果是最小风险贝叶斯决策,决策表如下:

模式识别作业--两类贝叶斯分类

深圳大学研究生课程:模式识别理论与方法 课程作业实验报告 实验名称:Bayes Classifier 实验编号:proj02-01 姓名:汪长泉 学号:2100130303 规定提交日期:2010年10月20日 实际提交日期:2010年10月20日 摘要:在深入掌握多维高斯分布性质,贝叶斯分类的基础上,用计算机编程实现一个分类两类模式样本的贝叶斯分类器。用matlab编程,并分析了实验结果,得出贝叶斯分类的一般结论。

1. 贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。 1.1 两类情况 两类情况是多类情况的基础,多类情况往往是用多个两类情况解决的。 ① 用i ω,i =1, 2表示样本x (一般用列向量表示)所属的类别。 ② 假设先验概率()P ω1,()P ω2已知。(这个假设是合理的,因为如果先验概率未知,可以从训 练特征向量中估算出来,即如果N 是训练样本总数,其中有,N N 12个样本分别属于 2,1ωω,则相应的先验概率: ()/P N N ω≈11,2 ()/P N N ω≈2) ③ 假设(类)条件概率密度函数 (|),i p ωx i =1,2 已知,用来描述每一类中特征向量的分 布情况。如果类条件概率密度函数未知,则可以从可用的训练数据中估计出来。 1.2贝叶斯判别方法 贝叶斯分类规则描述为: 如果2(|)(|)P ωP ω>1x x ,则x ∈1ω 如果2(|)(|)P ωP ω<1x x ,则x ∈2ω (2-1-1) 贝叶斯分类规则就是看x ∈ω1的可能性大,还是x ∈2ω的可能性大。(|)i P ωx , i =1,2解释为当样本x 出现时,后验概率(|)P ω1x 和(|)P ω2x 的大小从而判别为属于 1ω或属于2ω类。 1.3三种概率的关系――――贝叶斯公式 ()() (|)= () i i i p |P P p ωωωx x x (2-1-3) 其中,()p x 是x 的概率密度函数(全概率密度),它等于所有可能的类概率密度函数乘以相应的先验概率之和。 ()(|)()i i i p p P ωω==∑2 1 x x

相关主题
文本预览
相关文档 最新文档