当前位置:文档之家› 电力电子技术

电力电子技术

电力电子技术
电力电子技术

1、电力变换通常分为四大类,即:、、

、。

2、整流电路分类方式多样,其中,按照组成的器件可以分为:、

、。

3、功率半导体器件IGBT集中了MOSFET及GTR分别具有的优点,请列举出五项优点:、、、

、。

4、功率半导体器件根据开通与关断所需控制极驱动信号的不同要求,可分为电流控制型开关器件与电压控制型开关器件,请列出三种常见的电流控制型开关器件:、、;常见的两种电压控制型开关器件:、。

5、晶闸管SCR导通条件为:加正向电压、控制极有触发电压。晶闸管控制极触发电压的基本要求是:、、

、、

6、在降压斩波电路中,根据对输出电压平均值进行的调制的方式不同,斩波电路可有三种控制方式、、。

7、逆变电路中,如果交流侧接电网,则该逆变电路为、如果交流侧接负载,则该逆变电路为。

8、逆变电路中,直流电源为电流源的逆变电路称为。

9、boost 变换器实际上是斩波电路,Sepic变换器实际是斩波电路。

1、电力变换通常分为四大类,其中交流变直流的称为,直流变交流的称为,直流变直流可以用实现。

2、整流电路分类方式多样,其中,按照组成的器件可以分为:、

、。

3、逆变电路中,电压型逆变电路的直流电源为,电流型逆变电路的直流电源为。

4、凡是超过晶闸管正常工作时所承受的最大峰值电压的电压叫做过电压。过电压根据产生的原因可分为两大类:、;晶闸管过电压保护措施有:、。

5、功率半导体器件IGBT集中了MOSFET及GTR分别具有的优点,请列举出五项优点:、、、

、。

6、功率半导体器件根据开通与关断所需控制极驱动信号的不同要求,可分为:

、;其中SCR属于、IGBT属于

7、buck 变换器实际上是斩波电路,Cuk变换器实际上是。

8、三相整流电路中,在相电压的交点处,均出现了二极管的换相,即电流由一个二极管向另一个二极管转移,称这些交点为,对应的触发角α为度。

9、三相桥式全控整流电路中,六个晶闸管的脉冲按照VT1-VT2-VT3-VT4-VT5-VT6,

的顺序轮流导通,每次导通 个,且导通相位依次相差 度。

10、逆变电路中,常见的晶闸管换流方式有: 、 、

1、晶闸管VT 结构如下图所示,则下列选项可以使晶闸管由导通变为截止的外部条件为

( )。

A .Uak >0,Ig>0

B .Uak<0

C .Uak>0,Ig<0

D .Uak <0且Iak<0

2、下列关于晶闸管的静态特性说法错误的是( )。

A 、晶闸管承受反向电压时,不论门极怎样,晶闸管都不会导通

B 、晶闸管承受正向电压时,仅在门极有触发电流的情况下,晶闸管才会导通

C 、晶闸管一旦导通,门极没有触发电流的情况下,晶闸管就会截止

D 、晶闸管一旦导通,晶闸管承受反向电压时,晶闸管仍有可能继续导通

3、下列不属于全控型电力器件的是( )。

A 、SCR ;

B 、GTO ;

C 、电力MOSTET ;

D 、IGBT

4、电力MOSTET 结构如下图所示,则下列选项可以使N 沟道电力MOSTET 导通的外部条

件为( )。

A .Uds>0;

B .Uds>0且Ugs>0 ;

C .Uds>0且Ugs>U TH ;

D .Uds>0且Ugs

5、下图为单相半波可控整流电路,则输出电压Ud 的平均值为( )。

A 、;

B 、;

C 、;

D 、

G

6、下图为单相半波可控整流电路,假定输入电压U2(t)的有效值为U2,则晶闸管承受的最大反向电压为()。

共8 页第 2 页

A、;

B、U2;

C、2U2;

D、0.5U2

7、下图为三相电压型逆变电路,下列说法错误的是()。

A.同一相(即同一半桥)上下两臂交替导电,各相开始导电的角度差120 °,任一瞬间有三个桥臂同时导通

B.U N’= Ud/2

C.每次换流都是在同一相上下两臂之间进行,也称为纵向换流

D.同一相(即同一半桥)上下两臂交替导电,各相开始导电的角度差180 °,任一瞬间有三个桥臂同时导通

8、下图为三相半波可控整流电路(电阻负载)电路图,下列说法错误的是()

A、变压器一次侧接成星形得到零线,二次侧接成三角形避免3次谐波流入电网;

B、三个晶闸管分别接入a、b、c三相电源,其阴极连接在一起—共阴极接法;

C、二极管换相时刻为自然换相点;

D、自然换相点处规定a =0 ;

共8 页第 3 页

9、下图为降压斩波电路图,下列说法错误的是()。

A、二极管的作用为续流

B、开关器件若为晶闸管,须有辅助关断电路

C、驱动V导通,电源E向负载供电,负载电压Uo=0

D、负载电流i o按指数曲线上升

10、下图为升压斩波电路图,下列说法正确的是()。

A、二极管的作用为续流

B、电容的作用是稳定输出电压

C、驱动V导通,电源E向负载供电,负载电压Uo=0

D、V处于断态时,电源E同时向电感L和C充电,并向负载提供能量。

1、晶闸管VT结构如下所示,则下列可以使晶闸管导通的外部条件为()。A.Uak >0,Ig>0 B.Uka >0,Iak<0 C.Uak<0,Ig>0 D.Uak >0,Ig<0

G

2、晶闸管属于()。

A.全控型器件 B.半控型器件 C.不可控型器件 D.电压控制型器件

3、下图为单相半波可控整流电路,则晶闸管触发角α的取值范围是()。

A、0-180 度;

B、0-360度;

C、0-150度;

D、0-120度

4、下图为单相半波可控整流电路,则输出电流Id的平均值为()。

A、()/R;

B、( )/R;

C、( )/R;

D、( )/R

5、下图整流电路中,二极管的作用是()。

A、续流;

B、限幅;

C、开关;

D、整流

6、下列属于全控型电力器件的是()。

A、SCR;

B、VD;

C、电力MOSTET;

D、晶闸管

共8 页第 2 页

7、下图为单相电流型逆变电路电路图,下列说法正确的是()。

A.由四个桥臂构成,每个桥臂的晶闸管各串联一个电抗器,用来限制晶闸管开通时的d i/d t。

B.采用负载换相方式工作的,要求负载电流略超前于负载电压,即负载略呈感性

C.电容C和L 、R构成串联谐振电路

D.输出电流波形为交流信号

8、下图为降压斩波电路图,下列说法正确的是()。

A、二极管的作用为整流

B、驱动V导通,电源E向负载供电,负载电压Uo=0

C、驱动V截止,电源E向负载供电,负载电压Uo=0

D、驱动V截止,电感L向负载供电,负载电压Uo=0

9、下图为升压斩波电路图,下列说法错误的是()。

A、驱动V导通,电源E向电感L供电

共8 页第 3 页

B、驱动V截止,电源E和电感L同时向负载R供电

C、电容的作用使得输出电压维持恒定

D、输出电压Uo的平均值为Uo = (T/t on)E

10、下图为升压斩波电路图,下列说法正确的是()。

A、二极管的作用为续流

B、电容的作用是稳定输出电压

C、驱动V导通,电源E向负载供电,负载电压Uo=0

D、V处于断态时,电源E同时向电感L和C充电,并向负载提供能量

1、晶闸管一旦导通,门极便失去控制作用。()

2、单相整流电路阻感负载(带续流二极管),负载上的电流近似可以看成是一条直线。

()

3、降压斩波电路中,可通过控制占空比α调节输出电压的大小。()

4、AC--DC变换成为逆变。()

5、电压型逆变电路采用大电感储能。()

1、IGBT一旦导通,门极便失去控制作用。()

2、带大电容的电容滤波不可控整流电路,电容的作用可近似看成稳压。()

3、降压斩波电路中,可通过控制导通时间ton变化,周期T不变,调节输出电压的大

小。()

4、AC--DC变换成为整流电路。()

5、电流型逆变电路采用大电感储能。()

1、下图(1)为单相半波可控整流电路带电感性负载(续流二极管)的电路图,已知电压U2(t)=2202sin(t),电阻R=7.5Ω,L值极大,且晶闸管触发角α=300,U2(t)及晶闸管触发电压Ug如下图(2)所示:

图(1)

图(2)

求(1)根据已知条件画出输出电压Ud、输出电流i d、晶闸管电流i vt、晶闸管电压Uvt、二极管电流i VD的波形图

(2)根据波形图求输出电压Ud的平均值、晶闸管电流的有效值I T

(3)根据波形图求解晶闸管承受的最大反向电压

(4)确定选用的晶闸管的额定电压与额定电流

1、下图为三相半波可控整流电路的电路图,已知电压U a(t)=2202sin(t)、U b(t)=2202sin(t-1200)、U c(t)=2202sin(t+1200),电阻R=500Ω,且晶闸管触发角在自然换相点处,输入电压及晶闸管触发电压Ug如下图所示:

求:(1)根据已知条件画出输出电压Ud、输出电流i d、晶闸管Ta电流i vt、晶闸管Ta 的电压Uvt 的波形图

(2)根据输出电压Ud的波形,判断触发角α的取值范围

(3)根据波形图求输出电压Ud、输出电流i d、以及晶闸管最大反向电压U RM

(4)试着画出α=300时,输出电压Ud的波形图

2.图(2.1)为直流升压斩波电路,电路中使用了全控型器件IGBT,图(2.2)为全控型器件IGBT的脉冲驱动信号V g E的波形,U G=10V,且L值极大,使得L上电流

基本恒定,直线上升或下降,变化幅度很小。且C极大,输出电压平稳。

(1)试分析该电路的工作原理

(2)结合工作原理,求直流输出电压Uo的平均值

图(2.1)

图(2.2)

3、图(2.1)为电压型全桥逆变电路结构图,图(2.2)为全控型器件IGBT 的脉冲驱动信号V g E的波形,L极大,使得放电回路分为两部分。

(1)试分析该电路的工作原理

2.图(

3.1)为直流升降压斩波电路,电路中使用了全控型器件IGBT,图(3.2)为全控型器件IGBT的脉冲驱动信号V gE的波形,且L值极大,使得L上电流基本恒定,且直线上升或下降,且变化幅度很小。且C极大,输出电压平稳。

(1)试分析该电路的工作原理

(2)结合工作原理,画出一个周期内IGBT上电压U T、电感电压UL、I L(T=ton+toff))的波形图

(3)结合波形图,求直流输出电压Uo的平均值

图(3.1)

图(3.2)

电力电子技术的发展史

电力电子技术的发展史 电子技术是根据电子学的原理,运用电子器件设计和制造某种特定功能的电路以解决实际问题的科学,包括信息电子技术和电力电子技术两大分支。信息电子技术包括 Analog (模拟) 电子技术和 Digital (数字) 电子技术。电子技术是对电子信号进行处理的技术,处理的方式主要有:信号的发生、放大、滤波、转换。 目录 电力电子技术 现代电力电子技术 高频开关电源的发展趋势 半导体器件基础 电路发展 1.电力电子技术发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能

2016高等电力电子技术复习提纲.docx

2016高等电力电子技术复习提纲 1、上课的PPT必须认真研读 好的 2、掌握光伏并网系统的基本结构,基本原理和优缺点 1、集中式结 X Central I" i A o AC Bus 优点:由于单位发电成本低,适合用于兆瓦级光伏电站 缺点:1)集小式结构的系统功率失配现象严重;2)光伏阵列的特性曲线出现复杂多波峰,难以实现良好的最大功率点跟踪;3)这种结构需要高压直流总线连接并网逆变器与光伏阵列,增加了成本,降低了安全性。 2、交流模块结构

FV Modules Module AC Bus 66 优点:1)光伏组件损耗低 2)无热斑阴影问题 3)每个模块独立MPPT设计效率高。 4)模块独立运行,扩展与冗余性强/ 5)没有直流母线的高压,整个系统安全性提高缺点:小容量逆变器设计,逆变器效率相对较低; 3、串型结构 PV String AC Bus 6 6 优点: 无阻塞二极管;抗热斑和抗阴影能力增加;多串MPP设计,运行效率高;系统扩展和冗余能力强 缺点:仍有热斑和阴影问题; 逆变器数量多,扩展成本增加;

逆变效率降低。 4、多串集中型结构■集散式结构 阵列 1 DC-DC1 优点: 无阻塞二极管;抗热斑和抗阴影能力增加;多串MPP设计,运行效率高;系统扩展和冗余能力强;单一逆变器设计,扩展成本降低;逆变效率高,适合多个不同倾斜而阵列接入,即阵列1-n可以具有不同的MPPT电压,十分适合应用于光伏建筑。 缺点: 仍有热斑和阴影问题;逆变器无兀余 5、逐个并联集中型 工作方式: ?早晨弱光时由几台逆变器中随机…台开始工作。 ?当第一台满功率时接入第二台逆变器,依次投入。 ?傍晚弱光时逐台退出。 优点:?低空载损耗,充分利用了太阳能。 ?逆变器轮流工作,延长寿命。 缺点:? 光伏阵列全部并联,并联损耗较大,且只能用一 种型号。

现代电力电子技术的发展(精)

现代电力电子技术的发展 浙江大学电气工程学院电气工程及其自动化992班马玥 (浙江杭州310027 E-mail: yeair@https://www.doczj.com/doc/f812169686.html,学号:3991001053 摘要:本文简要回顾电力电子技术的发展,阐述了现代电力电子技术发展的趋势,论述了走向信息时代的电力电子技术和器件的创新、应用,将对我国工业尤其是信息产业领域形成巨大的生产力,从而推动国民经济高速、高效可持续发展。 关键词:现代电力电子技术;应用;发展趋势 The Development of Modern Power Electronics Technique Ma Yue Electrical Engineering College. Zhejiang University. Hangzhou 310027, China E-mail: yeair@https://www.doczj.com/doc/f812169686.html, Abstract: This paper reviews the development of power electronics technique, as well as its current situation and anticipated trend of development. Keywords: modern power electronics technique, application, development trend. 1、概述 自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装臵,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。

电力电子技术仿真实验指导书

《电力电子技术实验》指导书 合肥师范学院电子信息工程学院

实验一电力电子器件 仿真过程: 进入MATLAB环境,点击工具栏中的Simulink选项。进入所需的仿真环境,如图所示。点击File/New/Model新建一个仿真平台。点击左边的器件分类,找到Simulink和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。 图 实验一的具体过程: 第一步:打开仿真环境新建一个仿真平台,根据表中的路径找到我们所需的器件跟连接器。

提取出来的器件模型如图所示: 图 第二步,元件的复制跟粘贴。有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用方便的方法是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标和Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。 第三步,把元件的位置调整好,准备进行连接线,具体做法是移动鼠标到一个器件的连接点上,会出现一个“十字”形的光标,按住鼠标左键不放,一直到你所要连接另一个器件的连接点上,放开左键,这样线就连好了,如果想要连接分支线,可以要在需要分支的地方按住Ctrl键,然后按住鼠标左键就可以拉出一根分支线了。 在连接示波器时会发现示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进行增加端子。在调整元件位置的时候,有时你会遇到有些元件需要改变方向才更方便于连接线,这时可以选中要改变方向的模块,使用Format菜单下的Flip block 和Rotate

电力电子技术知识点

(供学生平时课程学习、复习用,●为重点) 第一章绪论 1.电力电子技术:信息电子技术----信息处理,包括:模拟电子技术、数字电子技术 电力电子技术----电力的变换与控制 2. ●电力电子技术是实现电能转换和控制,能进行电压电流的变换、频率的变换及相 数的变换。 第二章电力电子器件 1.电力电子器件分类:不可控器件:电力二极管 可控器件:全控器件----门极可关断晶闸管GTO电力晶体管GTR 场效应管电力PMOSFET绝缘栅双极晶体管IGBT及其他器件 ☆半控器件----晶闸管●阳极A阴极K 门极G 2.晶闸管 1)●导通:当晶闸管承受正向电压时,仅在门极有触电电流的情况晶闸管才能开通。 ●关断:外加电压和外电路作用是流过晶闸管的电流降到接近于零 ●导通条件:晶闸管承受正向阳极电压,并在门极施加触发电流 ●维持导通条件:阳极电流大于维持电流 当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才会开通。 当晶闸管导通,门极失去作用。 ●主要参数:额定电压、额定电流的计算,元件选择 第三章 ●整流电路 1.电路分类:单相----单相半波可控整流电路单相整流电路、桥式(全控、半控)、单相全波可控整流电路单相桥式(全控、半控)整流电路 三相----半波、●桥式(●全控、半控) 2.负载:电阻、电感、●电感+电阻、电容、●反电势 3.电路结构不同、负载不同●输出波形不同●电压计算公式不同

单相电路 1.●变压器的作用:变压、隔离、抑制高次谐波(三相、原副边星/三角形接法) 2.●不同负载下,整流输出电压波形特点 1)电阻电压、电流波形相同 2)电感电压电流不相同、电流不连续,存在续流问题 3)反电势停止导电角 3.●二极管的续流作用 1)防止整流输出电压下降 2)防止失控 4.●保持电流连续●串续流电抗器,●计算公式 5.电压、电流波形绘制,电压、电流参数计算公式 三相电路 1.共阴极接法、共阳极接法 2.触发角ā的确定 3.宽脉冲、双窄脉冲 4.●电压、电流波形绘制●电压、电流参数计算公式 5.变压器漏抗对整流电流的影响●换相重叠角产生原因计算方法 6.整流电路的谐波和功率因数 ●逆变电路 1.●逆变条件●电路极性●逆变波形 2.●逆变失败原因器件触发电路交流电源换向裕量 3.●防止逆变失败的措施 4.●最小逆变角的确定 触发电路 1.●触发电路组成 2.工作原理 3.触发电路定相 第四章逆变电路

电力电子技术的发展及应用趋势

浅析电力电子技术的发展及应用 张友均 摘要:本文主要简要回顾了电力电子技术的发展史,简述了电力电子在电力系统中的一些应用及发展趋势。关键词:电力电子技术;发展史;电力系统;应用;发展趋势 1 引言 自上世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气控制技术舞台,标志着电力电子技术的诞生。究竟什么是电力电子技术呢?美国电气与电子工程师协会下设的电力电子学会对“电力电子技术”的阐述是:有效的使用电力半导体器件,应用电路设计理论以及分析开发工具,实现对电能高效能变换和控制的一门技术。对电能的高效能变换和控制包括对电压,电流,频率或波形等方面的变换。它广泛应用于电力、电气自动化及各种电源系统等工业生产和民用部门。它是介于电力、电子和控制三大领域之间的交叉学科。目前,电力电子技术的应用已遍及电力、汽车、现代通信、机械、石化、纺织、家用电器、灯光照明、冶金、铁路、医疗设备、航空、航海等领域。进入21世纪,随着新的理论、器件、技术的不断出现,特别是与微控制器技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。 2 电力电子技术的发展史 电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 2.1 整流器时代 大功率的工业用电由工频( 50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解) 、牵引(电气机车、电传动的

电力电子技术试卷及答案..

一、填空题(每空1分,34分) 1、实现有源逆变的条件为和。 2、在由两组反并联变流装置组成的直流电机的四象限运行系统中,两组变流装置分别工作在正组状态、状态、反组状态、状态。 3、在有环流反并联可逆系统中,环流指的是只流经而不流经 的电流。为了减小环流,一般采用αβ状态。 4、有源逆变指的是把能量转变成能量后送给装置。 5、给晶闸管阳极加上一定的电压;在门极加上电压,并形成足够的电流,晶闸管才能导通。 6、当负载为大电感负载,如不加续流二极管时,在电路中出现触发脉冲丢失时 与电路会出现失控现象。 7、三相半波可控整流电路,输出到负载的平均电压波形脉动频率为H Z;而三相全控桥整流电路,输出到负载的平均电压波形脉动频率为H Z;这说明电路的纹波系数比电路要小。 8、造成逆变失败的原因有、、、等几种。 9、提高可控整流电路的功率因数的措施有、、、等四种。 10、晶闸管在触发开通过程中,当阳极电流小于电流之前,如去掉脉冲,晶闸管又会关断。 三、选择题(10分) 1、在单相全控桥整流电路中,两对晶闸管的触发脉冲,应依次相差度。 A 、180度;B、60度;C、360度;D、120度; 2、α= 度时,三相半波可控整流电路,在电阻性负载时,输出电压波形处于连续和断续的临界状态。 A、0度; B、60度; C 、30度;D、120度; 3、通常在晶闸管触发电路中,若改变的大小时,输出脉冲相位产生移动,达到移相控制的目的。 A、同步电压; B、控制电压; C、脉冲变压器变比; 4、可实现有源逆变的电路为。

A、单相全控桥可控整流电路 B、三相半控桥可控整流电路 C、单相全控桥接续流二极管电路 D、单相半控桥整流电路 5、由晶闸管构成的可逆调速系统中,逆变角βmin选时系统工作才可靠。 A、300~350 B、100~150 C、00~100 D、00 四、问答题(每题9分,18分) 1、什么是逆变失败?形成的原因是什么? 2、为使晶闸管变流装置正常工作,触发电路必须满足什么要求? 五、分析、计算题:(每题9分,18分) 1、三相半波可控整流电路,整流变压器的联接组别是D/Y—5,锯齿波同步触发电路中的信号综合管是NPN型三极管。试确定同步变压器TS的接法钟点数为几点钟时,触发同步定相才是正确的,并画出矢量图。(8分) 2、如图所示:变压器一次电压有效值为220V,二次各段电压有效值为100V,电阻性负载,R=10Ω,当控制角α=90o时,求输出整流电压的平均值U d,负载电流I d,并绘出晶闸管、整流二极管和变压器一次绕组电流的波形。(10分) 一、填空题 1、要有一个直流逆变电源,它的极性方向与晶闸管的导通方向一致,其幅极应稍大于逆变桥直流侧输出的平均

现代电力电子技术发展及其应用

现代电力电子技术发展及其应用 摘要:电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域——电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。 一、引言 自上世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气控制技术舞台,标志着电力电子技术的诞生。究竟什么是电力电子技术呢?电力电子技术就是采用功率半导体器件对电能进行转换、控制和优化利用的技术,它广泛应用于电力、电气自动化及各种电源系统等工业生产和民用部门。它是介于电力、电子和控制三大领域之间的交叉学科。目前,电力电子技术的应用已遍及电力、汽车、现代通信、机械、石化、纺织、家用电器、灯光照明、冶金、铁路、医疗设备、航空、航海等领域。进入21世纪,随着新的理论、器件、技术的不断出现,特别是与微控制器技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。 二、电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压

和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 1、整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 2、逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 3、变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

电力电子技术重点王兆安第五版打印版

第1章绪论 1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类 (1)交流变直流AC-DC:整流 (2)直流变交流DC-AC:逆变 (3)直流变直流DC-DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术。 第2章电力电子器件 1 电力电子器件与主电路的关系 (1)主电路:指能够直接承担电能变换或控制任务的电路。(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。 2 电力电子器件一般都工作于开关状态,以减小本身损耗。 3 电力电子系统基本组成与工作原理 (1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。 (2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。 (4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。 4 电力电子器件的分类 根据控制信号所控制的程度分类 (1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如SCR晶闸管。 (2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。如GTO、GTR、MOSFET 和IGBT。 (3)不可控器件:不能用控制信号来控制其通断的电力电子器件。如电力二极管。 根据驱动信号的性质分类 (1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。如SCR、GTO、GTR。(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。如MOSFET、IGBT。 根据器件内部载流子参与导电的情况分类 (1)单极型器件:内部由一种载流子参与导电的器件。如MOSFET。 (2)双极型器件:由电子和空穴两种载流子参数导电的器件。如SCR、GTO、GTR。(3)复合型器件:有单极型器件和双极型器件集成混合而成的器件。如IGBT。 5 半控型器件—晶闸管SCR 将器件N1、P2半导体取倾斜截面,则晶闸管变成V1-PNP 和V2-NPN两个晶体管。 晶闸管的导通工作原理 (1)当AK间加正向电压A E,晶闸管不能导通,主要是中间存在反向PN结。 (2)当GK间加正向电压G E,NPN晶体管基极存在驱动电流G I,NPN晶体管导通,产生集电极电流2c I。 (3)集电极电流2c I构成PNP的基极驱动电流,PNP导通,进一步放大产生PNP集电极电流1c I。 (4)1c I与G I构成NPN的驱动电流,继续上述过程,形成强烈的负反馈,这样NPN和PNP两个晶体管完全饱和,晶闸管导通。 2.3.1.4.3 晶闸管是半控型器件的原因 (1)晶闸管导通后撤掉外部门极电流G I,但是NPN基极仍然存在电流,由PNP集电极电流1c I供给,电流已经形成强烈正反馈,因此晶闸管继续维持导通。 (2)因此,晶闸管的门极电流只能触发控制其导通而不能控制其关断。 2.3.1.4.4 晶闸管的关断工作原理 满足下面条件,晶闸管才能关断: (1)去掉AK间正向电压; (2)AK间加反向电压; (3)设法使流过晶闸管的电流降低到接近于零的某一数值以下。 2.3.2.1.1 晶闸管正常工作时的静态特性 (1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。 (3)晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。 (4)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。 2.4.1.1 GTO的结构 (1)GTO与普通晶闸管的相同点:是PNPN四层半导体结构,外部引出阳极、阴极和门极。 (2)GTO与普通晶闸管的不同点:GTO是一种多元的功率集成器件,其内部包含数十个甚至数百个供阳极的小GTO元,这些GTO元的阴极和门极在器件内部并联在一起,正是这种特殊结构才能实现门极关断作用。 2.4.1.2 GTO的静态特性 (1)当GTO承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当GTO承受正向电压时,仅在门极有触发电流的情

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

电力电子技术实验(课程教案)

课程教案 课程名称:电力电子技术实验 任课教师:张振飞 所属院部:电气与信息工程学院 教学班级:电气1501-1504班、自动化1501-1504自动化卓越1501 教学时间:2017-2018学年第一学期 湖南工学院

课程基本信息

1 P 实验一、SCR、GTO、MOSFET、GTR、IGBT特性实验 一、本次课主要内容 1、晶闸管(SCR)特性实验。 2、可关断晶闸管(GTO)特性实验(选做)。 3、功率场效应管(MOSFET)特性实验。 4、大功率晶体管(GTR)特性实验(选做)。 5、绝缘双极性晶体管(IGBT)特性实验。 二、教学目的与要求 1、掌握各种电力电子器件的工作特性测试方法。 2、掌握各器件对触发信号的要求。 三、教学重点难点 1、重点是掌握各种电力电子器件的工作特性测试方法。 2、难点是各器件对触发信号的要求。 四、教学方法和手段 课堂讲授、提问、讨论、演示、实际操作等。 五、作业与习题布置 撰写实验报告

2 P 一、实验目的 1、掌握各种电力电子器件的工作特性。 2、掌握各器件对触发信号的要求。 二、实验所需挂件及附件 三、实验线路及原理 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载 电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触 发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得 在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负 载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电 压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07 挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后 调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压 器调节的直流电压源。 实验线路的具体接线如下图所示:

电力电子技术课程重点知识点总结

1.解释GTO、GTR、电力MOSFET、BJT、IGBT,以及这些元件的应用范围、基本特性。 2.解释什么是整流、什么是逆变。 3.解释PN结的特性,以及正向偏置、反向偏置时会有什么样的电流通过。 4.肖特基二极管的结构,和普通二极管有什么不同 5.画出单相半波可控整流电路、单相全波可控整流电路、单相整流电路、单相桥式半控整流电路电路图。 6.如何选配二极管(选用二极管时考虑的电压电流裕量) 7.单相半波可控整流的输出电压计算(P44) 8.可控整流和不可控整流电路的区别在哪 9.当负载串联电感线圈时输出电压有什么变化(P45) 10.单相桥式全控整流电路中,元件承受的最大正向电压和反向电压。 11.保证电流连续所需电感量计算。 12.单相全波可控整流电路中元件承受的最大正向、反向电压(思考题,书上没答案,自己试着算) 13.什么是自然换相点,为什么会有自然换相点。 14.会画三相桥式全控整流电路电路图,波形图(P56、57、P58、P59、P60,对比着记忆),以及这些管子的导通顺序。

15.三相桥式全控整流输出电压、电流计算。 16.为什么会有换相重叠角换相压降和换相重叠角计算。 17.什么是无源逆变什么是有源逆变 18.逆变产生的条件。 19.逆变失败原因、最小逆变角如何确定公式。 做题:P95:1 3 5 13 16 17,重点会做 27 28,非常重要。 20.四种换流方式,实现的原理。 21.电压型、电流型逆变电路有什么区别这两个图要会画。 22.单相全桥逆变电路的电压计算。P102 23.会画buck、boost电路,以及这两种电路的输出电压计算。 24.这两种电路的电压、电流连续性有什么特点 做题,P138 2 3题,非常重要。 25.什么是PWM,SPWM。 26.什么是同步调制什么是异步调制什么是载波比,如何计算 27.载波频率过大过小有什么影响 28.会画同步调制单相PWM波形。 29.软开关技术实现原理。

电力电子技术试题及答案

电力电子技术试题 1、请在空格内标出下面元件的简称:电力晶体管GTR;可关断晶闸管GTO ;功率场效应晶体管MOSFET;绝缘栅双极型晶体管IGBT;IGBT是MOSFET 和GTR 的复合管。 2、晶闸管对触发脉冲的要求是要有足够的驱动功率、触发脉冲前沿要陡幅值要高和触发脉冲要与晶闸管阳极电压同步。 3、多个晶闸管相并联时必须考虑均流的问题,解决的方法是串专用均流电抗器。。 4、在电流型逆变器中,输出电压波形为正弦波波,输出电流波形为方波波。 5、型号为KS100-8的元件表示双向晶闸管晶闸管、它的额定电压为800V伏、额定有效电流为100A安。 6、180°导电型三相桥式逆变电路,晶闸管换相是在_同一桥臂上的上、下二个元件之间进行;而120o导电型三相桥式逆变电路,晶闸管换相是在_不同桥臂上的元件之间进行的。 7、当温度降低时,晶闸管的触发电流会增加、、正反向漏电流会下降、;当温度升高时,晶闸管的触发电流会下降、、正反向漏电流会增加。 8、在有环流逆变系统中,环流指的是只流经两组变流器之间而不流经负载的电流。环流可在 电路中加电抗器来限制。为了减小环流一般采用控制角α= β的工作方式。 9、常用的过电流保护措施有快速熔断器、串进线电抗器、接入直流快速开关、控制快速移 相使输出电压下降。(写出四种即可) 10、逆变器按直流侧提供的电源的性质来分,可分为电压型型逆变器和电流型型逆变器,电压 型逆变器直流侧是电压源,通常由可控整流输出在最靠近逆变桥侧用电容器进行滤波,电压型三相桥式逆变电路的换流是在桥路的本桥元件之间元件之间换流,每只晶闸管导电的角度是180o度;而电流型逆变器直流侧是电流源,通常由可控整流输出在最靠近逆变桥侧是用电感滤波,电流型三相桥式逆变电路换流是在异桥元件之间元件之间换流,每只晶闸管导电的角度是120o 度。 11、直流斩波电路按照输入电压与输出电压的高低变化来分类有降压斩波电路;升压斩波电路;升降压斩波电路。 12、由晶闸管构成的逆变器换流方式有负载换流和强迫换流。 13、按逆变后能量馈送去向不同来分类,电力电子元件构成的逆变器可分为有源、逆变器与无源逆变器两大类。 14、有一晶闸管的型号为KK200-9,请说明KK快速晶闸管;200表示表示200A,9表 示900V。 15、单结晶体管产生的触发脉冲是尖脉冲脉冲;主要用于驱动小功率的晶闸管;锯齿波同 步触发电路产生的脉冲为强触发脉冲脉冲;可以触发大功率的晶闸管。 17、为了减小变流电路的开、关损耗,通常让元件工作在软开关状态,软开关电路种类很多,但归纳起来可分 为零电流开关与零电压开关两大类。 18、直流斩波电路在改变负载的直流电压时,常用的控制方式有等频调宽控制;等宽调频控制;脉宽与频率同时控制三种。 19、由波形系数可知,晶闸管在额定情况下的有效值电流为I Tn等于 1.57倍I T(A V),如果I T(A V)=100安培, 则它允许的有效电流为157安培。通常在选择晶闸管时还要留出 1.5—2倍的裕量。 20、通常变流电路实现换流的方式有器件换流,电网换流,负载换流,强迫换流四种。 21、在单相交流调压电路中,负载为电阻性时移相范围是π 0,负载是阻感性时移相范围是 → ?→。 π

现代电力电子技术

现代电力电子技术

现代电力电子技术二、主观题(共12道小题) (主观题请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。在线只需提交客观题答案。) 11. 电力电子技术的研究内容? 12. 电力电子技术的分支? 13. 电力变换的基本类型? 14. 电力电子系统的基本结构及特点? 15. 电力电子的发展历史及其特点? 16. 电力电子技术的典型应用领域? 17. 电力电子器件的分类方式? 18. 晶闸管的基本结构及通断条件是什么? 19. 维持晶闸管导通的条件是什么? 20. 对同一晶闸管,维持电流I H与擎住电流IL在数值大小上有I L______I H。 21. 整流电路的主要分类方式? 22. 单相全控桥式整流大电感负载电路中,晶闸管的导通角θ=________。

现代电力电子技术二、主观题(共12道小题) 11. 电力电子技术的研究内容? 参考答案:主要包括电力电子器件、功率变换主电路和控制电路。 12. 电力电子技术的分支? 参考答案:电力学、电子学、材料学和控制理论等。 13. 电力变换的基本类型? 参考答案: 包括四种变换类型:(1)整流AC-DC (2)逆变DC-AC (3)斩波DC-DC (4)交交电力变换AC-AC 14. 电力电子系统的基本结构及特点? 参考答案: 电力电子系统包括功率变换主电路和控制电路,功率变换主电路是属于电路变换的强电电路,控制电路是弱电电路,两者在控制理论的支持下实现接口,从而获得期望性能指标的输出电能。'

15. 电力电子的发展历史及其特点? 参考答案:主要包括史前期、晶闸管时代、全控型器件时代和复合型时代进行介绍,并说明电力电子技术的未来发展趋势 16. 电力电子技术的典型应用领域? 参考答案:介绍一般工业、交通运输、电力系统、家用电器和新能源开发几个方面进行介绍,要说明电力电子技术应用的主要特征。 17. 电力电子器件的分类方式? 参考答案: 电力电子器件的分类 (1)从门极驱动特性可以分为:电压型和电流型 (2)从载流特性可以分为:单极型、双极型和复合型 (3)从门极控制特性可以分为:不可控、半控及全控型 18. 晶闸管的基本结构及通断条件是什么? 参考答案:晶闸管由四层半导体结构组成,是个半控型电力电子器件,导通条件:承受正向阳极电压及门极施加正的触发信号。关断条件:流过晶闸管的电流降低到维持电流以下。 19. 维持晶闸管导通的条件是什么? 参考答案:流过晶闸管的电流大于维持电流。 20. 对同一晶闸管,维持电流I H与擎住电流IL在数值大小上有I L______I H。 参考答案:I L__〉____I H 21. 整流电路的主要分类方式? 参考答案: 按组成的器件可分为不可控(二极管)、半控(SCR)、全控(全控器件)三种; 按电路结构可分为桥式电路和半波电路; 按交流输入相数分为单相电路和三相电路。

电力电子技术复习要点

电力电子技术复习要点 第一章 电力电子器件及其应用 一、一般性概念 1、什么是场控(电压控制)器件、什么是电流控制器件?什么是半控型器件?什么是全控型器件?什么是复合器件? 2、波形系数的概念,如何利用波形计算相关的平均值、有效值 3、什么是器件的安全工作区,有何用途? 4、什么是器件的开通、关断时间,器件开关速度对电路工作有何影响? 二、二极管 1、常用二极管有哪些类型?各有什么特点? 2、二极管额定电流、额定电压的概念,如何利用波形系数选择二极管额定电流? 三、晶闸管 1、晶闸管的开通、关断条件、维持导通的条件 2、维持电流、擎住电流的概念 3、晶闸管额定电流、额定电压的概念,如何利用波形系数选择晶闸管额定电流? 四、GTR 1、GTR 如何控制工作? 2、GTR 正常工作对控制电流有何要求?为什么? 3、GTR 的安全工作区有何特别?什么是二次击穿现象,有何危害? 4、GTR 额定电流、额定电压的概念,如何利用波形系数选择GTR 额定电流? 五、MOSTFET 、IGBT 1、MOSTFET 、IGBT 如何控制工作? 2、MOSTFET 、IGBT 正常工作对控制电压有何要求?为什么? 3、MOSTFET 、IGBT 额定电流、额定电压的概念,如何利用波形系数选择MOSTFET 、IGBT 管额定电流? 六、如何设计RCD 缓冲电路的参数?各个约束条件的含义?如果增加m ax dt dU 、 瞬态冲击电流I max 限制,其约束条件如何表达?

第二章直流―直流变换电路 一、基本分析基础 1、电路稳态工作时,一个周期电容充放电平衡原理 2、电路稳态工作时,一个周期电感伏秒平衡原理 3、电路稳态工作时,小纹波近似原理 二、Buck、Boost、Buck-Boost、Flyback、Forward电路 1、电感电流连续时,电路稳态工作波形分析 2、利用工作波形分析计算输入输出关系 3、开关元件(VT、VD)的峰值电流、额定电流、承受的电压如何计算? 4、输出纹波如何计算? 第三章直流-交流变换电路 一、单相方波逆变电路 1、单相方波逆变电路控制规律、工作波形分析 2、利用波形分析计算单相方波逆变电路输入电流、电压、功率和输出的电流、 电压、功率 3、单相方波逆变电路移相调压、矩形波调制调压的原理 二、单相SPWM逆变 1、SPWM调制的原理 2、自然采样法、规则采样法、同步调制、异步调制、分段同步调制、幅度调制 比、载波比(频率调制比)的概念 3、桥式电路双极性SPWM逆变的控制方法、输入输出电压关系、如何实现输出 基波的调频调压 4、桥式电路单极性倍频SPWM逆变的控制方法、输入输出电压关系、如何实现 输出基波的调频调压 三、三相逆变 1、三相方波逆变的控制原理、纯电阻负载工作波形分析 2、三相方波逆变纯电阻负载输入、输出的电流、电压、功率计算 3、三相SPWM逆变的控制原理,纯电阻负载工作波形分析

电力电子技术试卷及答案

~ 一、填空题(每空1分,34分) 1、实现有源逆变的条件 为 和。 2、在由两组反并联变流装置组成的直流电机的四象限运行系统中,两组变流装置分别工作在正 组状态、状态、反组状 态、状态。 3、在有环流反并联可逆系统中,环流指的是只流经而不流经 的电流。为了减小环流,一般采用αβ状态。 4、有源逆变指的是把能量转变成能量后送 给装置。 5、给晶闸管阳极加上一定的电压;在门极加上电压,并形成足够 的电流,晶闸管才能导通。 6、当负载为大电感负载,如不加续流二极管时,在电路中出现触发脉冲丢失时 > 与电路会出现失控现象。 7、三相半波可控整流电路,输出到负载的平均电压波形脉动频率为 H Z;而三相全控桥整流电路,输出到负载的平均电压波形脉动频率为 H Z;这说 明电路的纹波系数 比电路要小。 8、造成逆变失败的原因 有、、、

等几种。 9、提高可控整流电路的功率因数的措施 有、、 、等四种。 10、晶闸管在触发开通过程中,当阳极电流小于电流之前,如去 掉脉冲,晶闸管又会关断。 三、选择题(10分) 1、在单相全控桥整流电路中,两对晶闸管的触发脉冲,应依次相差度。 A 、180度; B、60度; C、360度; D、120度; ` 2、α= 度时,三相半波可控整流电路,在电阻性负载时,输出电压波形处于连续和断续的临界状态。 A、0度; B、60度; C 、30度; D、120度; 3、通常在晶闸管触发电路中,若改变的大小时,输出脉冲相位产生移动,达到移相控制的目的。 A、同步电压; B、控制电压; C、脉冲变压器变比; 4、可实现有源逆变的电路为。 A、单相全控桥可控整流电路 B、三相半控桥可控整流电路 C、单相全控桥接续流二极管电路 D、单相半控桥整流电路 5、由晶闸管构成的可逆调速系统中,逆变角βmin选时系统工作才可靠。 》 A、300~350 B、100~150 C、00~100 D、00 四、问答题(每题9分,18分) 1、什么是逆变失败形成的原因是什么

相关主题
文本预览
相关文档 最新文档