当前位置:文档之家› 道路地热融雪化冰研究现状_薛相美

道路地热融雪化冰研究现状_薛相美

道路地热融雪化冰研究现状_薛相美
道路地热融雪化冰研究现状_薛相美

收稿日期:2015-3-27

作者简介:薛相美(1969-),男,硕士研究生,主要从事新型制冷技术与设备、节能技术方面研究。Email :jobxxm@https://www.doczj.com/doc/f812828400.html,

文章编号:ISSN1005-9180(2015)03-074-05

道路地热融雪化冰研究现状

薛相美

(佛山市高级技工学校,广东528200)

[摘要]阐述了道路地热融雪化冰的工作原理,着重介绍了地热融雪化冰技术在国内外的研究现状,并分析该系统的一些存在问题。由于在节能和环保方面有着明显的优势,地热融雪化冰系统在我国将有广泛的应用前景。

[关键词]地热;融雪化冰;道路;节能环保[中图分类号]TB6

[文献标示码]B

doi :10.3696/J.ISSN.1005-9180.2015.03.014

Research Situation of Ice and Snow Melting Process on

Pavement Utilizing Geothermal

XUE Xiangmei

(Foshan Advanced Technical School ,Guangdong 528200)

Abstract :The process of ice and snow melting on pavement utilizing geothermal is introduced ,and research situa-tion of ice and snow melting technology with geothermal at home and abroad is described detailed.Because the ice and snow melting system has clear superiority in the aspects of energy conservation and environmental protection ,it can be predicted that the system will be widely used in the future.

Key words :Geothermal ;Ice and snow melting ;Pavement ;Environmental protection

0引言

路面冰雪问题一直困扰着各国交通部门,每年

由于路面积雪结冰所造成的直接经济损失平均达数

亿元。因此,对路面积雪结冰的处理问题,各国一直非常重视,并作了大量研究,探索出多种抑制路

面积雪结冰的方法[1]

冬季除雪方法主要有清除法和融化法两类,清除法可分为人工清除和机械清除,融化法则分为化学法和热融化法。机械除雪,除雪机械设计技术难度较大,设备制造成本较高,除净率低,工作效率

低,功率消耗非常大,使用效果不理想。化学法通过在路面上散布融雪剂(CaCl 2、MgCl 2)等来融雪化冰,但盐类除雪剂对环境、土壤、结构构造物等存在危害,具有一定的负面效应

[2]

。热融化法利

用热水、地热、燃气、电等产生的热量使冰雪融化,其中地热融雪受到极大地关注。因为地球作为一个载热的星体,不断从内部向地表与空间释放热能,浅层土壤地热资源是可再生能源的重要组成部分,是一种取之不尽,经济效益较高,又不会产生任何污染的可再生能源,是一种高环保、高效益的可持续发展能源

[3]

,而且地热融雪符合国家的产

业政策,有很好的发展前景。

1道路地热融雪化冰系统

1.1工作原理

道路地热融雪化冰技术是在路(桥)面内埋置热管,利用机组,经地下换热器从地下提取低位地热能,经热泵提升后,通过水泵把温度较高的流体输送到路(桥)面内的排管里面。高温热流体在排管内流动时,把热量通过对流换热方式,传入路(桥)面。当路(桥)面的温度达到0?以上时,其表面上的冰雪就会融化,从而达到融雪化冰的目的。

道路地热融雪化冰系统主要由埋地换热器、控制装置、集分水器以及融雪管道等组成(图1)。地热融雪系统主要的运行模式分为夏季蓄热模式和冬季融雪模式。夏季利用道路循环热流体将强烈的太阳能辐射热能传至地下土壤储存,即地下蓄能;冬季循环热流体再将热量提取至路面提高路面温度融雪化冰。所以太阳能-地热道路融雪系统可以实现跨季节蓄热利用,大大提高了能量的利用率,实现季节性蓄能再利用。如果再通过地源热泵实现升

温、控温运行,可进一步提高能量的利用程度

图1道路地热融雪化冰系统图

1.2地热融雪系统特点

(1)使用稳定、廉洁、清洁的地热能作为热源。利用天然丰富地热能源,即使是在寒冷的冬天,都能够提供足够的和稳定数量的热量。此外,该系统还采用了高效能地源热泵技术,以降低运行成本,并减少二氧化碳排放量。

(2)高换热器效率。在换热器方面,双U形管在工程中被使用。相比传统的换热器,吸取的地热约多20%以上。

(3)稳定积雪融化性能。利用恒定的低温热能,而且土壤的比热容大,意味着能够储存在土壤中的热量多,使得运行的地源热泵长期都有较高的效率。

(4)降低运行费用。利用廉价的融雪化冰系统,并提高整个系统性能系数(COP),大大降低了运行成本,比使用电炉丝节省约30%的能量。

2国内外研究现状

2.1世界各国重视道路地热融雪化冰技术的开发

在国际上,道路热融雪化冰技术主要以美国、日本、北欧等国家为代表,1992年起,在美国能源部(DOE)、交通部(DOT)联邦高速公路管理局和国家基础研究基金的联合资助下,开始实施HBT(Heated Bridge Technologies)计划[4]。系统研究道桥地热融雪化冰问题。1994年至1999年的5年间,美国5个州分别开展道路和桥梁热融雪化冰应用示范工程,比较和探索循环热流体、热管传递、电加热、燃料加热等多种方式间的能源利用和融雪化冰效果。日本国家资源环境研究所(NIRE)在国际经合组织(OECD)和能源组织(IEA)的可再生能源专项促进下,于1995年在日本二户市建造了首例全自动路面集热蓄能式循环热流体融雪化冰系统[5],取得了阶段性成果。在中国,国家“十一五”科技支撑计划“区域规划与城市土地节约利用关键技术研究”中,特别强调了道路冰雪自融与防滑关键技术研究内容。这些都表明国内已经开始关注地热融雪化冰技术的研发、应用和示范。

2.2国外研究现状

近年来,美、日以及北欧瑞士、冰岛、挪威、波兰等国家开展道路热融雪研究比较多。从1998年开始,美国俄克拉荷马州大学(OSU)开展路桥热流体循环融雪化冰技术的研究工作,在OSU建立了目前世界上最大的路桥专用实验系统[6,7],结合当地气候条件,将路面作为太阳能集热系统,采用利用竖孔地下换热器的地源热泵封闭系统,开展地热融雪化冰过程研究。研究工作主要涉及冰雪多

第34卷第3期(总132期)

孔介质传热,利用有限元方法求解路面传热过程,对地热融雪进行了模拟计算分析和实验。

美国俄勒冈州理工学院地热中心对路面热融雪化冰技术进行了全面的比较和分析工作[8],并且采用竖直重力式热管方式,分别在弗吉尼亚州西部橡树岭的高速公路坡道路段和怀俄明州Cheyenne 高速公路的两处坡道路段进行了试验研究。

日本北海道大学研究者们[9]对日本早期的地面蓄能融雪化冰试验工程进行比较分析。研究表明,平均地面集热率可达36%,北海道地区的季节变化可以实现用能与蓄能的基本平衡。研究结论指出,道路地热融雪化冰方式是一项极具发展前景的能源技术,尽管初期投资较高,技术难度较大,但是利用自然可再生能量资源,节能效果显著,环保和资源合理利用功效优势明显,便于实现自动化和及时处理。

在瑞士A8高速公路Darligen路段[10]的路桥上开展了太阳能-地热道路融雪系统试验运行,在冬季有效提高路面平均温度10?左右,路面换热效果很好,大幅度地提高融雪的性能,而且由于路面温度的升高,减轻冻裂板结。在夏季,系统又可降低路面峰值温度15 20?,减轻路面暴晒风化和热蚀损害,提高路面的使用寿命。

Senser[11]用计算机模拟机场跑道地热融雪系统,基于响应因子技术,开发设计了路面热管采暖系统。由此产生的算法被证明是高效率和准确的。研究指出:在芝加哥使用低品位水源的跑道路面加热系统具有很大的潜力;

Aoki等人研究的融雪模型[12]划分三层,分别是水渗透层、冰层、洁白雪层,模型边界条件是积雪表面上是对流作用,热流量是不变的,以及底部表面接触板的水饱和度为100%。方程采用有限差分法和可变空间网格移动层来求解。研究表明:上表面的热损失是不同的,取决于雪的类型;积雪融化所需时间依赖于水的渗透力和饱和层再冰冻。该模型也能估计出每层的水排出量。

Kilkis模型[13]基于能量平衡方程,分析路面的几何参数和管道分布,能确定路面最低和最高气温,并得出相关联式,但模型没有通过实验验证。而该模型只是通过有限元方法验证,结果表明:在稳态条件下,与数值模拟解相比较,结果偏差10%左右。

Ramsey模型[14]是在Kilkis模型的基础上提出来的,两者差别于以何种方式计算热损失。该模型也没有实验验证过,但做的唯一的验证是分析比较6个城市以往的状况,误差范围为5% 15%。

在Chiasson[15]提出有限差分矩形网格模型(FD-RG)的基础上,Liu等人[16]提炼出新的关联式和网格划分,改进了Chiasson模型。Liu模型是在一个以节点为中心长方形网格中采用有限差分法,解释了路面上的积雪和不同边界条件问题,通过软件(HVACSIM+)来运行计算,使用起来有些方便。

Rees等人[17]发展了有限体积-边界确定网格(FV-BFG)模型,利用边界确定的网格算法,详细分析路面瞬态过程和复杂的几何分布,解决瞬态条件下的热平衡问题。研究人员还将更进一步细化和为模型作实验验证。

2.3国内研究现状

目前,国内在地热融雪化冰方面的研究应用还处于起步阶段。近年来,国内高校相继开始在道路地热融雪化冰技术研究和探索。由于试验研究周期长,投资大,所以国内的研究还处在模型分析和数值计算阶段。

天津大学[18]对地热融雪过程进行了稳态传热数值模拟,基于典型年逐时气象数据与复合边界条件,分析了不同埋管深度和加热温度对道路融雪性能的影响,确定降雪量为0.1cm/h、相对湿度为60% 70%、Class-III时,最大融雪热负荷与环境温度和风速之间的关系,模拟结果表明,路面融雪热流和路面温度随着埋管深度增加而减小,随着流体加热温度的增大而增大。对于高寒地区,可以考虑采用热泵机组来提高埋管内循环工质温度以满足降雪速率和融雪热负荷的要求。对应用工程设计提供一定参考价值。

哈尔滨工业大学[19]建立桥面融雪的数学物理模型,基于融雪的能量守恒方程,并利用有限单元法对其稳态工况进行二维数值模拟。结果表明:桥面热流密度和温度呈非线性分布,且其表面分布不均匀性随着埋管深度增加而变小;所需加热流体温度随埋管间距或埋深的增加非线性增高;无保温措施时,可通过优化埋管埋置深度使桥面热量损失最小。

我国从上世纪90年代开始介入地能利用和地

源热泵领域,开展研究和应用,取得许多宝贵的本土经验,发展势头极为迅速,这将有助于道路地热融雪化冰技术的发展。但国内的研究相对薄弱,因此,迫切要求进行对系统的基础性和前瞻性研究,充分认识地热融雪化冰过程的传热规律和时变特性,提高技术综合利用水平。同时,应该注重节能,结合各种辅助方式来融雪化冰,充分利用其他可再生能源,综合利用能源,使融雪化冰达到最佳效果。

3存在问题

(1)理论基础研究不够,缺乏理论与实践的有效结合。应该重视融雪化冰基础理论研究,加快完成不同路面的传热系数的确定,选择合适的传热强化手段,提高换热效率,探索道路地热和混合能源的融雪化冰系统的机理过程,拓展和完善路面融雪化冰方面的基础理论,使理论研究与试验工程达到平衡,指导工程应用。

(2)与道路施工相结合问题。地热融雪化冰技术需要与道路现场施工技术相结合,两者缺一不可。在实际工程中,在埋设换热管道时,考虑管材和混凝土等影响因素对温度场,换热效果的影响,使不利因素减少到最小。这要求工程组织者和工程技术人员能够合理协调、做好充分的技术经济分析。

(3)不同冷、热负荷下,道路地热融雪化冰系统最佳匹配技术的研究不够。在融雪系统中,自动监测、控制系统应当加以利用,优化系统,改进运行模式,使融雪系统效率发挥到最佳。

(4)传质影响的问题。目前文献中大部分模型是关于传热的,但物质的传递对融雪效果的影响不容忽视。考虑到路面的湿度和水分渗透等影响因素,将对模型改进起到重要作用。

4结语

由于道路地热融雪化冰技术具有节能、环保等优点,适用于道路、高速公路、机场跑道等,受到许多研究机构和单位的重视,但在我国的实际应用工程不多。目前对道路地热融雪化冰技术的推广主要关键在于三个方面:

(1)国家给予足够的重视和相应的鼓励政策,对地热融雪化冰技术的研究和生产给予扶持,给予政策上的优惠等。

(2)加快基础理论研究与实际工程相结合,确定国内设计院、生产厂家等推广应用部门能够实际采用的较简便的设计计算方法及依据,推动地热融雪化冰技术的实用化。

(3)综合利用能源,比如太阳能、废热,以及其他低品位能源等,完善复合能源多功能系统来融雪化冰。同时对系统作经济性分析,力争降低成本。

随着地能利用研究和应用工作的不断展开,节能和可再生能源利用的不断深化,道路表面材料和埋地管道的不断改进,道路施工技术的提高,道路地热融雪化冰技术在中国的发展前景巨大。

5参考文献

[1]邓洪超,马文星,荆宝德.道路冰雪清除技术及发展趋势[J].工程机械,2005,(12):47-50

[2]骆虹,罗立斌.融雪剂对环境的影响及对策[J].中国环境监测,2004,1(20):55-57

[3]汪集暘,马伟斌,龚宇烈.地热利用技术[M].北京:化学工业出版社,2005

[4]L DavidM insk.Heated Bridge Technology[R].Report on ISTEA Sec.6005Program,Publication No.FHWA-

2RD-99-158,U.S.Department of Transportation and

Federal Highw ay Administration,July,1999

[5]KojiMo rita,MasashiOgawa.Geothermal and Solar Heat Used to Melt Snow onRoads[R].Technical Brochure,CADDET Cent re forRenew able Energy,IEA,Organiza-tion for Economic Co-operation and Development

(OECD),Harwell,United Kingdom,1998

[6]M.D.Smith,Task4.6.1–testing of a medium-scale bridge deck heating system.Quarterly ProgressReport of the

Geothermal Smart Bridge Project,Oklahoma State Univer-sity,Stillwater,OK,1999–2002

[7]D.Espin,Experimental and computational investigation of snow melting on a hydronically heated concrete slab,M.S.thesis,Oklahoma State University,Stillwater,OK,2003

[8]John W Lund.Pavement Snow Melting[R].Bulletin of Geo-Heat Center,Oregon Institute of Technology,Kla-math Falls,OR,2000

[9]Kinya Iwamoto,Shigeyuki Nagasaka,Yasuhiro Hamada,Makoto Nakamura,Kiyoshi Ochifuji,Katsunori Nagano-

第34卷第3期(总132期)

Prospects of Snow Melting Systems(SMS)Using Under-ground Thermal Energy Storage(UTES)in JAPAN[C].

The Second Stockton International Geothermal Conference,March,1998

[10]Walter J Eugster,Jürg Schatzmann.Harnessing Solar En-ergy for WinterRoad Clearing on Heavily Loaded Express-

ways[C].Proceeding of X Ith PIARC International

WinterRoad Congress,Sapporo,Japan,January,2002[11]Senser,D.W.Performance Evaluation of aRunway Heat-ing System Utilizing a Low Grade Energy Source and Heat

Pipes,A Thesis submitted to the Department of Mechani-

cal Engineering,and Graduate School,University of Wy-

oming,Laramie,WY,1982

[12]Aoki,K.,Hattori,M.and Ujiie,T.(1987).

“Snow Melting by Heating from the Bottom.”1987Inter-

national Symposium on ColdRegions Heat Trans-

fer.University of Alberta,Edmonton,Alberta,Canada,

American Society of Mechanical Engineers(ASME):

189-194

[13]Kilkis,I.B.(1994b).“Design of Embedded Snow-Melting Systems:Part2,Heat Transfer in the Slab–A

Simplified Model.”ASHRAE Transactions.100(1):

423-433[14]Ramsey,J.,M.J.Hewett,T.H.Kuehn,and S.D.Petersen (1999).“Updated Design Guidelines for Snow Melting

Systems”.ASHRAE Transactions.105(1):1055-

1065

[15]Chiasson,A.D.,Spitler,J.D.,Rees,S.J.Smith,M.D.(1999).“A model for Simulating the performance

of a Pavement Heating System as a Supplemental HeatRe-

jecter with Closed-Loop Ground-Source Heat Pump

Systems”.ASME journal of Solar Energy

[16]Liu,X.Rees,S.J.Spitler,J.D.,(2002).“Simu-lation of a Geothermal Bridge Deck Antiicing System and

Expirimental Validation.”Proceedings of the Transporta-

tionResearch Board82nd Annual Meeting.Washington,

D.C.January12-16,2003

[17]Rees,S.J.,Spitler,J.D.,Xiao,X.(2002).

“Transient Analysis of Snow-Melting System Perform-

ance.”ASHRAE Transactions.108(2):406-423[18]胡文举,姜益强,姚杨,等.桥面热力融雪模型研究与分析[J].哈尔滨工业大学学报,2007,12(39):

1895-1899

[19]王华军,赵军,陈志豪,等.太阳能地热道路融雪系统路面传热特性的数值研究[J].太阳能学报,2007,6(28):608-611

地热钻井技术

地热钻井技术 作者:发布时间:2006-05-2200:00:00 来源: 地热钻井技术的发展 1、井身结构及套管结构: 70-80年代井身结构多为:153/8″+81/2″,相应套管结构为103/4″(表层) +51/2″(技套和采水套管)组合。 90年代中期至今,随着单井的热储层埋深、岩性、构造等的差异和石油钻井先进技术不断与地热钻井的融合,井身结构也由单一变为因井而宜,多样化并存。常选用的有: A.井身结构:171/2″(表层)+121/4″(置泵段)+81/2″(技套+采水段) 套管结构:133/8″(表套)+103/4″(置泵管)+51/2″(技套+滤水管) 典型井为1994年所完成的“陕西省邮电管理局地热井”。 B.井身结构:171/2″(表层)+121/4″(置泵段)+95/8″(技套+采水段) 套管结构:133/8″(表套)+103/4″(置泵管)+7″(技套+滤水管)典型井有1997年所完成的西安市“中国通信建设第二工程局地热井”,1998年完成的渭南华阴市“中国兵器工业零五一基地地热井”等。值得说明的是,当时地热市场上采用A、B两种结构在施中均是分段钻开,分段下套管,最后将技套和滤水管串插入置泵管并重叠一段,用水泥强行自上往下挤入重叠段连接、封固的方法,其弊端有: ①.滤水管需插入井底,从而其对位率受制于井底沉砂之多少,难以保证; ②.挤水泥固井时水泥浆的压差会加剧水层部位泥浆对水层的污染;

③.固井候凝延长了水层部位泥浆静置时间,增加了洗井难度。针对以上弊端,在施工过程中采用了一次连续钻开置泵段和全部采水段,然后将置泵段与采水套管用自行设计的变径装置连接,完钻后一次下入井内的工艺,有效地解决了上述问题,钻成了一批高质量地热井,也使该种工艺成为后来钻凿孔隙型地热中—深井的各家首选方案。 C.井身结构:171/2″(表层+置泵段)+95/8″(技套+采水段) 套管结构:133/8″(表套和置泵管一体)+7″(技套和滤水管) 该方案是基于地热深井泵泵体,功率不断增大而改型的,在实施过程中,置泵管与水层套管之间三普自行设计了套管悬挂装置和软金属密封装置,有效地避免了前述I、H普通方案中的问题,该方案在完成的“陕西省省委地热井”中取得了巨大成功。 D.井身结构:171/2″(表层)/121/4″(置泵段)+95/8″(技套段)+81/2″(采水段) 套管结构:133/8″(表套)/103/4″(置泵室)+7″(技套)+81/2″(裸眼采水段)该方案用于基岩采水层地热井,典型利用为西安市临潼区“骊山微电子公司地热井”。2001年后在北京施工的地热井也多采用类似方案。 2、钻井工艺 占领地热市场开发市场优势在于将石油钻井中先进、成熟的工艺与相关水文、地热施工进行了有机地结合。充分利用现有设备,优选钻头和机械参数,积极推广和采用近喷射钻井,大大提高了钻井效率,缩短了建井周期。1994年西安地热市场主要由水文钻机占领,钻井速度慢,风险大,半年一口井,台月效率不足500米,而石油钻机创造了17天完成2013米,28天完成全部测试工作的记录,台月效率提高到3300多

中国地热资源储量及分布概况

中国地热资源储量及分布概况 中国地热概述 最近两年,在中国的东北高纬度寒冷的大庆地区和西北干旱的宁夏银川地区开展了地热勘探和开发利用工作,巨大的盆地型地热资源已被证实。在中国的西南边陲地区云南腾冲近代火山地区也开展了以动力开发为主的高温地热勘探工作,为拟建单机10MW以上电站提供资源参数,在首都北京市区钻取到88℃地热流体,为减轻城市环境污染作出贡献。目前,地热产业化已初具规模,国家正在制订2001—2010年新能源和可再生能源产业规划,“十五”清洁能源科技发展计划。地热开发规模和科学技术将以崭新面貌迎接21世纪。地热资源 通过地质调查,全国已发现地热异常3200多处,其中进行地热勘查的并已对地热资源进行评价的地热田有50多处。全国已打成地热井2000多眼。发现高温地热系统255处,经过评估总发电潜力5800MW?30a,主要分布在西藏南部和云南、四川的西部。在西藏羊八井地热田ZK4002孔,孔深2006米,已探获329.8℃的高温地热流体。发现中低温地热系统2900多处,据调查,总计天然放热量约为1.04×1014kJ/a,相当于每年360万吨标准煤当量。主要分布在东南沿海诸省区和内陆盆地区,如松辽盆地、华北盆地、江汉盆地、渭河盆地以及众多山间盆地区。这些地区1000—3000米深的地热井,可获80—100℃的地热水。中国地热资源按其属性可分为三种类型: ①高温(>150℃)对流型地热资源,这类资源主要分布在西藏、腾冲现代火山区及台湾,前二者属地中海地热带中的东延部分,而台湾位居环太平洋地热带中。 ②中温(90-150℃)、低温(〈90℃)对流型地热资源,主要分布在沿海一带如广东、福建、海南等省区; ③中低温传导型地热资源地热开发与利用 最近5年,地热能的直接利用发展很快,尤其是地热供热、温泉疗养、游乐等发展迅速,规模不断扩大,如在北京小汤山和河北省雄县等地均建立了温泉旅游疗养基地,在南方的湖南汝城县热水镇建立了以种植、养殖和培育良种的综合示范基地。高温地热发电进展缓慢,主要原因是:在西藏、云南的高温地热分布区,其水能资源也非常丰富,当地热衷于建造10—20MW的迳流式小水电站,而对建造地热电站,实施多能互补的认识不够。但是,无论如何当地小水电站都是季节性的,每年只在丰水期发电3000—4000小时,而枯水季节则不能满发或停发。为改变枯季缺电现状,地热专家提出地热发电与小水电联合调度、优势互补方针,得到了共识,今后地热发电仍会稳步增长。 一、资源状况 中国地热资源是比较丰富的,据粗略计算,主要沉积盆地小于2 000米的深度中储存的地热资源总量约4.0184×1019kJ,相当于1.3711×1012吨标准煤的发热量,以其1%作为可开采量计算,可开采地热资源总量为4.0184×1017kJ,约相当于1.3711×1010吨标准煤的发热量(表2.5.7)。 因中国山地多,全国平均单位面积热储存量将小于沉积盆地单位面积平均热储存量,全国960万平方千米地热资源总量若以沉积盆地单位面积平均热储存量4.415×1013kJ的50%估算,估计约2.11920000×1020kJ或相当于7.2310×1012吨标准煤的发热量。可开采热量仍以热储存量的1%计算,则全国地热资源可开采量约相当于7.23×1010吨标准煤。 据1996年统计,全国已勘查的地热点(田)有738处,其中进行过勘探的有43处;详查的83处;普查及区域调查的612处。探明各级可开采地热水总量为247.016万立方米/天,

中国大陆地区地热资源分布及其开发利用

地热能系指储存于地球内部的能量,一方面来源于地球深处的高温熔融体;另一方面源于放射性元素(U、TU、40K)的衰变。按其属性地热能可分为4种类型。 地热能系指储存于地球内部的能量,一方面来源于地球深处的高温熔融体;另一方面源于放射性元素(U、TU、40K)的衰变。按其属性地热能可分为4种类型:①水热型,即地球浅处(地下100~4500m)所见的热水或水热蒸气;②地压地热能,即某些大型沉积盆地(或含油气)盆地深处(3~6km)存在着高温高压流体,其中含有大量甲烷气体;③干热岩地热能,需要人工注水的办法才能将其热能取出;④岩浆热能,即储存在高温(700~1200℃)熔融岩体中的巨大热能,但如何开发利用目前仍处于探索阶段。在上述4类地热资源中,只有第一类水热资源在中国已得到很好的开发利用。 中国地热资源按其属性可分为三种类型:①高温(>150℃)对流型地热资源,这类资源主要分布在西藏、腾冲现代火山区及台湾,前二者属地中海地热带中的东延部分,而台湾位居环太平洋地热带中。②中温(90~150℃)、低温(<90℃)对流型地热资源,主要分布在沿海一带如广东、福建、海南等省区;③中低温传导型地热资源,这类资源分布在中新生代大中型沉积盆地如华北、松辽、四川、鄂尔多斯等。这类资源又往往跟油气或其他矿产资源如煤炭等处在同一盆地之中。上述三类地热资源分布在我国不同地区,并与该地区的地质-构造背景密切相关。 一、高温地热资源主要用于发电

目前在西藏羊八井热田已建起装机容量为25.18MW的地热电站,由于西藏地区传统能源如油气、煤炭缺乏,而高温地热资源又颇为丰富,因此在解决当地能源供应问题上起很大作用。羊八井地热电站从1977~1991年的14年内共装机25.18MW,最后一台3MW机组于1991年初投入运行。自1993年以来,年发电均保持在1亿度左右,截至2002年5月,羊八井地热发电总量达16亿度,电站年平均运行4300小时(羊八井地热电厂生产科,2002)。羊八井地热电站全年供应拉萨的电力为41%,冬季超过60%。另外两个较小的地热电站也已在朗久和那曲建成,其装机容量分别为2MW和1MW,对当地经济发展也起到相当作用。据估计,滇藏地热带的发电潜力为5817.65MW。表1我国大陆地区地热电站装机容量地点名称机组数装机容量/MW西藏羊八井925.18那曲11郎久22续表地点名称机组数装机容量/MW广东丰顺10.3湖南灰汤10.3总计28.78 二、中低温地热资源主要用于非电直接利用 如供暖、制冷、水产养殖、旅游疗养等。进入90年代,随着全球环境保护意识的增强,我国地热兴起了直接利用的高潮,尤其在高纬度寒冷的三北(东北、华北、西北)地区,加大了以地热供暖(采暖和生活用水)为主的开发力度。这项工作的开展不仅减少了大量有害物质的排放,而且还能取得明显的经济效益。截至1999年底,用于非电直接利用的热水流量为64416L/s,相当于每年提供162009MJ 的热能。这一数字说明中国的地热直接利用水平已居世界之首。全国

道路景观论文道路绿化论文

道路景观论文道路绿化论文 浅谈城市道路绿地景观设计 摘要:道路绿化在我国具有悠久的历史,随着城市现代化道路交通的发展,特别是十一届三中全会以来,改革开放带来了城市现代化和城 市道路建设的突飞猛进,我国道路绿化为适应新的功能要求,在不断 的创新中发展提高,出现了一条又一条绿化带宽阔、层次丰富、林荫夹道、景观多样、芳草如茵、行车通畅、行人舒适的现代化城市道路,形成了多行密植、层次丰富,落叶树与常绿树相结合,绿化与美化相结合,用大树绿化城市道路等北京城市道路绿化的特点与特色。 关键词:绿化作用存在问题景观营造 一、道路绿化在现代化城市中的功能及在大园林中的作用 道路是城市中具有重要地位的空间环境,在大部分的城市中,道路的面积约占所有土地面积的四分之一。kevin Lych在《城市意象》一书中把构成城市意象的要素分为五类,即道路、边沿、区域、结点和标志,并指出道路作为第一构成要素往往具有主导性,其它环境要 素都要沿着它布置并与它相联系。街道不仅仅是连接两地的通道,在很大程度上还是人们公共生活的舞台,是城市人文精神要素的综合反映,是一个城市历史文化延续变迁的载体和见证,是一种重要的文化 资源,构成区域文化表象背后的灵魂要素,上海浦东的世纪大道、南京东路步行街、外滩滨江路景区、苏州观前步行街都是成功的范例。因此,加强道路建设,讲究道路空间的艺术设计,追求“骨架”与整体的

平衡和谐,是完善城市功能,提高城市品位的有效途径。据观测资料,在城市中40m宽的林带能降低噪音10分贝一15分贝,4m宽的绿篱可减弱噪音约6分贝;根据苏联的测定,树木下空气的含尘量比露天广场中的空气含尘量低约42%;又根据北京的测定,多排树木的道路比没有树木的道路能减弱风速约50%。 此外,城市道路是现代化城市重要的组成部分,它担负着城市疏散交通的重要功能,是现代化城市必备的重要基础设施。现代化的城市道路,在满足交通等道路使用功能外,搞好道路的绿化美化,能起到防眩光、缓解驾车疲劳、调节心情稳定情绪等作用。 二、道路绿化目前存在的问题 (一)忽视了绿化与地下管网、架空线路的矛盾。在埋有地下管网的地段上盲目栽植大型乔灌木,结果使植株生长势减弱,甚至因根系无法伸展,吸取不到所需养分而死亡;在有架空电线的下面盲目栽植毛白杨、垂柳等大型乔木,因产生树线矛盾不得不疏枝,影响了美化效果,更严重的是大风季节,因疏枝不及时,造成线路中断,给人民生命财产带来危害。 (二)片面强调绿化,忽视道路的交通功能。在人行道上栽植树型不紧凑的灌木,影响步行或骑车;在较窄的分车带上密植大量的乔灌木,阻挡了行车视线。

中国地热资源储量及分布概况

中国地热资源储量及分布概况 【一】中国地热概述 最近两年,在中国的东北高纬度寒冷的大庆地区和西北干旱的宁夏银川地区开展了地热勘探和开发利用工作,巨大的盆地型地热资源已被证实。在中国的西南边陲地区云南腾冲近代火山地区也开展了以动力开发为主的高温地热勘探工作,为拟建单机10MW以上电站提供资源参数,在首都北京市区钻取到88℃地热流体,为减轻城市环境污染作出贡献。目前,地热产业化已初具规模,国家正在制订2001—2010年新能源和可再生能源产业规划,“十五”清洁能源科技发展计划。地热开发规模和科学技术将以崭新面貌迎接21世纪。 【二】地热资源 通过地质调查,全国已发现地热异常3200多处,其中进行地热勘查的并已对地热资源进行评价的地热田有50多处。全国已打成地热井2000多眼。发现高温地热系统255处,经过评估总发电潜力5800MW?30a,主要分布在西藏南部和云南、四川的西部。在西藏羊八井地热田ZK4002孔,孔深2006米,已探获329.8℃的高温地热流体。发现中低温地热系统2900多处,据调查,总计天然放热量约为1.04×10^14kJ/a,相当于每年360万吨标准煤当量。主要分布在东南沿海诸省区和内陆盆地区,如松辽盆地、华北盆地、江汉盆地、渭河盆地以及众多山间盆地区。这些地区1000—3000米深的地热井,可获80—100℃的地热水。 中国地热资源按其属性可分为三种类型: ①高温(>150℃)对流型地热资源,这类资源主要分布在西藏、腾冲现代火山区及台湾,前二者属地中海地热带中的东延部分,而台湾位居环太平洋地热带中。 ②中温(90-150℃)、低温(〈90℃)对流型地热资源,主要分布在沿海一带如广东、福建、海南等省区; ③中低温传导型地热资源 【三】地热开发与利用 最近5年,地热能的直接利用发展很快,尤其是地热供热、温泉疗养、游乐等发展迅速,规模不断扩大,如在北京小汤山和河北省雄县等地均建立了温泉旅游疗养基地,在南方的湖南汝城县热水镇建立了以种植、养殖和培育良种的综合示范基地。高温地热发电进展缓慢,主要原因是:在西藏、云南的高温地热分布区,其水能资源也非常丰富,当地热衷于建造10—20MW的迳流式小水电站,而对建造地热电站,实施多能互补的认识不够。但是,无论如何当地小水电站都是季节性的,每年只在丰水期发电3000—4000小时,而枯水季节则不能满发或停发。为改变枯季缺电现状,地热专家提出地热发电与小水电联合调度、优势互补方针,得到了共识,今后地热发电仍会稳步增长。 【四】资源状况

全球地热资源储量状况分析

全球地热资源储量状况分析 1、世界地热能资源储量丰富 离地球表面5000米深,15℃以上的岩石和液体的总含热量,约为14.5×1025焦耳(J),约相当于4948万亿吨(t)标准煤的热量。 地球内部蕴藏着难以想象的巨大能量。中投顾问发布的《2016-2020年中国地热能行业投资分析及前景预测报告》估计,仅地壳最外层10公里范围内,就拥有1254亿焦热量,相当于全世界现产煤炭总发热量的2000倍。如果计算地热能的总量,则相当于煤炭总储量的1.7亿倍。有人估计,地热资源要比水力发电的潜力大100倍。可供利用的地热能即使按1%计算,仅地下3公里以内可开发的热能,就相当于2.9万亿吨煤的能量。这是多么惊人的数字啊!不过世界各地的地热资源分布是不均匀的,有些国家地热资源特别丰富。冰岛就是富地热资源的国家。它地处北极圈附近,尽管气候寒冷,但地下却蕴藏着巨大的热能。冰岛的岩流几乎占全球岩流的三分之一,近几个世纪里,平均每五年有一次火山爆发,有形成地热的得天独厚的条件。据统计,冰岛拥有温泉、热泉、蒸汽泉、间歇泉等达1500多个。 美国也蕴藏着丰富的地热资源,据地质调查表明,美国高温地热发电潜力相当于755~7297亿吨标准煤,或600~4750亿桶石油;可以直接利用的中、低温热能则相当于1606~9139亿吨标准煤。 此外,日本、新西兰、意大利、前苏联、印度、菲律宾、法国、匈牙利、墨西哥、肯尼亚等许多国家都蕴藏着地热资源。 图表世界地热能利用分布 数据来源:中国能源协会 2、我国地热能资源储量及分布状况 我国的地热资源也比较丰富。目前已发现的地热露头有2700多处(包括天然和人工露头),还有大量地热埋藏在地下尚待发现。 中投顾问·让投资更安全经营更稳健

地热钻井操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 地热钻井操作规程(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1763-35 地热钻井操作规程(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 地热钻井综合了石油钻井技术和水文钻井技术,有与前两者的共性,又有其特殊性,如对泥浆的抗高温性能和钻具的抗腐蚀性都有一定的要求,所以地热钻井应有专门的工艺规程,以很好高效的指导现场作业。 一、钻探机场的修建及设备的安装 1、钻探机场的修建 a、钻探机场的是钻机施工活动的场所,主要用于安装钻塔、钻探设备,设置冲洗液循环系统,以及放置管材物资等。场地的选择应根据地质设计的要求(孔位、孔深、方位及倾角)和施工安全、方便、节约的原则进行选择。 b、钻探机场的修建必须平坦、坚实、稳固、实用,保证在其上布置的基台和安装的钻塔及机械设备不会

发生塌陷、溜方歪斜,在整个钻井施工中能安全顺利进行。地盘若为松土层,必要时通过打桩加混凝土底板来提高抗压能力。 c、基台木是根据所用钻探设备的类型,按一定的规格和形式排列,分上下两层交错并用螺丝连接而成。横顺枕的主要交错处一定要构成直角,并用螺栓连接固定。钻塔、钻机的地脚螺栓也应连接在横顺枕的相交点上。 d、机场周围应开挖排水沟,将雨水及时导向它处,若在地势低洼带或雨季施工时,还得修建防洪措施。地下电缆埋设应距地基钻孔5m以上,并合理的避开公用通讯电缆、煤气管道、水管道、等重要建筑物。 e、根据钻孔结构、地层情况、场地条件,制定适合钻井的泥浆循环系统,循环系统一般包括一大一小水源池,两个沉淀池,大池标准宜为6×6×2m3 ,小池宜为2×2×1.5 m3,沉淀池体积在0.3~0.5 m3,循环槽断面为0.4×0.4㎡,长度不宜小于15m,坡度为1/100~1/80,槽边缘高于地面100㎜,以防雨水

地热井施工程序

地热井施工程序地热钻井是地热资源开发的重要环节, 又是与地热资源勘查、开采权的取得紧密相关, 目前通行的作法遵循下列程序: 序号程序 1 向行政主管部门申报地热资源勘查许可证; 2 委托地质勘查单位进行地热源勘查并编制提出可行性论证报告; 3 上报主管部门组织专家评审论证报告并提出评审意见; 4 申报行政主管部门“钻地热井许可证”(附: 可行性报告及评审意见、钻井设计等必须材料); 5 委托钻井施工单位; 6 委托钻井施工质量监理单位; 7 钻井施工开工仪式与现场技术交底; 8 钻井地质编录与地球物理测井; 9 钻井井管(井口管、表层管、井壁管或滤水管)下入与固井; 10 钻井洗井与井产能测试; 11 编写并提交完井报告, 内含地质、钻井施工及质量监理三部份; 12 地热钻井成井质量现场验收。 ·地热钻井施工关键环节 地热钻井能否取得成功必须在一份好的可行性论证报告为依据所编制的地质设计指 导下, 正确的组织钻井施工, 并把握好以下几点: a. 钻机设备选型应留有加深钻进深度的余地; b. 尽可能保持钻井的垂直,以降低井内事故和井壁管受磨损; c. 准确的钻井地质编录, 正确地进行地质分层, 依据钻井中的地质变化对可能出现的问 题作出判断并找出对策; 及时修改完善地质设计; d. 保持合理的井身结构并严格的固井: 表层管口径及下入深度应充分考虑取水设备口径 和下入深度的需要; 井壁管应下入热储一定深度并严格封闭热储顶板上部各层位; 尽可 能做到3 径或4径至孔底; e. 严格使用冲洗液钻进, 热储层内钻进严禁使用稠泥浆; f. 及时进行地球物理测井:下入表层管、井壁管前及达到设计深度时均应测井,以结合地质编录进行地质分层、了解地层温度变化和热储的渗透性、含水性特征,指导钻井施工; g. 搞好洗井与产能测试钻井完工应及时进行洗井和产能测试, 严禁停滞时间过长, 洗井应针对热储地层特征、钻井深度、使用泥浆性质和稠度采用不同的方法; 产能测试应满足规范的要求。

中国地热资源及开发利用

中国地热资源及开发利用 发布时间:2010-7-20信息来源:消费导刊·理论版 [摘要]介绍了我国地热资源的分布情况和开发现状,从地热发电和地热采暖等多个方面论述了地热资源在我国的利用,对我国地热资源在开发利用过程中存在的问题进行了深入分析并提出相关建议,从资源、社会、经济、环境等角度指出地热资源在我国具有广阔的发展前景。 一、我国地热资源概述 地热是指地球内部所蕴藏的热能,它来源于地球的熔融岩浆和放射性元素衰变时发出的热量。地热资源是在当前技术经济条件和地质条件下,能够从地壳内科学、合理地开发出来的岩石热能量、地热流体热能量及其伴生的有用组分,它与太阳能、风能、生物能、海洋能等统称为新能源,将太阳能、风能、潮汐能与地热能加以比较,地热能是新能源中最为现实的能源。地热资源按赋存形式可分4种类型:一是热水型,即地球浅处(地下100~4500m)所见到的热水或水蒸汽;二是地压地热能,即在某些大型沉积盆地深处(3~6 km)存在着高温、高压流体,其中含有大量甲烷气体;三是干热岩地热能,由于特殊地质构造条件造成高温但少水甚至无水的干热岩体;四是岩浆热能,即储存在高温(7001 200℃)熔融岩浆体中的巨大热能;根据地热水的温度地热能可分为高温型(>l50℃)、中温型(90~150℃)和低温型(<90℃)三大类,高温地热资源主要用于地热发电,中、低温地热资源主要用于地热直接利用。 我国是地热资源相对丰富的国家,地热资源总量约占全球的7.9%(表一),可采储量相当于4626.5亿t标准煤。我国的高温地热资源(热储温度≥150℃)主要分布在藏南、滇西、川西以及台湾省,环太平洋地热带通过我国的台湾省,高温温泉达90处以上;地中海喜马拉雅地热带通过西藏南部和云南、四川西部。西藏高温热田主要集中在羊八井裂谷带,其中藏南西部、东部及中部约有108个高温热田,构成中国高温热田最富集的地带;云南是全国发现温泉最多的省,高温热田主要分布在怒江以西的腾冲-瑞丽地区,约2O处;川西分布着8个高温地热区,为藏滇高温地热带的一部分。我国主要以中低温地热资源为主,中低温地热资源分布广泛,几乎遍布全国各地,主要分布于松辽平原、黄淮海平原、江汉平原、山东半岛和东南沿海地区,其主要热储层为厚度数百米至数千米第三系砂岩、砂砾岩,温度在40~80℃左右,目前已发现全国共有地热温泉3000多个,其中高于25℃的约2200个。从温泉出露的情况来看,我国主要有四个水热活动密集带[1]:藏南-川西-滇西水热活动密集带;台湾水热活动密集带;东南沿海地区水热活动密集带;胶东、辽东半岛水热活动密集带。从地质构造上看,我国地热资源主要分布于构造活动带和大型沉积盆地中,主要类型为沉积盆地型和隆起山地型。 二、我国地热资源开发现状 我国地热资源的利用历史悠久,但真正大规模勘查和开发利用始于20世纪70年初期,尤其是20世纪90年代以来,在市场经济需求的推动下,地热资源的开发利用得到更加蓬勃的发展。近年

浅谈石油钻井技术现状及发展趋势

浅谈石油钻井技术现状及发展趋势 发表时间:2016-11-08T16:40:45.743Z 来源:《基层建设》2015年11期作者:于洋 [导读] 摘要:石油在我国国民经济的发展中占据着重要的能源地位,对于促进我国的国家经济的发展有着极为重要的影响。石油钻井技术能够有效改善对于石油开发上面发挥着重要的作用。 中国石油集团长城钻探工程有限公司辽河分部东部HSE监督中心 摘要:石油在我国国民经济的发展中占据着重要的能源地位,对于促进我国的国家经济的发展有着极为重要的影响。石油钻井技术能够有效改善对于石油开发上面发挥着重要的作用。经济的不断发展对于石油能源的需求量已经在不断增加。笔者主要讨论石油钻井技术的现状以及发展趋势,以期能够促进石油的技术的发展以及未来国家经济的发展。 关键词:石油钻井技术;发展趋势;能源地位;国家经济发展 0.前言 我国的经济发展在改革开放之后非常迅速,自然对于石油等能源的需求量也不断增加。石油相关的技术发展对于石油的开发非常重要,其中最为主要的就是石油钻井技术,该技术从研发和实践发展至今已经获得了重大的成就,但是这跟很多的发达国家之间存在着巨大的差距[1-2]。笔者主要分析石油钻井技术的现状以及发展的趋势,具体表述如下。 1.石油钻井技术发展现状 1.1钻井成本方面 石油钻井的经济效益和钻井的成本之间存在着紧密的联系。在钻井的相关设备方面,我国已经从基本上实现相关设备的机械化和国产化。一般情况下,一套较为完整的石油钻井设备包含有八个部分,其中分别是循环系统和提升系统以及动力系统等。每个系统都能够由若干个设备组成,共同影响着整个设备的运转。这些设备主要涉及到钻井的成本问题,而钻井成本直接影响石油钻井的经济效益,进而对于石油钻井技术的发展有一定的影响。 1.2石油产量方面 石油钻井的井下测量以及信息的传输技术和控制技术等都对于提高石油产量有着非常重要的影响。我国目前在有关井下测量等方面的相关技术发展也获得了较为重大的发展。石油产量的发展能够有效影响石油钻井产生的经济效益,从而不断影响石油钻井技术的研发和深入发展。 1.3钻井技术方面 在石油钻井中对于深井或者是超深井的钻井技术提出了一定程度上的要求。目前,我国在这对深井以及超深井的钻井技术等方面已经取得了一定的进步。石油工业已经在我国获得了较为长足性的发展,并且陆续出现了很多钻采条件非常恶劣的高温和高压的深井以及超深井等情况,还会可能遇到酸性介质的环境。这种腐蚀的介质有点时候可能会单独存在,有的时候可能会混合存在,对于套管的使用性能等也能够提出更高程度上的要求,例如有关链接强度以及抗挤等。 2.发展趋势 2.1自动化 科学技术呈现着日新月异的发展趋势,石油钻井技术以后必定会取得一定的突破。石油钻井的研发不仅需要在资金和技术上具备一定的实力,还可能会存在一些风险。在未来的发展过程中,石油钻井技术即将走向大型化和自动化的状态。目前,国外在石油钻井的相关机械方向已经取得了较为成功的成果,我国在相关方面的机械化发展也逐渐走向自动化和大型化的发展状态。为了能够更好地进行石油开采并且更好地开采深部和深海地区的相关油气资源等,我国的石油钻井设备也会在未来的发展过程中走向自动化和大型化。另外,在未来的发展过程中,石油钻机如果整体朝向交流变频调速电驱动石油钻机的方向发展下去,就能够在很大程度上提高石油开采的主要效率。交流变频电驱动石油钻机在实际的作业过程中具备足够的优势。交流变频电驱动石油钻井能够在很大程度上保护石油工作人员的相对安全性,还能够提升整体石油开采过程中的相对的安全系数。另外,交流变频电驱动石油钻机能够有效保持短时增距的倍数达到一定的标准范围内,还能够大大提升石油钻机的能力以及相关处理一些意外事故的能力。交流变频电驱动石油钻机还能够有效地适应一些现场的施工环境等,具备一定的自动化的相关性有点。因为交流变频电驱动石油钻机自身具有恒功率宽调速的相关特征,因而能够在很大程度上有效简化石油钻机的机械构造。除此之外,交流变频电驱动石油钻机不但能够有效承载一定的负荷,还能够较为成功地对于一些设备进行相关的启动和速度的调节和控制。交流变频电驱动石油钻机在进行相关的下钻作业的过程中能够根据当时的实际情况对于电网所自身拥有的能力进行实时的反馈,进而提高相关的制动装置的一般使用效率。 2.2信息技术 现代信息技术已经在我国深入到各行各业中,石油钻井工程也不例外。在未来的发展过程中,现代信息技术将在石油钻井中的应用范围逐渐扩大。现代的信息技术能够为石油钻井进行安全作业提供较好的条件。尤其是针对一些视频监控技术来说,3G技术的应用能够有效结合语音以及多媒体的相关作业来提高一些数据传输的速度以及保障数据相关传输的安全性。3G的无限视频监控系统能够有效利用3G相关的通信技术的优势,进而建立起一个小型的远程性的无限监控系统。这种小型的系统具备简单易行的优点。3G无限视频监控能够有效采取相关的设备进行视频监控,只需要预先安装好相关的客户端,就能够在辐射的范围之内进行控制。 2.3智能化 石油钻井技术智能化是其未来发展过程中的另外一个重要趋势和发展方向。智能化的石油钻井技术的运用不但能够有效减少一些人工的操作风险,还能够提升相关资源的利用率。所以,在未来的石油钻井的发展过程中,石油钻井的相关工作人员只需要穿着整洁的工作服,坐在工作间里面监控相关的仪表屏幕以及一些按钮操作,就能够成功实现对整个石油钻机的控制。石油钻井的智能化发展在很大程度上能够有效时限对于钻井工作情况的实时检测,进而提高石油钻井的相关工作质量。石油钻井智能化技术的持续普及以及运用能够大大提升石油开采的整体水平以及开采的质量,还能够减少一些实际钻井过程中潜在的对于生命安全的威胁。 3.结语 石油钻井技术的有效发展能够对于我国石油资源的开发和应用等具备一定的积极影响。随着经济的不断发展,石油开采的领域不断扩大,石油开采的难度也会随之增加,这要求相关的工作人员能够有效运用技术型机械,促进石油开采效率的不断攀升[3-4]。笔者主要分析

我国地热资源开发利用状况发展趋势问题与建议

我国地热资源开发利用状况、发展趋势、问题与建议 作者:宾德智2010年05月28日 我国地热资源开发利用正处于快速发展的时期,地热资源作为绿色的清洁能源和可再生能源已普遍受到关注。为促进我国全面而科学合理的开发利用地热资源,笔者借此短文,就我国地热资源的开发利用状况、发展趋势及有关问题谈点个人的看法和建议,供讨论。 一、地热和地热资源的概念 地热是指地球内部所储存、产生的热量。能够经济的为人类所利用的地球内部热量,称地热资源,人们习惯简称为“地热”。地热资源的现代涵义包括:地热过程的全部产物,指天然蒸汽、热水和热卤水等;由人工引入(回灌)热储的水、气或其他流体所产生的二次蒸汽、热水和热卤水等;由上述产物带出的矿物质副产品。目前,可利用的地热资源有:天然出露的温泉地热资源;通过热泵技术可开采利用的浅层地热资源;通过人工钻井直接开采利用地热水(气)资源和干热岩体中的地热资源。 当前,我们所讨论的地热开发利用问题,实际上还限于天然温泉、通过热泵技术利用的浅层地热和通过人工钻井技术直接开采利用地热水(气)资源,尚未涉及干热岩中的地热资源利用问题。

上述四类可用地热资源,从总量及开采难易程度的角度分析,天然温泉资源量小、地域局限性较大,但开采容易,且无风险,是当前温泉旅游业开发利用的重点资源;浅层地热(指地表恒温带以下一定深度内地层中储存的热量)资源量丰富、分布普遍,易开采,风险低,主要利用热泵技术进行利用,但开采对环境有一定影响,是当前空调采暖开发利用的热点,发展较快;通过人工钻井直接开采利用的地热水(汽)资源,主要开采3000m深度以上地层热储中储存的地热水(汽)资源,资源量大,但开采的可行性主要取决于热储的分布与渗透条件,有较大风险,当前主要是直接开采热储中的地热水(汽),因地热水的补给有限而限制了其开发利用的规模,今后将逐渐转向仅利用热储中的“热量”的方向转化;干热岩中蕴含的地热资源量最大,主要通过地下换热技术开采,由于受当前开采技术条件的限制,国内尚没有投入实际利用,从发展的观点和未来能源需求考虑,这种地热资源将成为开发利用的重点。 二、我国地热资源勘查开发利用状况 (一)地热资源勘查 我国地热资源勘查活动始于计划经济体制下的50年代中期,当时地热资源的勘查与开发的范围仅限于天然出露的温泉等。在此期间,在全国主要省、自治区、直辖市都开展了地热资源普查。为配合国家医

城市道路绿地景观设计论文

城市道路绿地景观设计论文 引言 道路绿化在我国具有悠久的历史,我们的祖先在很早就开始在路边种树,有了进行道路绿化的意识。秦始皇统一天下后,就命令在所有街道旁都要种上树,地方官吏就遵旨在他出巡行进的道路上,清水泼街,黄土垫道,在道路两侧种植树木。XX作为六朝古都,早在元朝建大都之时,就在“市”的道路两旁种植树木;随着“三海”水系的形成,在河岸路旁也植了树,初步有了绿化与湖光山色相辉映、游乐与园林景观相交融的景色。栽植树木不仅给道路增加了艺术感染力,丰富了道路的园林景观。 解放前我国城市道路狭窄,路面质量差,有的人行道虽宽,但很少植树,只有少数几条道路上种了树,形成了现代意义上的道路绿化的雏形。解放以后,随着城市现代化道路交通的发展,特别是十一届三中全会以来,改革开放带来了城市现代化和城市道路建设的突飞猛进,我国道路绿化为适应新的功能要求,在不断的创新中发展提高,出现了一条又一条绿化带宽阔、层次丰富、林荫夹道、景观多样、芳草如茵、行车通畅、行人舒适的现代化城市道路,形成了多行密植、层次丰富,落叶树与常绿树相结合,绿化与美化相结合,

用大树绿化城市道路等XX城市道路绿化的特点与特色。 一、道路绿化在现代化城市中的功能及在大园林中的作用 城市是社会生产力发展的产物,居住在城市里的人们尽情地享受到现代化带来的各种文明,与此同时也导致了城市规模的扩大、城市人口的密集、人工设施的充斥、机动车辆的增长、自然环境的污染等这些对环境的人为改变,使原有区域的碳氧平衡、水平衡、热平衡等因素随之改变。平衡被破坏对人类生存和发展产生的负面影响,正在越来越突出地凸现出来。随着科学的进步,人们逐步认识到,要在接受大自然赠与的同时,必须要保护好我们赖以生存的自然环境。在城市中,特别是车辆拥挤的道路、立交桥和交叉路口等这些环境污染较严重的地区,大量种树、栽花、种草能起到人为强化自然体系的作用,利用绿色植物特有的吸收二氧化碳、放出氧气的功能;吸收有害物质,减轻空气污染的功能;除尘、杀菌、降温、增湿、减弱噪音、防风固沙的功能等等生态效益,应是改善城市生态环境的根本出路。 道路是城市中具有重要地位的空间环境,在大部分的城市中,道路的面积约占所有土地面积的四分之一。kevin Lych 在《城市意象》一书中把构成城市意象的要素分为五类,即道路、边沿、区域、结点和标志,并指出道路作为第一构成要素往往具有主导性,其它环境要素都要沿着它布置并与它

浅谈地热钻井技术中存在的诸多问题

浅谈地热钻井技术中存在的诸多问题 摘要:现代社会越来越需要绿色洁净的资源,地热资源因而诞生,合理开发地热资源对于人类来说有着很大的意义,会让人类的生活步入一个新的时代,不仅可以提高人类的生活质量,更重要的是减少大气污染。如今,世界各国都在寻找绿色资源,我国也迈出寻找绿色资源的步伐,获得不少成就。可是,目前地热资源开采技术还存在着不少问题和缺陷,本文就近年来在地热井施工中的经验体会, 对地热钻井过程中还应注意的若干问题作一介绍, 以飨读者。 关键词地热资源钻井技术若干问题 Abstract: Modern society needs more and more green and clean resources, geothermal resources and thus was born the rational development of geothermal resources has great significance for humans to make human life entered a new era, not only can improve people’s lives q uality is more important to reduce air pollution. Today, countries around the world are looking for green resources, China also made the pace to find green resources, get a lot of achievements. However, geothermal resources, mining technology, there are still many problems and shortcomings, this paper Experience in the construction of geothermal wells in recent years, a number of issues should also be noted in geothermal drilling process to make an introduction for our readers. Keywords: geothermal resources, drilling technology, a number of issues 中图分类号:TE242 文献标识码:A 文章编号: 新世纪能源开采中,地热资源被世界各国高度重视。我国是一个以中低温地热资源为主的国家, 近十年来地热直接利用均以每年10%速率增长, 尤其在人口密集的大、中城市, 人们对地热采暖、保健、疗养、旅游等方面的需求更为迫切, 这是全国地热市场日益兴旺的根本。由于地热资源与石油资源的开发技术有许多共同之处, 因地质条件各异而产生若干不同的问题, 这对于地热钻探施工者来说,就必须认真考虑。 1地热井的地层特点 1.1对流热源型 这种地热资源有蒸气型的可直接利用发电, 热水型中的温度在180e以上的也可直接利用发电。中温的可取暖和双管循环发电。 1.2异常高压层型 1.3高温岩层

我国地热资源的分布情况和开发现状

[论文关键词]地热资源开发现状利用存在问题 [论文摘要]介绍了我国地热资源的分布情况和开发现状,从地热发电和地热采暖等多个方面论述了地热资源在我国的利用,对我国地热资源在开发利用过程中存在的问题进行了深入分析并提出相关建议,从资源、社会、经济、环境等角度指出地热资源在我国具有广阔的发展前景。 一、我国地热资源概述 地热是指地球内部所蕴藏的热能,它来源于地球的熔融岩浆和放射性元素衰变时发出的热量。地热资源是在当前技术经济条件和地质条件下,能够从地壳内科学、合理地开发出来的岩石热能量、地热流体热能量及其伴生的有用组分,它与太阳能、风能、生物能、海洋能等统称为新能源,将太阳能、风能、潮汐能与地热能加以比较,地热能是新能源中最为现实的能源。地热资源按赋存形式可分4种类型:一是热水型,即地球浅处(地下100~4500m)所见到的热水或水蒸汽;二是地压地热能,即在某些大型沉积盆地深处(3~6 km)存在着高温、高压流体,其中含有大量甲烷气体;三是干热岩地热能,由于特殊地质构造条件造成高温但少水甚至无水的干热岩体;四是岩浆热能,即储存在高温(7001 200℃)熔融岩浆体中的巨大热能;根据地热水的温度地热能可分为高温型(>l50℃)、中温型(90~150℃)和低温型(<90℃)三大类,高温地热资源主要用于地热发电,中、低温地热资源主要用于地热直接利用。 我国是地热资源相对丰富的国家,地热资源总量约占全球的7.9%(表一),可采储量相当于4626.5亿t标准煤。我国的高温地热资源(热储温度≥150℃)主要分布在藏南、滇西、川西以及台湾省,环太平洋地热带通过我国的台湾省,高温温泉达90处以上;地中海喜马拉雅地热带通过西藏南部和云南、四川西部。西藏高温热田主要集中在羊八井裂谷带,其中藏南西部、东部及中部约有108个高温热田,构成中国高温热田最富集的地带;云南是全国发现温泉最多的省,高温热田主要分布在怒江以西的腾冲-瑞丽地区,约2O处;川西分布着8个高温地热区,为藏滇高温地热带的一部分。我国主要以中低温地热资源为主,中低温地热资源分布广泛,几乎遍布全国各地,主要分布于松辽平原、黄淮海平原、江汉平原、山东半岛和东南沿海地区,其主要热储层为厚度数百米至数千米第三系砂岩、砂砾岩,温度在40~80℃左右,目前已发现全国共有地热温泉3000多个,其中高于25℃的约2200个。从温泉出露的情况来看,我国主要有四个水热活动密集带[1]:藏南-川西-滇西水热活动密集带;台湾水热活动密集带;东南沿海地区水热活动密集带;胶东、辽东半岛水热活动密集带。从地质构造上看,我国地热资源主要分布于构造活动带和大型沉积盆地中,主要类型为沉积盆地型和隆起山地型。 二、我国地热资源开发现状 我国地热资源的利用历史悠久,但真正大规模勘查和开发利用始于20世纪70年初期,尤其是20世纪90年代以来,在市场经济需求的推动下,地热资源的开发利用得到更加蓬勃的发展。近年来,随着社会经济发展、科学技术进步和人们对地热资源认识的提高,出现了地热资源开发利用的热潮,平均每年以12%的速度增长,截至2005年底,全国每年直接利用的地热资源量已达44570万m3,居世界第一位,至2010年预计年开采地热水总量可达到900×106m3,开采利用的热量折合标准煤约495×104t/d。目前,我国地热资源开发利用在供暖、供热水、医疗保健、洗浴、娱乐、温室、种植、养殖及工业应用等方面均达到一定规模,其中供热采暖占18.0%,医疗洗浴与娱乐健身占65.2%,种植与养殖占9.1%,其他占7.7%,初步形成了有我国特色的地热产业。但目前我国地热开发利用

浅谈钻井技术现状及发展趋势

浅谈钻井技术现状及发展趋势 【摘要】随着油田的深入开发,钻井技术有了质的发展,钻井工艺技术研究、破岩机理研究、固控技术研究、钻井仪表技术研究、保护油气层钻井完井液技术研究以及三次采油钻井技术等都取得了科研成果,施工技术逐渐多样化,目前已在水平井、径向水平井、小井眼钻井、套管开窗侧钻井、欠平衡压力钻井等方面获得了突破。一些先进的钻井技术走出国门,走向世界,如:计算机控制下套管技术、套管试压技术、随钻测斜技术、密闭取心技术、固控装备、钻井仪表、钻井液监测技术、MTC固井技术及化学堵漏技术等,本文就国内钻井技术的现状及发展趋势进行分析。 【关键词】钻井技术;发展趋势;油田开发 引言 通过钻井技术及管理人员的不懈努力,钻井硬件设施已经比较完善,很多钻井公司配备了先进的钻井工艺实验室、固控设备实验室、钻井仪表实验室、油田化学实验室、高分子材料试验车间、全尺寸科学实验井等,这些硬件设施满足了各种钻井工程技术开发与应用的需要。钻井技术也有了长足发展,具备了世界先进水平,钻井技术的进步为油田科技事业的发展做出了积极的贡献,并取得了良好的经济效益和社会效益,如TZC系列钻井参数仪作为技术产品曾多次参与

国内重点探井及涉外钻井工程技术服务,并受到外方的认可。多年来,由于不断进行技术攻关研究与新技术的推广应用,水平井钻井技术迅速提高。水平钻进技术是在定向井技术基础上发展起来的一项钻进新技术,其特点是能扩大油气层裸露面积、显著提高油气采收率及单井油气产量。对于薄油层高压低渗油藏以及井间剩余油等特殊油气藏,水平井技术更具有明显的优势。 1、钻井技术发展现状 从世界能源消耗趋势看,还是以油气为主,在未来能源消耗趋势中,天然气的消耗增加较快,但是在我国仍然以石油、煤炭作为主要能源。尽管如此,我国的油气缺口仍然很大,供需矛盾很突出,60%石油需要进口,从钻井的历史看,我国古代钻井创造了辉煌历史,近代钻井由领先沦为落后,现代钻井奋起直追,逐步缩小差距,21世纪钻井技术有希望第二次走向辉煌。随着钻进区域的不断扩大及钻井难度的不断增加,各种新的钻井技术不断出现,目前,水平井钻井技术逐渐成为提高油气勘探开发最有效的手段之一。各种先进的钻井技术在油田开发中显示出了其优越性,新技术、新工艺日益得到重视和推广应用。例如:旋转钻井技术,是目前世界上主要的钻井技术,旋转钻井方式有以下几种:转盘(或顶驱)驱动旋转钻井方式、井下动力与钻柱复合驱动旋转钻井方式(双驱)、井下动力钻具旋转钻井方式、特殊工艺旋

相关主题
文本预览
相关文档 最新文档