当前位置:文档之家› 角平分线的辅助线做法含例题与分析

角平分线的辅助线做法含例题与分析

角平分线的辅助线做法含例题与分析
角平分线的辅助线做法含例题与分析

由角平分线想到的辅助线

角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;

②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线

(一)、截取构全等

如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、

DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。

例1. 如图1-2,AB//CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。

分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分

图1-1

B

1-2

D

B

C

使之等于短的线段。但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。

简证:在此题中可在长线段BC 上截取BF=AB ,再证明CF=CD ,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE 与CD 的延长线交于一点来证明。自已试一试。

例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥AC

分析:此题还是利用角平分线来构造全等三角形。构造的方

法还是截取线段相等。其它问题自已证明。

例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BA

C ,求证:AB-AC=CD

分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差

倍分问题。用到的是截取法来证明的,在长的线段上截取短

的线段,来证明。试试看可否把短的延长来证明呢

练习

1. 已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB+BD=AC

2. 已知:在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB=2AC ,求证:AE

=2CE

A

B

C

图1-4

A

B

C

3. 已知:在△ABC 中,AB>AC,AD 为∠BAC 的平分线,M 为AD 上任一点。求证:BM

-CM>AB-AC

4. 已知:D 是△ABC 的∠BAC 的外角的平分线AD 上的任一点,连接DB 、DC 。求证:

BD+CD>AB+AC 。

(二)、角分线上点向角两边作垂线构全等

过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。

例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。

求证:∠ADC+∠B=180?

分析:可由C 向∠BAD 的两边作垂线。近而证∠ADC 与∠B 之和为平角。

例2. 如图2-2,在△ABC 中,∠A=90?,AB=AC ,∠ABD=∠CBD 。

求证:BC=AB+AD

分析:过D 作DE ⊥BC 于E ,则AD=DE=CE ,则构造出

全等

三角形,从而得证。此题是证明线段的和差倍分问题,从中利

用了相当于截取的方法。

例3. 已知如图2-3,△ABC 的角平分线BM 、CN 相交于点P 。求

证:∠BAC 的平分线也经过点P 。

图2-1

B

2-2

C

图2-3

A

B

C

分析:连接AP ,证AP 平分∠BAC 即可,也就是证P 到AB 、AC 的距离相等。

练习:

1.如图2-4∠AOP=∠BOP=15?,PC//OA ,PD ⊥OA ,

如果PC=4,则PD=( )

A 4

B 3

C 2

D 1

2.已知在△ABC 中,∠C=90?,AD 平分∠CAB ,CD=1.5,DB=2.5.

求AC 。

3.已知:如图2-5, ∠BAC=∠CAD,AB>AD ,CE ⊥AB ,

AE=21

(AB+AD ).求证:∠D+∠B=180?。

4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC

上的点,∠FAE=∠DAE 。求证:AF=AD+CF 。

5. 已知:如图2-7,在Rt △ABC 中,∠ACB=90?,CD ⊥AB ,垂足为D ,AE 平分∠CA

B 交CD 于F ,过F 作FH//AB 交B

C 于H 。求证CF=BH 。 (三):作角平分线的垂线构造等腰三角形

从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与

图2-4

O

A

D

A

B

D

等腰三角形的三线合一的性质。(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。

例1. 已知:如图3-1,∠BAD=∠DAC ,AB>AC,CD ⊥AD 于D ,H

是BC 中

点。求证:DH=2

1

(AB-AC )

分析:延长CD 交AB 于点E ,则可得全等三角形。问题可证。

例2. 已知:如图3-2,AB=AC ,∠BAC=90?,AD 为∠ABC 的平分线,CE ⊥BE.求证:BD =2CE 。

分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形。

例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠B AC 的内、外角平分线,过顶点B 作BN 垂直AD,交AD 的延长线于F ,连结FC 并延长交AE 于M 。

求证:AM=ME 。

分析:由AD 、AE 是∠BAC 内外角平分线,可得EA ⊥AF ,从而有BF//AE ,所以想到利用比例线段证相等。

例4. 已知:如图3-4,在△ABC 中,AD 平分∠BAC ,AD=AB ,CM ⊥AD 交AD 延长线于M 。

求证:AM=2

1

(AB+AC )

B

图3-3

E

分析:题设中给出了角平分线AD ,自然想到以AD 为轴作对称变换,作△ABD 关于AD 的对称△AED ,然后只需证DM=

2

1

EC ,另外由求证的结果AM=2

1

(AB+AC ),即2AM=AB+AC ,也可尝试作△ACM

关于CM 的对称△FCM ,然后只需证DF=CF 即可。

练习:

1. 已知:在△ABC 中,AB=5,AC=3,D 是BC 中点,AE 是∠BAC 的平分线,且CE

⊥AE 于E ,连接DE ,求DE 。

2. 已知BE 、BF 分别是△ABC 的∠ABC 的内角与外角的平分线,AF ⊥BF 于F ,AE ⊥

BE 于E ,连接EF 分别交AB 、AC 于M 、N ,求证MN=2

1BC (四)、以角分线上一点做角的另一边的平行线

有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。如图4-1和图4-2所示。

例4 如图,AB>AC, ∠1=∠2,求证:AB -AC>BD -CD 。

例5 如图,BC>BA ,BD 平分∠ABC ,且AD=CD ,求证:∠A+∠C=180。

例6 如图,AB ∥CD ,AE 、DE 分别平分∠BAD 各∠ADE ,求证:AD=AB+CD 。

练习:

1. 已知,如图,∠C=2∠A ,AC=2BC 。求证:△ABC 是直角三角形。

2.已知:如图,AB=2AC ,∠1=∠2,DA=DB ,求证:DC ⊥AC

3.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD

4.已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+A D

(五)、角平分线且垂直一线段,应想到等腰三角形的中线

例6.如图7,ΔABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC 交AC 于点D ,C E 垂直于BD ,交BD 的延长线于点E 。求证:BD=2CE 。

证明:延长BA ,CE 交于点F ,在ΔBEF 和ΔBEC 中,

∵∠1=∠2,BE=BE ,∠BEF=∠BEC=90°,

∴ΔBEF≌ΔBEC,∴EF=EC ,从而CF=2CE 。

又∠1+∠F=∠3+∠F=90°,故∠1=∠3。

A

B

C D

C

B

在ΔABD 和ΔACF 中,∵∠1=∠3,AB=AC ,∠BAD=∠CAF=90°,

∴ΔABD≌ΔACF,∴BD=CF ,∴BD=2CE 。

注:此例中BE 是等腰ΔBCF 的底边CF 的中线。 (六)、借助角平分线造全等

1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:O E=OD

2:(06郑州市中考题)如图,△ABC 中,AD BAC ,DG ⊥BC

且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说

明BE=CF 的

理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长.

中考应用

(06北京中考)如图①,OP 是∠MON 的平分线,请你利用该

图形画一对以OP 所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:

(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。请你判断并写出FE 与FD 之间的数量关系;

(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立若成立,请证明;若不成立,请说明理由

E

D

G

F

C

B

A

角平分线练习题

角平分线练习 一、选择题 1.已知:如图1,B E,C F是△ABC的角平分线, B E,CF相交于D,若∠A=50°,则∠BDC=() A.70° B.120° C.115° D.130° 2.已知:如图2,△ABC中,AB = AC,BD为∠ABC的平分线,∠BDC = 60°,则∠A = () A. 10° B. 20° C. 30° D. 40° 3.三角形中,到三边距离相等的点是() A.三条高线交点 B.三条中线交点 C.三条角平分线的交点 D.三边的垂直平分线的交点 4.已知P点在∠AOB的平分线上,∠AOB = 60°,OP = 10 cm,那么P点到边OA、OB的距离分别是() A. 5cm 、cm B. 4cm、5cm C. 5cm、5cm D. 5cm、10cm 5.下列四个命题的逆命题是假命题的是() A.直角三角形的两个锐角互余 B.等腰三角形的两个底角相等 C.全等三角形的对应角相等 D.相等的两个角是对顶角 6.已知:如图3,△ABC中,∠C = 90°,点O为△ABC 的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB = 10cm,BC = 8cm,CA = 6cm,则点O到三边AB,AC和BC的 距离分别等于()cm A. 2、2、2 B.3、3、3 C. 4、4、4 D. 2、3、5 二、填空题 1.命题:“两直线平行,同旁内角互补”的逆命题 是,它 是命题。 2.角平分线可以看作 是的点的集合。 3.已知:△ABC中,∠C = 90°,角平分线AD分对边BD:DC = 3:2,且BC = 20cm,则点到AB的距离 是cm。 4.命题“如果a = b,那么| a| = | b |”的命题 是,它 是命题。 三、简答题 1.已知:如图4,△ABC的外角∠FAC的平分线为AE,∠1=∠2,AD = AC 求证:DC∥AE 2.已知:如图5,△ABC中,∠C= 90°,点D是斜边AB 的中点,AB = 2BC, DE⊥AB交AC于E 求证:BE平分∠ABC 3.已知线段AB,求线段AB的四等分点。 4.已知:如图6,△ABC中,∠A= 90°,AB = AC = BD ED

几何证明角平分线模型(高级)

几何证明——角平分线模型(高级) 【经典例题】 例1、已知如图,ABC ?中,BC AC =,AD 平分CAB ∠,若ο 100=∠C ,求证:CD AD AB +=。 例2、如图,已知在ABC ?中,ο 60=∠B ,ABC ?的角平分线CE AD ,相交于点O ,求证:AC CD AE =+。 E O B 例3、如图,BD 平分ABC ∠,?=∠45ADB ,BC AE ⊥,求AED ∠. A B C D 例4、已知,如图ABC ?中,AD 为ABC ?的角平分线,求证:BD AC DC AB ?=?.

例5、如图,已知P 为锐角△ABC 内一点,过P 分别作AB AC BC ,,的垂线,垂足分别为F E D ,,,BM 为ABC ∠的平分线,MP 的延长线交AB 于点N ;如果PF PE PD +=,求证:CN 是ACB ∠的平分线。 A B C N M P D E F 例6、如图,在梯形ABCD 中,BC AD //,DC AB =,?=∠80ABC ,E 是腰CD 上一点,连接BE 、AC 、 AE ,若?=∠60ACB ,?=∠50EBC ,求EAC ∠的度数. B C E 例7、已知:ABC ?中,BC AB <,AC 的中点为M ,AC MN ⊥交ABC ∠的角平分线于N . (1)如图1,若?=∠60ABC ,求证:BN BC BA 3= +;

(2)如图2,若?=∠120ABC ,则BA 、BC 、BN 之间满足什么关系式,并对你得出的结论给予证明. A C 【提升训练】 1、在ABC ?中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-. B 2、如图,在ABC ?中,A ∠等于ο 60,BE 平分CD ABC ,∠平分ACB ∠,求证:EH DH =。 3、如图所示,在ABC ?中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证:2AB AC AM +=。

角平分线基础练习题

1.已知:△ABC 中,∠B =90°, ∠A 、∠C 的平分线交于点O ,则∠AOC 的度数为 . 2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________. 3.∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________. 4.如图,∠AOB =60°,PD ⊥OA 于D ,PE ⊥OB 于E ,且PD =PE ,则∠1=_________. 5.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm . 6.如图,CD 为Rt △ABC 斜边上的高,∠BAC 的平分线分别交CD 、CB 于点E 、F ,FG ⊥AB ,垂足为G ,则CF ______FG ,CE ________CF . 7.如图,已知ABC △的周长是21,OB OC ,分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是._______ 8.三角形的三条角平分线相交于一点,并且这一点到________________相等. 9.点O 是△ABC 内一点,且点O 到三边的距离相等,∠A =60°,则∠BOC 的度数为_____________. 10.在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 的距离为 . 11.三角形中到三边距离相等的点是( )A 、三条边的中垂线交点 B 、三条高交点 C 、三条中线交点 D 、三条角平分线的交点 12.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A 、PD =PE B 、OD =OE C 、∠DPO =∠EPO D 、PD =OD 13.如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A 、1处 B 、2处 C 、3处 D 、4处 14.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( ) A 、4㎝ B 、6㎝ C 、10㎝ D 、不能确定 15.如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,则下列结论中不正确的是( ) A 、TQ =PQ B 、∠MQT =∠MQP C 、∠QTN =90° D 、∠NQT =∠MQT 16.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( ) A .2 cm B .3 cm C .4 cm D .5 cm 17.如图,已知AB =AC ,AE =AF ,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△ CDE ; ③D 在∠BAC 的平分线上.其中正确的是( )A .① B .② C .①和② D .①②③ 18.如图,AB =AD ,CB =CD ,AC 、BD 相交于点O ,则下列结论正确的是( ) A .OA =OC B .点O 到AB 、CD 的距离相等 C .∠BDA =∠BDC D .点O 到CB 、CD 的距离相等 19.△ABC 中,∠C =90°,点O 为△ABC 三条角平分线的交点,OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,且AB =10cm ,BC =8cm , AC =6cm ,则点O 到三边AB 、AC 、BC 的距离为( )A .2cm ,2cm ,2cm ; B . 3cm ,3cm ,3cm ; C . 4cm ,4cm ,4cm ; 第6题 D C A O 2 1D A P O E B l 2 l 1 l 3 D C E B D C A E B 2 1D A P O E B N T Q P M E D C B A E D C B A F

三角形角平分线部分经典题型

1.如图1所示,在△ABC中,∠A=90°,BD平分∠ABC,AD=2 cm,则点D到BC的距离为________cm. 图1图2 2.如图2所示,在RtΔABC中,∠C=90°,BD是∠ABC的平分线,交AC于D,若CD=n,AB=m,则ΔABD的面积是() A .mn 3 1 B. mn 2 1 C.mn D.2mn 3.如图,在△ABC中,∠C=900,BC=40,AD是∠BAC的平分线交BC于D,且DC∶ DB=3∶5,则点D到AB的距离是。 4.如图,已知BD是∠ABC的角平分线,CD是∠ACB的外角平分线,由D出发,作点D到BC、AC和AB的垂线DE、DF和DG,垂足分别为E、F、G,则DE、DF、DG的关系是。 5.如图,已知AB∥CD,O为∠A、∠C的角平分线的交点,OE⊥AC于E,且OE=2, 则两平行线间AB、CD的距离等于。 6.AD是△BAC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是( ) A、DE=DF B、AE=AF C、BD=CD D、∠ADE=∠ADF 7.到三角形三条边的距离都相等的点是这个三角形的() A.三条中线的交点B.三条高的交点 C.三条边的垂直平分线的交点D.三条角平分线的交点 8.已知△ABC中,∠A=80°,∠B和∠C的角平分线交于O点,则∠BOC= 。 9.如图,已知相交直线AB和CD,及另一直线EF。如果要在EF上找出与AB、CD距离相等的点,方法是,这样的点至少有个,最多有个。 3题图 D C B A z .. ..

z .. .. D C B A 10.如图所示,已知△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm,则△DEB 的周长为( )。 A.9 cm B.5 cm C.6 cm D.不能确定 11.如图,AB //CD ,CE 平分∠ACD ,若∠1=250 ,那么∠2的度数是 . 12.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠ C .OA OB = D .AB 垂直平分OP 13.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和∠ABD ,CD 过点E ,则AB 与AC+BD?相等吗?说明理由. 14、如图所示,已知AD 为等腰三角形ABC 的底角的平分线,∠C =90° 求证:AB =AC +CD . 15、如图,在四边形ABCD 中,BC>BA ,AD=DC,BD 平分∠ABC,求证:∠A+∠C=180° 16、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE. O B A P A B C D E D C A B E

全等三角形与角平分线经典题型

全等三角形与角平分线 一、知识概述 1、角的平分线的作法 (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C. (3)作射线OC,则OC为∠AOB的平分线(如图) 指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”. (2)角的平分线是一条射线,不能简单地叙述为连接. 2、角平分线的性质 在角的平分线上的点到角的两边的距离相等. 指出:(1)这里的距离是指点到角两边垂线段的长. (2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形. (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”. 3、角平分线的判定 到角的两边的距离相等的点在角的平分线上. 指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的. (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么过角的顶点和该点的射线必平分这个角. 4、三角形的角平分线的性质 三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等. 指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上.

(2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析 例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC. 例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF () A.大于EF B.小于EF C.等于EF D.与EF的大小无法比较 例4、(12分)如图四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠D+∠B=180°,求证:AD+AB=2AE.

角平分线的性质典型例题

【典型例题】 例1.已知:如图所示,/ C=/ C'= 90 °, AC= AC 求证:(1)Z ABC=Z ABC ; (2)BO BC(要求:不用三角形全等判定). 分析:由条件/ C=Z C = 90°, AO AC,可以把点A看作是/ CBC平分线上的点,由此可打开思路. 证明:(1)vZ C=Z C = 90°(已知), ??? ACL BC, AC丄BC (垂直的定义). 又??? AO AC (已知), ???点A在/CBC勺角平分线上(到角的两边距离相等的点在这个角的平分线上). ? / ABC=Z ABC. (2)vZ C=Z C;Z ABC=Z ABC, ?180°—(/ C+Z ABC = 180°—(/ C '+/ ABC)(三角形内角和定理)即/ BAC=Z BAC, ??? AC L BC, AC L BC, ?BO BC (角平分线上的点到这个角两边的距离相等). 评析:利用三角形全等进行问题证明对平面几何的学习有一定的积极作用,但也会产生消极作用,在解题时,要能打破思维定势,寻求解题方法的多样性. 例 2.女口图所示,已知△ ABC中, PE// AB交BC于E, PF// AC交BC于F, P是AD上一点,且D点到PE的距离与到PF的距离相等,判断AD是否平分Z BAC 并说明理由. 分析:判定一条射线是不是一个角的平分线,可用角平分线的定义和角平分线的判定定理.根据题意,首先由角平分线的判定定理推导出Z 1 = Z 2,再利用平行线推得Z 3=Z 4,最后用角平分线的定义得证. 解:AD平分Z BAC ??? D到PE的距离与到PF的距离相等, ???点D在Z EPF的平分线上. ? Z 1 = Z 2. 又??? PE// AB ???/ 1 = Z 3.

垂直平分线与角平分线典型题#(精选.)

线段的垂直平分线与角平分线(1) 知识要点详解 1、线段垂直平分线的性质 (1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点 的距离相等. 定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC. 定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理 (1)线段垂直平分线的逆定理: 到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上. 定理的作用:证明一个点在某线段的垂直平分线上 . 3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理: 三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等. 定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC. 定理的作用:证明三角形内的线段相等. (2)三角形三边垂直平分线的交点位置与三角形形状的关系: 图1 图2

若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形. 经典例题: 例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm 课堂笔记: 针对性练习: :1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,那么BC= 2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果 BC=8cm ,那么△EBC 的周长是 3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是 例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。 课堂笔记: 针对性练习: 已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC 求证:点O 在BC 的垂直平分线 例3. 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底 B D E B A C O N A

2019-2020年中考典型题赏析:角平分线的功能(含解析)

2019-2020年中考典型题赏析:角平分线的功能(含解析) 角平分线的功能如下:1.平行截等腰;2.延长构全等;3.翻折构全等;4.垂直构全等.下面举例说明角平分线的功能的应用,以起抛砖引玉,画龙点睛. 例1.如图1,点F 是△ABC 的∠CAB 和∠CBA 的平分线的交点,过点F 作 FD ∥CA,FE ∥CB,它们分别交AB 于点D 、E,若AB=6cm,求△FDE 的周长. 分析:容易证明DF=DA,EF=EB.于是可以求出△FDE 的周长等于AB. 解:∵AF 是∠CAB 的平分线,BF 是∠CBA 的平分线, ∴∠CAF=∠FAB,∠CBF=∠ABF. 图1 ∵FD ∥CA,FE ∥CB, ∴∠CAF=∠AFD,∠CBF=∠BFE. ∴∠AFD=∠FAB,∠BFE=∠ABF. ∴AD=FD,BE=FE. ∴△FDE 的周长=FD+DE+FE=AD+DE+BE=AB=6(cm). 点评:如果过一个角平分线上一点作这个角的任意一边的平行线,那么可以截得一个等腰三角形.简称“平行截等腰”. 例2.如图2,在△ABC 中,AE 是∠CAB 的平分线,BE ⊥AE 于点E. 求证:∠ABE=∠CBE+∠C. 分析:延长BE 交AC 于点D,则∠AEB=∠AED=90.容易证明ABE ADE ???.于是问题解决. 证明:延长BE 交AC 于点D,则∠AEB=∠AED=90. ∵AE=AE,∠BAE=∠DAE, ∴ABE ADE ???. ∴∠ABE=∠ADE. 图2 ∵∠ADE=∠CBE+∠C, ∴∠ABE=∠CBE+∠C. 点评:如果一条线段垂直一个角的平分线,那么延长这条垂线段可以构造全等三角形.简称“延长构全等”. 例3.如图3,在△ABC 中,AD 是∠CAB 的平分线,∠B=2∠C. 求证:AC=AB+BD. 分析:在AC 上截取AE=AB,连结DE.容易证明ABD AED ???.于是问 题可以解决. 证明:在AC 上截取AE=AB,连结DE. 图3 ∵AD=AD,∠DAB=∠DAE, ∴ABD AED ???. ∴∠B=∠AED=2∠C,BD=ED. ∵∠AED=∠CDE+∠C, ∴2∠C=∠CDE+∠C. ∴∠CDE=∠C. ∴ED=EC. ∴BD=EC. ∴AC=AE+EC=AB+BD. 点评:如果沿一个角的平分线翻折,那么可以构造全等三角形.简称“翻折构全等”,也称

(新)角平分线的性质和判定经典题

角平分线的性质和判定复习 一知识要点: 1. 角平分线的作法(尺规作图) 思考:这一画法的根据是什么? 2. 角平分线的性质及判定 (1)角平分线的性质: 文字表达:角的平分线上的点到角的两边的距离相等. 几何表达: ∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,(已知) ∴PA=PB.(角平分线的性质) 思考:这一性质定理的根据是什么? (2)角平分线的判定: 文字表达:到角的两边的距离相等的点在角的平分线上. 几何表达: ∵PA⊥OM,PB⊥ON,PA=PB(已知) ∴∠1=∠2(OP平分∠MON)(角平分线的判定) 二、典型例题 角平分线的性质一 例题1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( ) A.SSS B.ASA C.AAS D.角平分线上的点到角两边距离相等 例题2 如图,BD平分∠ABC,DE垂直于AB于E点,△ABC的面积等于90,AB=18,BC=12,则求DE的长.

例题3 已知:如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,F在AC上BD=DF,求证: CF=EB。 D F E C B A 例题4 已知:AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,BD=CD,求证:∠B=∠C. 例题5 已知:如图所示,点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D,E,求证:OB=OC. 例题6 如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB,垂足为E,且AB=10 cm,求△DEB的周长. A F D E B

相贯线及画法举例

一、概述 两立体表面的交线称为相贯线,见图5-14a和b所示的三通管和盖。三通管是由水平横放的圆筒与垂直竖放的带孔圆锥台组合而成。盖是由水平横放的圆筒与垂直竖放的带孔圆锥台、圆筒组合而成。它们的表面(外表面或内表面)相交,均出现了箭头所指的相贯线,在画该类零件的投影图时,必然涉及绘制相贯线的投影问题。 讨论两立体相交的问题,主要是讨论如何求相贯线。工程图上画出两立体相贯线的意义,在于用它来完善、清晰地表达出零件各部分的形状和相对位置,为准确地制造该零件提供条件。 (一)相贯线的性质 由于组成相贯体的各立体的形状、大小和相对位置的不同,相贯线也表现为不同的形状,但任何两立体表面相交的相贯线都具有下列基本性质: 1.共有性 相贯线是两相交立体表面的共有线,也是两立体表面的分界线,相贯线上的点一定是两相交立体表面的共有点。 2.封闭性 由于形体具有一定的空间范围,所以相贯线一般都是封闭的。在特殊情况下还可能是不封闭的,如图5-15c所示。 3.相贯线的形状

平面立体与平面立体相交,其相贯线为封闭的空间折线或平面折线。平面立体与曲面立体相交,其相贯线为由若干平面曲线或平面曲线和直线结合而成的封闭的空间的几何形。应该指出:由于平面立体与平面立体相交或平面立体与曲面立体相交,都可以理解为平面与平面立体或平面与曲面立体相交的截交情况,因此,相贯的主要形式是曲面立体与曲面立体相交。最常见的曲面立体是回转体。两回转体相交,其相贯线一般情况下是封闭的空间曲线(如图5-15a),特殊情况下是平面曲线(如图5-15 b)或由直线和平面曲线组成(如图5-15c ). (二)求相贯线的方法、步骤 求画两回转体的相贯线,就是要求出相贯线上一系列的共有点。求共有点的方法有:面上取点法、辅助平面法和辅助同心球面法。具体作图步骤为: (1)找出一系列的特殊点(特殊点包括:极限位置点、转向点、可见性分界点); (2)求出一般点; (3)判别可见性; (4)顺次连接各点的同面投影; (5)整理轮廓线。 二、相贯线的作图方法

角平分线的性质典型例题

【典型例题】 例1. 已知:如图所示,∠C=∠C′=90°,AC=AC′. 求证:(1)∠ABC=∠ABC′; (2)BC=BC′(要求:不用三角形全等判定). 分析:由条件∠C=∠C′=90°,AC=AC′,可以把点A看作是∠CBC′平分线上的点,由此可打开思路. 证明:(1)∵∠C=∠C′=90°(已知), ∴AC⊥BC,AC′⊥BC′(垂直的定义). 又∵AC=AC′(已知), ∴点A在∠CBC′的角平分线上(到角的两边距离相等的点在这个角的平分线上). ∴∠ABC=∠ABC′. (2)∵∠C=∠C′,∠ABC=∠ABC′, ∴180°-(∠C+∠ABC)=180°-(∠C′+∠ABC′)(三角形内角和定理). 即∠BAC=∠BAC′, ∵AC⊥BC,AC′⊥BC′, ∴BC=BC′(角平分线上的点到这个角两边的距离相等). 评析:利用三角形全等进行问题证明对平面几何的学习有一定的积极作用,但也会产生消极作用,在解题时,要能打破思维定势,寻求解题方法的多样性. 例2. 如图所示,已知△ABC中,PE∥AB交BC于E,PF∥AC交BC于F,P是AD上一点,且D点到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由. 分析:判定一条射线是不是一个角的平分线,可用角平分线的定义和角平分线的判定定理.根据题意,首先由角平分线的判定定理推导出∠1=∠2,再利用平行线推得∠3=∠4,最后用角平分线的定义得证. 解:AD平分∠BAC. ∵D到PE的距离与到PF的距离相等, ∴点D在∠EPF的平分线上.

∴∠1=∠2. 又∵PE∥AB,∴∠1=∠3. 同理,∠2=∠4. ∴∠3=∠4,∴AD平分∠BAC. 评析:由角平分线的判定判断出PD平分∠EPF是解决本例的关键.“同理”是当推理过程相同,只是字母不同时为书写简便可以使用“同理”. 例3. 如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP能否平分∠BAC?请说明理由.由此题你能得到一个什么结论? 分析:由题中条件可知,本题可以采用角的平分线的性质及判定来解答,因此要作出点P到三边的垂线段. 解:AP平分∠BAC. 结论:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等.理由:过点P分别作BC,AC,AB的垂线,垂足分别是E、F、D. ∵BM是∠ABC的角平分线且点P在BM上, ∴PD=PE(角平分线上的点到角的两边的距离相等). 同理PF=PE,∴PD=PF. ∴AP平分∠BAC(到角的两边的距离相等的点在这个角的平分线上). 例4.如图所示的是互相垂直的一条公路与铁路,学校位于公路与铁路所夹角的平分线上的P点处,距公路400m,现分别以公路、铁路所在直线为x轴、y 轴建立平面直角坐标系. (1)学校距铁路的距离是多少? (2)请写出学校所在位置的坐标. 分析:因为角平分线上的点到角的两边距离相等,所以点P到铁路的距离与到公路的距离相等,也是400m;点P在第四象限,求点P的坐标时要注意符号.解:(1)∵点P在公路与铁路所夹角的平分线上, ∴点P到公路的距离与它到铁路的距离相等, 又∵点P到公路的距离是400m, ∴点P(学校)到铁路的距离是400m.

三角形角平分线经典习题

例1.如图,已知:AD 是ABC ?的角平分线,DE 、DF 分别是ABD ?和ACD ?的高. 求证:AF AE =. 例2.已知:如图,BD 是ABC ∠的平分线,BC AB =,P 在BD 上,AD PM ⊥,CD PN ⊥. 求证:PN PM =. 例3.如图,已知:在ABC ?中AD 是BAC ∠的平分线,AB DE ⊥于E ,AC DF ⊥于F . 求证:EF AD ⊥. 例4.已知:如图,在ABC ?中,?=∠90C ,BC AC =,AD 是A ∠的平分线. 求证:AB CD AC =+. 例5、如图,已知DC AB //,?=∠=∠90D A ,点E 在AD 上,BE 平分ABC ∠,CE 平分BCD ∠。 求证:DC AB BC +=。 例6.已知:如图,在ABC ?中,BE 、CF 分别平分ABC ∠、ACB ∠,且交于点O , 求证:点O 在A ∠的平分线上. E D C B A

针对性练习 1、下列说法正确的有几个( ) (1) 角的平分线上的点到角的两边的距离相等; (2) 三角形两个内角的平分线交点到三边距离相等; (3) 三角形两个内角的平分线的交点到三个顶点的距离相等; (4) 点E 、F 分别在∠AOB 的两边上,P 点到E 、F 两点距离相等,所以P 点在∠AOB 的平分线上; (5) 若OC 是∠AOB 的平分线,过OC 上的点P 作OC 的垂线,交OB 于D ,交OA 于E ,则线段PD 、PE 的长分别是P 点到角两边的距离 A .2 B 3 C 4 D 5 2、在△ABC 中,∠C =090,BC =16cm ,∠A 的平分线AD 交BC 于D , 且CD :DB =3:5,则D 到AB 的距离等于____ 3、已知:如图1,BD 是∠ABC 的平分线,DE ⊥AB 于E ,2 36cm S ABC =? AB =18cm,BC =12cm,求DE 的长 4.如图,已知:CD BD =,AC BF ⊥于F ,AB CE ⊥于E . 求证:D 在BAC ∠的平分线上. 5、已知:如图2, ∠B =∠C =0 90,M 是BC 中点,DM 平分∠ADC 求证:AM 平分∠DAB 6.如图,ABC ?是等腰直角三角形,?=∠90A ,BD 是ABC ∠的平分线,BC DE ⊥于E ,cm BC 10=,求DEC ?的周长. C B 图1 A D E A B C D M 图2 O B F C E A

角平分线辅助线专题练习

D A B C 角平分线专题 1、 轴对称性: 内容:角是一个轴对称图形,它的角平分线所在的直线是它的对称轴。 思路和方法:边角等 造全等,也就是在角的两边上取相等的线段 构造全等三角形 基本结构:如图, 2、 角平分线的性质定理:注意两点(1)距离相等 (2)一对全等三角形 3、 定义:带来角相等。 4、 补充性质:如图,在△AB C中,AD 平分∠BAC ,则有AB:AC=BD:DC 针对性例题: 例题1:如图,AB=2AC ,∠BAD=∠DAC ,DA =DB 求证:DC ⊥AC

B 例题2:如图,在△AB C中,∠A等于60°,BE 平分∠ABC,C D平分∠ACB 求证:DH=E H 例题3:如图1,B C>A B,BD 平分∠A BC,且∠A+∠C=1800, 求证:AD=D C.: 思路一:利用“角平分线的对称性”来构造 因为角是轴对称图形,角平分线是其对称轴,因此,题中若有 角平分线,一般可以利用其对称性来构成全等三角形. 证法1:如图1,在BC 上取B E=AB,连结DE ,∵BD 平分 ∠A BC,∴∠A BD=∠D BE ,又BD=BD,∴△ABD ≌△EBD (S AS), ∴∠A =∠DB E,AD=D E,又∠A+∠C=1800,∠D EB+∠DE C=1800,∴∠C=∠D EC,D E=DC , 则AD =DC . 证法2:如图2,过A 作BD 的垂线分别交BC 、B D于E 、F , 连结DE,由BD 平分∠ABC ,易得△ABF ≌△EBF,则AB=B E, BD 平分∠A BC,BD =BD ,∴△ABD ≌△E BD(SA S), ∴AD =ED ,∠BAD =∠DEB,又∠BA D+∠C=1800, ∠BED+∠CE D=1800 ,∴∠C=∠DEC ,则DE=DC,∴AD=DC . 说明:证法1,2,都可以看作将△AB D沿角平分线BD 折向B C而构成 全等三角形的. 证法3:如图3,延长BA 至E ,使BE=B C,连结D E, ∵BD 平分∠A BC,∴∠CBD =∠DBE ,又BD=BD ,∴△CB D≌△EBD (SAS), ∴∠C=∠E ,CD=DE,又∠BA D+∠C=1800,∠DA B+∠D AE=1800, ∴∠E=∠D AE,DE =DA ,则AD=DC . 说明:证法3是△CBD 沿角平分线B D折向B A而构成全等三角形的. B A C D E 图1 B A C D E F 图2 B A C D E 图3

角形角平分线经典习题

例4.已知:如图,在 ABC 中, AB . C 90 , AC 求证: AC CD 例5、如图, 已知 AB//DC , A D 90,点 求证: BC AB DC 。 PE 的 求证:AE AF . 例2 .已知: 如图, BD 是 ABC 的平分线,AB BC , P 在 BD 上, PM AD , PN CD 求证: PM PN . 例3.如图, 已知: 在 ABC 中AD 是 BAC 的平分线, DE AB 于 E , DF AC 于 F . 求证: AD EF . 例6 ?已知:如图,在 ABC 中,BE CF 分别平分 求证:点0在 A 的平分线上? 针对性练习 1、 下列说法正确的有几个( ) (1) 角的平分线上的点到角的两边的距离相等; (2) 三角形两个内角的平分线交点到三边距离相等; (3) 三角形两个内角的平分线的交点到三个顶点的距离相等; (4) 点E 、F 分别在/ AOB 的两边上,P 点到E 、F 两点距离相等,所以 P 点在/ AOB 的平分线上; (5) 若0C 是/ AOB 的平分线,过 0C 上的点P 作0C 的垂线,交 0B 于D,交0A 于 E ,则线段PD 长分别是P 点到角两边的距离 A. 2 B 3 C 4 D 5 2、在厶 ABC 中,/ C = 900, BC = 16cm,/ A 的平分线 AD 交 BC 于 D, 且CD DB= 3: 5,贝U D 到AB 的距离等于 ___________ 例1 .如图,已知: AD 是ABC 的角平分线, DE DF 分别是 ABD 和 ACD 的高. BC ,AD 是 A 的平分线? E

(完整版)角平分线经典题型

全等三角形与角平分线 1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 2、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF () A.大于EF B.小于EF C.等于EF D.与EF的大小无法比较 3、(12分)如图四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠D+∠B=180°,求证:AD+AB=2AE.

4、已知:如图,在四边形ABCD中,AB>BC,BD平分.求证:AD=CD. 5、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于O点,求证:AE+CD=AC. 6、在△ABC,∠C=90°,BC=16cm,∠A的平分线AD交BC于D,且CD︰DB=3︰5,则D到AB的距离等于() A.6cm B.7cm C.8cm D.9cm 2、如图,D是△ABC的一个外角的平分线上一点,求证:AB+AC

8、如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC 于E,与CD相交于点F.H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF; (3)CE与BG的大小关系如何?试证明你的结论. 9、如图,已知∠1=∠2,P为BN上一点,且PD⊥BC于D,AB+BC=2BD,求证:∠BAP+∠BCP=180° 10、如图,△ABC中,AM是BC边上的中线,求证: 11、已知:如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长线于E. 求证:BD=2CE.

角平分线性质练习题

角平分线性质练习题

N M A 4 分层练习, 评价自我 活动四 做一做 练习一: 判断:(1)OP 是∠AOB 的平分线,则PE=PF ( ) (2)PE ⊥OA 于E ,PF ⊥OB 于F 则PE=PF ( ) (3)在∠AOB 的平分线上任取一点Q ,点Q 到OA 的距离等于3cm,则点Q 到OB 距离等于3cm ( ) 练习二 判断:1、若PE=PF ,则OP 是∠AOB 的平分线。( ) 2、若PE ⊥OA 于E ,PF ⊥OB 于F ,则OP 是∠AOB 的平分线。( ) 3、已知Q 到OA 的距离等于3cm, 且Q 到OB 距离等于3cm ,则Q 在∠AOB 的平分线上( ) 练习三 如图,△ABC 的角平分线BM 、CN 相交于点P 。 (1)求证:点P 到三边AB 、BC 、CA 的距离相等 。 (2)点P 在角A 的平分线上吗? (3)三角形的三条角平分线有什么关系呢? 5 课堂反思,强化思想 活动五 想一想 (1)这节课我们帮助别人解决了什么问题?你是怎么做到的? (2)你感悟到了什么? 6 布置作业,指导学习 1、必做题:教材:第2题。 2、选做题:教材:第3题。 板书设计 角平分线的性质 角平分线的判定 ∵ PA=PB ∵ OP 平分∠AOB , 又∵ PA ⊥OA ,PB ⊥OB 又∵ PA ⊥OA, PB ⊥OB ∴ OP 平分∠AOB ∴ PA=PB B A O P P

DF ⊥AC ,垂足分别为E 、F ,则DE ____DF . ⑵已知DE ⊥AB ,DF ⊥AC ,垂足分别 为E 、F ,且DE = DF ,则∠1_____∠2. 三、解答题 5.如图,点D 、B 分别在∠A 的两边上,C 是∠A 内一点,AB = AD ,BC = CD ,CE ⊥AD 于E ,CF ⊥AF 于F . 求证:CE = CF 6.已知:如图,在△ABC 中,∠A =90°,AB = AC , BD 平分∠ABC . 求证:BC = AB + AD F A B E C D D B A C

角平分线的性质和判定经典复习题

/ 角平分线的性质和判定复习 一知识要点: 1. 角平分线的作法(尺规作图) 思考:这一画法的根据是什么 2. 角平分线的性质及判定 (1)角平分线的性质: 文字表达:角的平分线上的点到角的两边的距离相等. ) 几何表达: ∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,(已知) ∴PA=PB.(角平分线的性质) 思考:这一性质定理的根据是什么 (2)角平分线的判定: 文字表达:到角的两边的距离相等的点在角的平分线上. 几何表达: 【 ∵PA⊥OM,PB⊥ON,PA=PB(已知) ∴∠1=∠2(OP平分∠MON)(角平分线的判定) 思考:这一判定定理的根据是什么 二、典型例题 例1 如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP能否平分∠BAC请说明理由.由此题你能得到一个什么结论 思考:画一个任意三角形并作一个内角、一个外角的平分线相交;两个外角的平分线相交,观察交点到这个三角形三条边所在直线的距离的关系. —

例2.如图所示,在△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D,DE⊥AB于E, AB=10求△BDE的周长 … 例3、如图,AD⊥DC,BC⊥DC:,E是DC上一点,AE平分∠DAB.E是DC的中点,求证:BE平分∠ABC. 例4、如图,△ABC中,∠ABC=1000,∠ACB的平分线交AB于E,在AC上取一点D,使∠CBD=200,连结DE.求∠CED的度数. > 【思维方法总结】 1、学过“角的平分线上的点到角的两边的距离相等”与“到角的两边的距离 相等的点在角的平分线上”这两个结论后,许多涉及角的平分线的问题用这两个结论解决很方便,需要注意的是有许多同学对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用这两个结论,仍然去找全等三角形,结果相当于重新证明了一次这两个结论。 2、如果已知角平分线,(或要证角平分线)可以考虑:有一条距离可以考虑 再作一条距离,一条距离也没有可以考虑作两条距离。从而利用角平分线 的性质定理和判定定理解决问题。

(新)角平分线与垂直平分线练习题(经典)

0角平分线 角平分线性质定理:角平分线上的点到这个角两边的距离相等。 角平分线的判定: 到一个叫两边的距离相等的点在这个角的平分线上。 例1.如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点 到直线AB 的距离是 cm . 例2.如图,已知在Rt △ABC 中,∠C =90°, BD 平分∠ABC , 交AC 于D . (1) 若∠BAC =30°, 则AD 与BD 之间有何数量关系,说明你的理由; (2) 若AP 平分∠BAC ,交BD 于P , 求∠BPA 的度数. 3、考点深入练习 例3:如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。 求证:(1)AD=AG ,(2)AD 与AG 的位置关系如何。 例4:两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .(8分) (1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC ⊥BE B P A B C D G H F E D C B A

例5:△DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N. 求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三角形(4)MN ∥BC 垂直平分线的性质与判定强化练习 1如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于 ( ) A .6cm B .8cm C .10cm D .12cm 2题 2如图,在Rt ABC △中,90ACB D E ∠=,,分别为AC AB ,的中点,连DE CE ,. 下列结论中不一定正确的是 ( ) A .ED BC ∥ B .ED AC ⊥ C .ACE BCE ∠=∠ D .A E CE = 3、△ABC 中,∠C=90°,AB 的中垂线交直线BC 于D ,若∠BAD -∠DAC=22.5°,则∠B 等于 ( ) A.37.5° B.67.5° C.37.5°或67.5° D.无法确定 4、线段的垂直平分线上的点_____________________________________. 5、到一条线段的两个端点的距离相等的点,______________________. 6、如图,在△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABD 的周长是12 cm ,AC=5cm ,则 AB+BD+AD= cm ;AB+BD+DC= cm ;△ABC 的周长是 cm 。 3题 4题 7、如图,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC 于E ,BE=5,则AE=__________,∠AEC=__________,AC=__________ 。 D A C B N M E

相关主题
文本预览
相关文档 最新文档